
On the cost of cryptanalytic attacks

Jean-Philippe Aumasson

FHNW, 5210 Windisch, Switzerland

Abstract. This note discusses the complexity evaluation of cryptanalytic attacks, with the
example of exhaustive key search, illustrated with several ciphers from the eSTREAM project.
A measure is proposed to evaluate the effective computational cost of cryptanalytic algorithms,
based on the observation that the standard one is not precise enough.

1 Introduction

The notion of time complexity arose in complexity theory in order to evaluate the hardness
of computational problems; informally, the time complexity of a problem (as a mathematical
object) is defined as the minimum (over all Turing machines) of the maximum (over all
problem instances) number of transitions required by a Turing machine to solve it, as a
function of the length (in bits) of the machine’s input. Time complexity is generally expressed
using asymptotic notations; for example, stating that an algorithm has time complexity O(n2)
means that there exists P ∈ Z[X]/(X3) and a Turing machine solving any instance of the
problem in less than f(n) transitions, with f the polynomial function induced by P , for all
input of length n ∈ N.

Extending trivially this notion to algorithms has no sense, and the simplified notion of
algorithmic complexity is used instead; atomic operations are arbitrary defined (memory ac-
cess, comparison of values, fixed-length arithmetical operations, etc.), and are counted in
the algorithm, without regard to a particular calculus model, in terms of the algorithm’s
arguments. Generally, instead of their length, their value is used (leading to an exponential
gap, which brings confusion), and the operations running in constant time are considered as
atomic, since captured by the asymptotic notations. It is essentially easy to evaluate asymp-
totic algorithmic complexities, but their knowledge is not sufficient to compare the effective
efficiency of algorithms, since huge multiplicative or additive constants may be “hidden”. For
example, integer multiplication of n-bit numbers runs in O(n2) with the naive algorithm,
and O(n log n log log n) with a FFT-based algorithm; however the naive method is faster for
n < 100.

Cryptographers are generally far more interested in effective computation times than in
theoretical asymptotic algorithmic complexities. In particular, using asymptotics has no sense
for fixed-length-parameters ciphers – indeed O(2k) = O(1) for a k-bit key cipher. Clearly, the
model of the Turing machine is not good to evaluation the hardness of cryptanalytic attacks:
the atomic operation is a machine transition, which not trivially translates on modern com-
puters, and evaluating rigorouslw the cost of an attack in this model is complicated. Using the
algorithmic complexity to evaluate an attack cost is not good either, for two main reasons:
first, the operations arbitrary chosen as elementary may not be so in an implementation of the
algorithm; secondly the implemented algorithm may be much different from the pseudo-code
version, by using for example precomputed tables, factorised instructions, loops simplifica-
tions, etc. Hence the evaluation of the computation of an attack must not only rely on the
pseudo-code algorithm. Instead, a lower bound is generally given, in terms of non-atomic



operations, like “run key and IV setup”, “compute 500 Kb of keystream”, or “compute the
corresponding value”, but a precise statement of the real cost lacks, and so this bound is often
confused with the approximate cost of the attack.

So as to give a more precise evaluation of the cost of a cryptanalytic algorithm, we choose
to consider as atomic time unit a CPU cycle, and suggest to estimate a lower bound on number
of cycles required to run the algorithm considered (on a serial machine with “reasonnable”
memory and CPU), and define this measure as the effective cost of the algorithm. One may
object that the number of cycles required to run some optimised algorithm change from one
architecture to another; we do not target the minimum number of cycles of an implementation;
but the minimum necessary in any implementation on a “reasonnable” machine.

We prefer to use the term “cost” instead of “complexity”, since the latter refers to an
intrinsic quality of some abstract object, like a decision problem, whereas “cost” translates
the properties of its relation with some concrete object (here computers), and thus fits better
in our situation. The computational cost must not be confused with the effective execution
time, neither with the notion of security (cf. [4, 7]).

2 Exhaustive key search

It is obvious that for a cipher with k-bit secret key and full key domain, an algorithm perform-
ing the EKS requires more than 2k operations, which translates, on a computer, to a number
of clock cycles above 2k, assuming that a key trial takes at least one cycle. The value 2k is
indeed the complexity of the generic algorithm, where the operation “try a key” is assumed
atomic, and we qbusively talk about “an attack running in time 2k”, whereas 2k is only a
lower bound on the effective cost. However, most of the stream ciphers require a non-trivial
key setup stage, whose cost should not be neglected. One may also consider the cost of com-
puting the few keystream bits, but for half of the keys less only one bit of keystream are
necessary, thus EKS cost should only consider one bit of output to estimate a lower bound
on the complexity (except when the ciphers output blocks of bits).

Table 1 shows, for several ciphers [18, 6, 5, 8, 3, 11, 15, 10, 9, 14, 12, 19, 8] of the eSTREAM
project [1],

– the key length (in bits),
– the IV length (in bits),
– the effective cost evaluated of key setup and IV setup, along with the induced least number

of cycles of EKS, in binary logarithmic units (between [. . . ]).
– the same information for the latest experimental results [2] over a 2 137 MHz Intel Core

2 Duo with most recent implementation (reference 20061108).

We also present several ciphers for which no effective cost is given, sorted by decreasing
key length. Note that the results of software implementations of hardware ciphers (with
superscript †) may not be relevant, since target efficiency on other computation models. Note
that, although exhaustive search is made for fixed IV’s, the IV-setup process must be made
for each key since is always performed after the key setup and depends on it.

We justify our evaluations of the effective cost:

– HC-256: key setup first computes 2 560 32-bit values iteratively, each requiring 20 oper-
ations, then updates the internal state 4 096 times, each update requiring 27 operations.
Counting at least one cycle per 32-bit value computer, and per state update, key setup
requires at least 6 656 cycles.



Table 1. Cost of EKS for eSTREAM ciphers.

Cipher Key IV Effective cost Measures

Dragon 256 128 − 1 365 [266.4]
HC-256 256 128 6 656 [268.7] 83 617 [272.3]
Phelix 256 128 − 1 320 [266.3]

Py 256 128 323 [264.3] 6 039 [268.5]
Salsa20 256 64 1 [256.0] 40 [261.5]
ABCv3 128 128 − 204 084 [145.6]

Grain-128† 128 128 256 [136.0] 463 [136.8]
Lex-v1 128 128 300 [136.2] 473 [136.8]

Mickey-128† 128 128 416 [136.7] 31 880 [142.9]
Rabbit 128 64 12 [131.6] 754 [137.5]

Sosemanuk 128 64 800 [137.6] 1 615 [138.6]
Hermes8-80† 80 64 − 2 584 [91.3]

Trivium† 80 80 288 [88.1] 616 [89.2]

– Py: key setup consists in 323 loops of a block of instruction including a S-box look-up and
many bitwise operations. We can reasonnably assume that each iteration takes more than
one cycle.

– Salsa20: key setup is straightforward and only consist in a few simple operations, so we
make no specific assumption on the minimal number of cycles requires.

– Grain-128: the feedback registers are clocked 256 times before generating keystream. We
count at least 256 cycles for this operation.

– Lex: Rijndael’s key schedule is run during key setup, which requires about 300 with the
best implementations.

– Mickey-128: key setup performs 416 updates of the internal states, each requiring 1 764
simple bitwise operations. We count at least one cycle per update.

– Rabbit: 8 variables of the inner state are computed, then the cipher called 4 times, so at
least 12 cycles are necessary.

– Sosemanuk: key setup performs 48 calls to the SERPENT block ciphers, regarding to the
best implementations of SERPENT, at least 800 cycles are necessary.

– Trivium: each bit of the internal state requires four iterations of a loop of about 20
operations. We assume that each of the 288 bits requires more than on cycle.

Table 1 shows that the real cost of exhaustive search is almost always much greater than
2k (the smallest gap is for Salsa20, only 25.3, the highest is for ABCv3, 217.6). Following the
experimental results, about 2 000 Salsa20 keys are tried while only one of HC-256 is set up.
HC-256 indeed suffers of an extremely long key setup, but provides an EKS cost increased
to 2268.7, although 2256 would clearly be high enough. But the gain is not overkill for ciphers
with 80-bit and 128-bit keys. The average gap induced by our estimations of the effective
cost is 29. As a consequence, an attack against a k-bit-key cipher with effective cost less than
2k+a, for some a > 0, would be “break” the cipher if exhaustive search runs in more than
2k+a cycles.

3 Other attacks

Not only exhaustive search can be subject to the effective cost evaluation, for example:

– the key recovery attack against LEX in [20] requires 20 000 keystream bytes for each of 261

random IV’s: according to our previous results, computing all those keystreams requires



more than 277.8 cycles (with AES implementation running at 15 cycles per byte, and key
schedule in 300 cycles), whereas the complexity given by the authors is 261. If we follow
the benchmarks’ results, the attack would take more than 278.2.

– the distinguishing attack on Py in [17] runs in t ·284.7, with t the cost of key and IV setup.
Our evaluation gives a global cost of 292.7; benchmarks give 297.2.

– the chosen-ciphertext attack against Mosquito in [13] of “complexity” 270 requires 64
clockings of the cipher for 270 keys (no particular key setup is specified for this cipher),
giving an effective cost greater than 276.

For example, a 4 GHz processor performs 232 cycles per second, thus would take 244 seconds
to perform 276 cycles, that is, more than 550 000 years. But recall that brute force attacks
can be parallelised, and use non trivial techniques to run faster (see for example [16]).

4 Conclusion

The new measure presented seems more realistic than the standard one, and shows that
several ciphers with the same key length can provide much different EKS computation times.
Like almost all security arguments, our hardness statements rely on assumptions; no strict
rule defines the evaluation of the effective cost, since the appreciation of what costs at least
one cycle is quite arbitrary. However our estimations are sound with the experimental results,
and the improvement margin for remains quite large for most of the ciphers. Evaluating the
effective cost of other cryptanalytic algorithms may lead to surprising results.

References

1. eSTREAM, the ECRYPT Stream Cipher Project. Available at http://www.ecrypt.eu.org/stream/.
2. Daniel J. Bernstein. Notes on the ECRYPT stream cipher project (eSTREAM). Timings available at

http://cr.yp.to/streamciphers/#timings.
3. Daniel J. Bernstein. Salsa20. eSTREAM [1], Report 2005/025, 2005.
4. Daniel J. Bernstein. Understanding brute force, 2005. Document ID: 73e92f5b71793b498288efe81fe55dee.

http://cr.yp.to/papers.html#bruteforce.
5. Eli Biham and Jennifer Seberry. Py (Roo): A fast and secure stream cipher using rolling arrays, 2005.
6. Alex Biryukov. A new 128 bit key stream cipher : LEX. eSTREAM [1], Report 2005/013, 2005.
7. Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs for stream ciphers. Lecture

Notes in Computer Science, 1976:1–??, 2000.
8. Martin Boesgaard, Mette Vesterager, Thomas Christensen, and Erik Zenner. The stream cipher Rabbit.

eSTREAM [1], Report 2005/024, 2005.
9. Christophe De Cannière and Bart Preneel. Trivium - a stream cipher construction inspired by block cipher

design principles. eSTREAM [1], Report 2005/021, 2005.
10. Stephan Lucks Doug Whiting, Bruce Schneier and Frédéric Muller. Phelix - fast encryption and authen-

tication in a single cryptographic primitive. eSTREAM [1], Report 2005/020, 2005.
11. Come Berbain et al. Sosemanuk, a fast software-oriented stream cipher. eSTREAM [1], Report 2005/027,

2005.
12. Martin Hell, Thomas Johansson, and Willi Meier. Grain - a stream cipher for constrained environments.

eSTREAM [1], Report 2005/010, 2005.
13. Antoine Joux and Frédéric Muller. Chosen-ciphertext attacks against MOSQUITO. In FSE’06, 2006.
14. Ulrich Kaiser. Hermes8. eSTREAM [1], Report 2005/012, 2005.
15. William Millan Joanne Fuller Leonie Simpson1 Ed Dawson Hoonjae Lee Kevin Chen, Matt Henricksen

and Sangjae Moon. Dragon: A fast word based stream cipher. eSTREAM [1], Report 2005/006, 2005.
16. Philippe Oeschlin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO’03, 2003.
17. Souradyuti Paul, Bart Preneel, and Gautham Sekar. Distinguishing attacks on the stream cipher Py.

eSTREAM [1], Report 2005/081, 2005.



18. Ilya Kizhvatov Vladimir Anashin, Andrey Bogdanov and Sandeep Kumar. ABC - a new fast flexible
stream cipher specification, version 3. eSTREAM [1], Report 2005/001, 2005.

19. Hongjun Wu. A new stream cipher HC-256. eSTREAM [1], Report 2005/011, 2005.
20. Hongjun Wu and Bart Preneel. Attacking the iv setup of stream cipher LEX. eSTREAM [1], Report

2006/050, 2006.


