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Abstract. In spite of growing importance of AES, the Data Encryption Standard is
by no means obsolete. DES has never been broken from the practical point of view.
The triple DES is believed very secure, is widely used, especially in the financial sector,
and should remain so for many many years to come. In addition, some doubts have
been risen whether its replacement AES is secure, given the extreme level of “algebraic
vulnerability” of the AES S-boxes (their low I/O degree and exceptionally large number
of quadratic I/O equations).
Is DES secure from the point of view of algebraic cryptanalysis, a new very fast-growing
area of research? We do not really hope to break it, but just to advance the field of
cryptanalysis. At a first glance, DES seems to be a very poor target — as there is
(apparently) no strong algebraic structure of any kind in DES. However in [9] it was
shown that “small” S-boxes always have a low I/O degree (cubic for DES as we show
below). In addition, due to their low gate count requirements, by introducing additional
variables, we can always get an extremely sparse system of quadratic equations.
To assess the algebraic vulnerabilities is the easy part, that may appear unproductive.
In this paper we finally show that practical algebraic attacks are in fact possible for
reduced-round versions of DES. This is the first known example of a working algebraic
attack on a real-life “industrial” block cipher. The attack requires only one single
known plaintext (instead of a very large quantity). This is an unprecedented thing
that has no equivalent in any cryptographic attack ever done.
Though (on a PC) we recover the key for only six rounds, in a weaker sense we can
break 12 full rounds of DES. These results are very interesting because DES is known to
be a very robust cipher, and our methods are very generic. Thus, if DES is susceptible
to this kind of algebraic cryptanalysis, then probably nearly any other cipher is, and
some may be substantially weaker.

Key Words: block ciphers, algebraic cryptanalysis, DES, AES, solving overdefined
and sparse systems of multivariate equations, Gröbner bases, logical cryptanalysis,
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1 Introduction

According to Shannon, breaking a good cipher should require “as much work as solving
a system of simultaneous equations in a large number of unknowns of a complex type”
(see [32]). For example, the problem of key recovery in AES given one known plaintext
can be written as solving a system of 4000 multivariate quadratic equations, see [8,
9]. In general, this problem (called the MQ problem) is NP-hard, and solving this
particular system remains a very ambitious goal. Nevertheless, there is a growing body
of positive results: systems of equations that arise in the cryptanalysis of block, stream
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and public-key encryption schemes, turn out to be — for some specific reason —
efficiently solvable, see [29, 7, 6, 17, 19, 11, 15, 13, 14], to quote only some major results.
Where do we get from here? Maybe the most disturbing claim has been made by
Courtois and Pieprzyk in [9, 8], conjecturing that low-degree systems of equations
can be solved much easier than expected (compared to random and dense systems)
when and because they are very sparse and structured.1 A fast and efficient attack
along this line of research, could be simply the most powerful attack ever proposed
in the whole history of cryptanalysis. Indeed, this implies, that any cipher that can
be implemented in hardware with a small number of gates, is vulnerable to algebraic
cryptanalysis. Amazingly enough, our research does seem to confirm this “crazy” con-
jecture. We report some successful algebraic attacks on DES, in spite of its reputation
of being very robust.
The rest of the paper is organized as follows: In the next section we study several
methods of writing equations for DES. In Section 3 we summarise our attacks, explain
some related work, and give a complete description of a couple of (best to date) attacks
we did perform. In Section 4 we compare algebraic cryptanalysis of DES to AES, and
algebraic cryptanalysis to differential and linear cryptanalysis. In Section 5 we show
that algebraic cryptanalysis can solve systems of equations that have many solutions
more easily, and tentatively explore the cryptanalytic implications of it. Then comes
the conclusion.

2 Algebraic Vulnerabilities of DES S-boxes

Unlike AES, there is no special algebraic structure in DES S-boxes that makes them
particularly vulnerable. In most of this work, we treat them exactly as any other
S-box of the same size. (These attacks should therefore also work on DES with any
modified set of S-boxes).
The S-boxes in DES have n = 6 inputs and m = 4 outputs. There are many ways in
which one can write I/O equations for these S-boxes. The speed and the success of the
algebraic attack will greatly depend on how this is done. In our work we consider the
following three classes of equations that, heuristically, seem to be relevant to algebraic
cryptanalysis:

• Class 1. Low-degree multivariate I/O relations (cf. definition below),
• Class 2. I/O equations with a small number monomials (can be of high or of low

degree),
• Class 3. Equations of very low degree (between 1 and 2), low non-linearity and

extreme sparsity that one can obtain by adding additional variables.

We have tried several types of equations falling in one of the above categories, as well
as a number of their combinations. We have computed and tested all the equations
we consider in this paper, (and some others), and they can be obtained on demand
from the authors.
1 They have a kind of “block-wise sparsity”: variables from remote parts of the algorithm simply do

not “mix”.
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Very little is known about what approach would make an algebraic attack efficient and
why. In our simulations, though the last Class number 3 seems to be the best choice,
all the three do in fact give solvable systems of equations for several rounds of DES,
in spite of the fact that some of them are substantially larger in size. We anticipate
that better methods for writing DES as a system of equations should be proposed in
the future, and we consider the question of finding the “best” representation as an
important research topic in itself.

2.1 Low-degree Multivariate I/O Relations

The following notion plays an essential role in algebraic attacks on LFSR-based stream
ciphers, see [11, 4] as well as for a couple of (weak) block ciphers [20, 15].

Definition 2.2 (The I/O degree). Consider a function f : GF (2)n → GF (2)m,
f(x) = y, with x = (x0, . . . , xn−1) , y = (y0, . . . , ym−1).
The I/O degree of f is the smallest degree of the algebraic relation

g(x0, . . . , xn−1; y0, . . . , ym−1) = 0
that holds with certainty for every pair (x, y) such that y = f(x).

The minimum number (and frequently the exact number) of equations of some type
that do exist for one S-box can be obtained by applying the following theorem:

Theorem 2.3 (Courtois [9, 11, 14]). For any n × m S-box, F : (x1, . . . , xn) 7→
(y1, . . . , ym), and for any subset T of t out of 2m+n possible monomials in the xi and
yj , if t > 2n, there are at least t − 2n linearly independent I/O equations (algebraic
relations) involving (only) monomials in T , and that hold with probability 1, i.e. for
every (x, y) such that y = F (x).

Proof (sketch). All the monomials can be rewritten as a function of n variables and
their ANF belong to a linear space of dimension 2n. If their number is bigger than
the dimension, there will be at least t − 2n linear dependencies between these ANF,
and the same linear dependencies will also hold for the original monomials. ut

Example of Application of Theorem 2.3

For example, we can consider the equations of the following type:∑
αijkxiyjyk +

∑
βijkxixjyk +

∑
γijxiyj +

∑
δixi +

∑
εiyi + η = 0

These equations are of degree 3. The total number of monomials that arise in these
equations is t = 1 + nm + n + m + n · m(m − 1)/2 + m · n(n − 1)/2 = 131. By
straightforward application of Theorem 2.3 we get:

Corollary 2.4. For any 6× 4 S-box (not only a DES S-box) the number of linearly
independent equations r of this type is at least:

r ≥ t− 2n = 67.
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Table 1. The Real Number of Equations Observed for Different S-boxes

DES S-box 1 2 3 4 5 6 7 8

r = 67 67 67 67 68 68 67 67

Thus, for any 6× 4 S-box (not only a DES S-box) there are at least r ≥ t− 2n = 67
such equations. In practice, for DES S-boxes, we get sometimes 67, sometimes 68:
Remark: Apparently the S-boxes of DES behave more or less as random S-boxes of
the same size, however with this type of equations it seems that we can still “distin-
guish” them from random. It appears that, for all types of I/O low degree equations,
with t approximatively above 131, the difference between the DES S-boxes and ran-
dom S-boxes is no longer visible. This is an important remark because it means that
(at least with these and similar types of equations) we do not expect algebraic at-
tacks to be actually more efficient on DES itself compared to versions with modified or
random S-boxes. And in general, the attacks should also work for many other ciphers.

Fully Cubic Equations

We also consider fully cubic equations in the 10 variables xi and yi. We have

t = 1 + (n + m) + (n + m)(n + m− 1)/2 + (n + m)(n + m− 1)(n + m− 2)/6 = 176,

and thus r ≥ t−2n = 112. Computer simulations give exactly 112 for all the 8 S-boxes
of DES. Here we can no longer see any difference between DES and random S-boxes.

I/O Equations of Degree 4
We have t = 386, r ≥ t− 2n = 322. We obtain exactly this many for each DES S-box.

Remark. For all above mentioned types of low-degree equations, it is possible to
delete some equations, for example taking every second equation. This leads to systems
that are less over-determined and should give worse results in Gröbner basis attacks.
However in some SAT attacks it actually gives better results.

2.5 Relations with a Very Small Number Monomials

These equations were first proposed and studied in [12]. First, we study equations
that can be of arbitrary degree but that contain only one monomial. These are called
monomial equations in [12]. For example x1x2x5y3y4 = 0. One should note that
we count 1 as a monomial and the equation x1x2x5y3y4 = 1 would be counted as
a binomial equation. We have also studied and computed equations with 3 and 4
monomials.
Since linear combinations may ruin the sparsity of equations (that’s our focus), all
these equations do not have to be linearly independent. Still, from our count of bino-
mial equations we exclude those that are trivial because they are linear combinations
of simpler, monomial equations. Similarly, from our count of trinomial equations we
exclude equations that would be a XOR of one monomial and one binomial equation,
etc. The number of equations with 4 monomials is getting already quite large, however
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it is possible to select among these a smaller subset of equations that will also have a
substantially lower degree (e.g 4 instead of maximum 10). We have decided to limit
the sum of the degrees of the 4 monomials to 15 which also forces the degree to be ≤ 4
and to have some monomials of degree 3. For example, for DES S-box S1, we have
the following equation 0 = x[1]x[5]x[32]+x[1]x[2]x[5]+x[1]x[3]x[4]x[5]+x[1]x[5]y[31],
Here, the bits are numbered not according to their position in the S-box, but from
1 to 32, according to their position in the whole round function of DES. The sum of
degrees in this equation is 3 + 3 + 4 + 3 = 13.
In the following table we give the numbers of equations of each type we found for
DES, and compare to the results obtained for several randomly generated S-boxes of
the same size.

Table 2. Equations that Contain a Small Number of Monomials in DES

1 monomial
2 monomials
3 monomials
4 monomials

4 m;
∑

deg ≤ 15

random
S-box

0− 463
233− 524
1− 112

1880− 6106
250− 1053

DES S-box

1 2 3 4 5 6 7 8

170 140 179 145 207 154 153 173
360 385 322 362 303 345 379 329
123 125 56 66 74 115 81 99
716 608 771 567 484 543 750 448
87 73 104 57 86 104 94 75

Remark 1. We observe that for a random S-box, the number of equations of different
types is rather strongly variable, On the contrary, all the DES S-boxes give quite
similar results and clearly these equations are a good method to distinguish the DES
S-boxes from a random function. We note also that monomial equations have a curious
property that, for a random S-box, it is not totally unusual to have 0 such equations.
Remark 2. When equations of this type are used alone to describe DES (especially
with a single plaintext/ciphertext pair), and the key is computed by an algebraic
attack, they typically will not uniquely define the solution to the system. This is be-
cause typically, when all yi = 0 and regardless the value of x, these equations will all
be satisfied (!). Though in some cases (by miracle or by chance) we still were able
to recover the right key by our attacks, we advocate the usage of these equations in
conjunction with some other equations that permit the removal of spurious solutions
to systems of equations. Our experience shows that in some cases, mixing these equa-
tions with more traditional I/O equations of degree 3 gives a faster attacks than with
cubic equations alone.

2.6 Equations with Additional Variables

By adding up to 52 additional variables per S-box and per round, it is possible to
dramatically reduce the size of equations, increase their sparsity and decrease their
non-linearity. All equations will have either 0 or 1 nonlinear monomial. There are
many different methods to achieve this, and ours is directly derived from the low-
gate count non-standard representation of DES that has been developed by Matthew
Kwan, see [22]. These are our favorite equations and in practice, we observe a speedup
factor between 2 and 20 compared to the same attack done with the sets with 112
cubic equations per S-box.
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3 Our Attacks on DES

3.1 Summary

From our equations on the S-boxes, it is easy to write a system of multivariate equa-
tions that describe the whole cipher. This system will be of degree 2, 3, 4 or more,
depending on which equations we use for the S-boxes. This system should have a
unique solution (if it is not the case one should either fix some variables or use some
additional equations).
Interestingly, though almost all researchers in cryptography we know believe that
there is no method whatsoever able to be able to solve (in practice) such systems of
equations, we have discovered two totally different families of methods (that are of
very different nature) and that both work quite well.

1. The first is “a fast algebraic attack on block ciphers” as described by Courtois
recently (it is basically a simplified yet highly optimised version of Gröbner bases
FXL2 algorithm by Patarin and Courtois [16, 8, 9] applied to several known or
chosen plaintext pairs).

2. The second is a ANF to CNF conversion method we have designed, (detailed
description appears in a separate companion paper), that is used to produce a
large SAT problem, on which we run MiniSat 2.0, a very efficient and one of the
latest SAT solvers, that is freely available on the internet with source code [26].

The two methods can also be combined as follows: first we derive additional equations
(not very sparse anymore) by the first method, then we add these new equations with
the initial (very sparse) equations, then we run the conversion and then MiniSat. In
some cases the combined attack was the fastest.

3.2 Related Work and What’s New

Our results should be compared to previous work on solving very large systems of
multivariate equations and to previous successful attacks on general block ciphers
with no special/algebraic properties. None of our solving methods is completely new.
The use of Gröbner bases for solving systems of equations derived from a cipher has
become very popular since [9], yet no very successful attacks were reported so far. The
use of SAT solvers to break 3 rounds of DES have previously been shown to be feasible
by Massacci and Marraro [24]. The authors of [24] call it “logical cryptanalysis” to
emphasise the “automated reasoning” view. We consider this to be a part of “algebraic
cryptanalysis” especially that we do not write SAT systems directly, but first write
multivariate low-degree equations, then work on general-purpose conversion. We also
consider that the methods of abstract algebra include and go beyond classical logic
and reasoning. Unlike as in [24], our method — write equations, convert and solve
— is very general and applicable to any block or stream cipher. It has an interesting
property that the equations can be combined with any set of “additional” equations
that are typically derived in Gröbner bases-like and related algorithms. SAT solvers
may then be used as a non-algebraic (but rather statistical) tool to complete any
algebraic attack that does not work (sufficiently well) by itself.
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Unhappily, the 3 rounds of DES broken in [24] are arguably very weak, even with
one single plaintext, and the authors report ”an abrupt jump in complexity” at 4
rounds. Maybe for this reason the result remained almost unnoticed in the crypto-
graphic community. In this paper we break twice as many rounds as anyone could
ever break given such small quantity of known plaintexts (and we also present a kind
of distinguishing attack with 4 times as many rounds).
The immediate contribution of this paper is to show that some very sparse systems
of multivariate low-degree equations over smal finite fields derived from block ciphers
can be solved in a matter of seconds on a PC. This by both our conversion to SAT,
as well as techniques in the line of Gröbner bases (in fact we only worked with ex-
tremely simple monomial elimination tools that were however highly optimised in
terms of memory management, and the order of operations was rearranged to con-
serve sparsity). One can wonder to what extent the systems we are solving here are
special (i.e. weak)? It appears that it is in fact our attacks that are strong, especially
the one with SAT solvers. In a separate companion paper we show experimental evi-
dence that with our conversion and modern SAT solvers, even “random” but sparse
systems of low-degree equations can be solved faster than by any other previously
proposed attack (e.g. F5 algorithm [17]). One may notice that in the past, a reduc-
tion from the MQ problem to SAT, has been used to show that MQ was NP-hard.
Now it is being used to break large instances of MQ that were believed intractable to
handle.

3.3 Examples of Working Attacks — Fast Algebraic Attacks on Block
Ciphers

We start with a very simple yet remarkably efficient algebraic attack that we call
ElimLin. The ElimLin function works as follows: we take the initial system (that is of
degree 2 or 3) and look if there are linear equations in the linear span of the equations.
If so we can eliminate several variables, by simple substitution by a linear expression.
This process is repeated until no more linear equations can be found. The order of
variables is such that the key variables are eliminated at last.
ElimLin alone gives spectacular results, given its extreme simplicity. We write a system
of 112 fully cubic equations per S-box following Section 2.1, for 4 full rounds of DES,
and for one known plaintext. We fix first 19 key bits to their real values. 37 remain
to be determined. The time to compute 236 times 4 rounds of DES on our 1.6 GHz
Centrino CPU can be estimated to be about 8000 seconds. Instead, ElimLin takes only
8 seconds to find the correct solution. Attacks on 5 rounds can still be (marginally)
faster than brute force. For example, with 3 known plaintexts and 23 variables fixed,
we compute the key in 173 seconds, compared to about 540 s that would be needed
by a brute force attack.
With eliminate ElimLin we did not go very far, but still we do two more rounds
than in [23]. We observed that strictly better results (in terms of feasibility) can be
obtained with XL algorithm and the so called T’ method [8, 9, 16], or algorithms such
as F4 or F5, however we do not report any results with these, as they do not really go
much further, and we feel that our implementation of these still needs improvement.
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We have also tried ready packages such as MAGMA [21] and Singular [30], and found
that these systematically run out of memory on our examples due to (apparently)
lack of adequate support for sparse elimination on large systems, and this even on
some simple examples we could solve completely with ElimLin in less than 1 hour.

3.4 Examples of Working Attacks — Attacks with Conversion to SAT

With a very simple early version of our ANF to CNF converter, we write a system
of quadratic equations with additional variables as described in section 2.6. We do
it for full 6 rounds of DES, fix 20 key variables, and do the conversion that takes
few seconds. Then with the latest version of MiniSat 2.0. with pre-conditioning we
compute the key in 68 seconds while the exhaustive search would take about 4000 s.
The complexity to recover full 56-bit key by this attack is about 247.5 applications of
DES (feasible in practice).
Remark: We have tried if either MAGMA [21] or Singular [30] could solve this
system of equations that we solve in 68 s. Both crash with out of memory message
after allocating nearly 2 Gbytes. The memory used by MiniSat is 9 Mbytes.

4 Algebraic Cryptanalysis: the Great Challenge

4.1 Can Large Systems of Very Sparse Low-Degree Equations Be Solved
Efficiently?

In our (best) system of equations in section 3.4 above, we have 2900 variables, 3056
equations and 4331 monomials. 2 The system is very sparse and compact, it has on
average less than 1 non-linear monomial per equation. It is solved in 68 seconds.
We believe to be the first to show that such large systems of equations generated from
a real-life cipher structure can be efficiently solvable. Obviously, not every system with
similar parameters is efficiently solvable, and clearly the security of DES (as probably
for any other cipher) against our attacks does quickly increase with the number of
rounds.
Comparison to AES. Nevertheless, the following question can be asked, can we hope
to break, say 6 rounds of AES by using SAT solvers? In comparison to ours, the binary
system of equations proposed by Courtois and Pieprzyk in [9] has 4000 equations and
1600 variables: it is in fact overdefined and may seem easier to solve. Very unhappily,
this system has substantially more monomials, about 137 · 200 = 27400, much more
than a few thousands.3

2 Some equations are linear and if we eliminated them, we would have 1298 variables, 1326 equations
and 10369 monomials. It would become less sparse (15 monomials per equation on average) but
still very sparse. We don’t do this, it makes the attack run slower.

3 Another system of equations that describes the whole AES have been proposed by Murphy and
Robshaw [28], and it contains on average less than one non-linear monomial per equation. This is
very similar to ours, however their system is over GF (256), not over GF (2).
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4.2 Algebraic vs. Linear and Differential Cryptanalysis

Our vision of cryptanalysis changes each time a new cipher is considered, and each
time we discover a new powerful attack. In the past DES has been thoroughly crypt-
analysed by linear and differential cryptanalyses for up to 16 rounds. In this context
our results may appear quite insignificant. We believe that, on the contrary our results
are very good and are interesting for several reasons.
First, we can recover the key given one single known plaintext. A tiny amount of
data needed by the attacker is maybe the most striking feature of algebraic crypt-
analysis. This unprecedented quality of algebraic attacks has simply no equivalent
in any known cryptographic attack. It is precisely the reason why algebraic attacks
are potentially very devastating, and this however immature and inefficient they are
today. For example, from one single MAC computed by an EMV bank card with a
chip that is printed on a customer receipt, one would recover the key of the card, and
from this single key, the master key of the issuing bank that could be used to make
false bank cards. Luckily, there is no reason to believe that this could happen in a
foreseeable future.
Nevertheless, we contend that it is inappropriate to compare algebraic cryptanalysis
to linear and differential cryptanalysis and claim it is slower. In a certain way, linear
and differential cryptanalysis became the reference as a by-product of our failure to
ever find any attack on DES, that would be better than exhaustive search in a realistic
setting. Algebraic cryptanalysis, while still not very powerful and unable to break full
DES, does slowly emerge as more or less the only branch of cryptanalysis that may
work in real life (very few known plaintexts are available). We suggest that attacks
that require only a very small number of known plaintexts should be considered as
a research topic of its own right. They should mainly be compared just to other
attacks of this type. Moreover, if we can agree that for DES algebraic cryptanalysis is
currently no match compared to classical attacks, we may as well argue that actually
none of these attacks are of practical importance. Both represent the current state
of research in cryptology, and yet it is the algebraic cryptanalysis that is new and
can still improve a lot. (It will already improve just by using better SAT solvers and
more powerful computers. For some systems we have observed a speed-up of a factor
8 between MiniSat version 1.4 and 2.0.)
One should also note that, the situation that we have for DES could be very different
for AES. Since AES is, by design, very strong against differential and linear crypt-
analysis, the number of rounds is accordingly quite small in AES, and the threat is
indeed that some form of algebraic cryptanalysis could give better results for this
cipher (comparatively to linear and differential attacks). However, since the initial
attack proposal [8, 9], it seems that no visible progress is being made in this direction.
Our feeling that, before attacking AES, we need to learn much more about algebraic
cryptanalysis, and try it on many other ciphers. This was the main motivation of the
present paper.
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5 Algebraic Cryptanalysis As a Tool for Studying Ciphers

Algebraic (and logical) cryptanalysis is not only a tool for key recovery with unprece-
dented capabilities. It can be used to solve many other problems that arise in cipher
design such as detecting weaknesses, special properties, weak keys, finding collisions,
second pre-images etc. In the past, these tasks were done manually by a cryptanalyst.
Tomorrow, they will be automated. We will give here one example.

5.1 A Distinguishing Special-Property Attack on Full 12 Rounds of DES

Let ’0123456789ABCDEF’ be a fixed DES key (one that we did not choose and has no
special properties). We want to find an “educational” example of differential crypt-
analysis for the first 12 rounds of DES with difference (’00196000’,’00000000’),
that comes from the best existing differential characteristic for DES, see [10]. It is
known that this difference is reproduced after two rounds with probability exactly
2−8, regardless the value of the key. The only method we are aware of to find a
plaintext for which this difference holds throughout the whole computation is exhaus-
tive search. For 10 consecutive rounds it requires 241 reduced DES computations and
would take about 4 days on our laptop. For 12 consecutive rounds it requires 249

reduced DES computations which would last for about 3 years.
An algebraic approach to this problem is obvious: we can write this problem as a sys-
tem of equations that has many (we expect about respectively 224 and 216) solutions.
By using our (last) quadratic and very sparse representation of the S-box, and by
converting it to SAT, we have tried this approach. For 10 rounds this is particularly
easy, we do it in 50 seconds while fixing 6 additional variables to values chosen by
us. For 12 rounds it is harder to do, and the solution was found in 6 hours (instead
of 3 years). For example, one can verify that the plaintext ’4385AF6C49362B58’ is a
solution to this problem for 12 rounds and the key ’0123456789ABCDEF’.
Thus we are able to find a special property of 12 rounds of DES within a time much
much smaller than the inverse of the probability of this property.
This is a very unexpected and strong result. It is not a key recovery attack, but should
be treated as a “certificational” attack on 12 rounds of DES.

5.2 Future Research

We believe that many other results of this kind can be obtained by our (and similar)
methods. In particular, it appears that SAT solvers are particularly efficient in solving
problems that have many solutions. Thus, it should be also possible to break
many hash functions and MACs by this very method and without human
intervention, or in combination with other methods, as demonstrated in recent work
on hash function cryptanalysis [27].
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6 Conclusion

In this paper we show that it is in many interesting cases possible to solve in practice
very large systems of multivariate equations with more than 1000 unknowns derived
from a contemporary block cipher such as DES. Algebraic attacks on block ciphers
are somewhat much easier than expected.
In particular, it appears that for very sparse systems that arise in cryptanalysis,
modern SAT solvers are more efficient than current elimination (e.g. Gröbner bases
like) techniques (though both seem to work at some level). Our unique approach is to
write problems algebraically and work on conversion. This allows methods from both
families to be combined in many ways. By just the few simple working examples we
give in this paper, we have considerably enlarged the family of algebraic cryptanalytic
methods available to the researchers.
Our best key-recovery attack allows one to break in practice, up to 6 complete rounds
of DES, given only 1 known plaintext (!). With such a low quantity of plaintext
required, and given the very broad applicability of our methods, we consider it to be
an unprecedented result in cryptanalysis of block ciphers, one that opens new avenues
of research.
In addition, it appears that our attack with conversion to SAT can solve systems that
have many solutions even more easily. This potential remains largely unexplored, and
may lead to spectacular results in many areas of symmetric cryptanalysis. As an
illustration we present a “certificational” algebraic attack on 12 full rounds of DES
that runs in a couple of hours on a laptop PC.
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