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1 Introduction

Discovered by Bruno Buchberger in 1965, Gröbner bases are now an indispensable tool
in computational algebra, both for theory and applications. For our concerns, Gröbner
bases are special bases of nonzero ideals in a multivariate polynomial ring F[ X ] over
a field F. In his PhD thesis, Buchberger described an algorithm that, given a finite
sequence of polynomials F ⊆ F[X ], computes a Gröbner basis G ⊆ F[X ] such that F
and G generate the same ideal I.

Since a Gröbner basis enjoys nicer properties than an arbitrary polynomial sequence,
many problems concerning I that are hard given only F become easy when G is available.
Maybe the most fundamental such problem is the question of ideal membership: For an
arbitrary polynomial f ∈ F[ X ], decide whether f ∈ I. Certainly one of the most useful
applications of Gröbner bases is that they can help in solving systems of multivariate
polynomial equations, a problem of great interest in cryptography. In fact, computing
a (certain kind of) Gröbner basis is usually the bulk of the work when solving such a
system in this fashion.

Gröbner bases are so powerful that computing them is extremely hard: It can be
shown that computing a Gröbner basis is, in the worst case, doubly exponential in the
degree of the input polynomials. Fortunately, Gröbner bases for many examples can be
obtained much faster, and all major computer algebra systems for desktop computers
include a command named similar to GroebnerBasis.

As the basic Buchberger algorithm for computing Gröbner bases is quite inefficient,
there has been a lot of effort [7, 9, 17, 18, 21] to improve Buchberger’s algorithm and
find new methods. Following an idea of Lazard [19], Jean-Charles Faugère suggested the
algorithm F4, which translates the polynomial arithmetic of a Gröbner basis computation
to the solution of linear algebra problems over the coefficient field. This clever idea
resulted in a major speed-up of Gröbner basis computations and has since drawn a
lot of interest. Several public implementations and evaluations of F4 are available [5,
20, 23, 24], and the algorithm is implemented in computer algebra systems such as
Magma [10, 25].

As a follow-up to F4, Faugère suggested in [14] the F5 algorithm, which uses ideas
from a paper by Möller, Mora, and Traverso [21] to avoid redundant computations when
computing a Gröbner basis. In particular, it takes care that the additional criteria used
to detect useless computations in advance are not so costly that they result in fact in
a slow-down instead of a speed-up. The success of Faugère’s approach was prominently
demonstrated when he announced in a posting to the Usenet newsgroup sci.crypt [13],
and later in a crypto 2003 paper [16], the solution of a challenge posed by Patarin’s
using the F5/2 variant of his algorithm.

While the literature on F4 is growing, there are still not many publications treating
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F5. Save for Faugère’s paper [14], only Bardet’s works [2, 3], and, briefly, [1, 24] appear
to treat F5, although the algorithm was publicized in 2002. Bardet deeply explores the
complexity theory of F5 using algebraic geometry, but for proofs of the algorithm, she
refers to the original paper, where they are only sketched. As for implementations, the
author knows only of four, two of which are public, but not stable, namely those by Pearce
[22], and Segers [24], respectively; Steel [26] and Faugère have efficient implementations,
neither of which is available in source form.

In the present thesis, we try to overcome these deficiencies. After briefly giving the
foundations of Gröbner basis theory, chapter 3 treats the F5 algorithm. We present
and prove the main theorem underlying F5, and show, under certain assumptions, the
correctness and termination of the algorithm. All these proofs were only sketched in
the original paper. The pseudo code we list in section 3.3 corrects some minor errors in
[14], and should be better suited for implementations. Generally, we hope to have made
the presentation more accessible (at least to a reader with prior exposure to Gröbner
basis algorithms) than it was possible under the space restrictions in the original paper
proposing the algorithm.

We are proud to report the first stable public implementation, with code available on
the author’s homepage:

http://www.cdc.informatik.tu-darmstadt.de/∼stegers/

The implementation is written in the Magma language, and thus not very efficient, but
useful to support further research on F5, including efficient implementations. As a first
indicator of the performance of F5, we report some benchmarks, comparing our imple-
mentation to F4 using the Gebauer-Möller criteria as implemented by Segers during the
course of his ambitious Master’s project [24]. Resulting from work on the implementa-
tion of F5, we pass on some hints that we feel could be of use to researchers implementing
the algorithm in future projects, and, finally, conclude with a section on open problems.

Thanks! I would like to thank my advisor, Johannes Buchmann, for supporting me,
Ralf-Philipp Weinmann for his help, availability, and encouragement, and Michael Joswig
for serving on my committee in a time of need. I also would like to thank Magali Bardet
and Allan Steel for helpful discussions.

My deep gratitude goes to my family and my friends, who supported me all along:
Medda, Christoph, Fiete, my dear friend Vidya, and my friends Ha-Jü and Andreas.

Thank you all!

Till Stegers
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2 Preliminaries

This section introduces and describes the fundamental tool and subject of this thesis,
namely, the concept of a Gröbner basis of an ideal in a polynomial ring over a field. We
make no claim of self-sufficiency; instead, we refer the reader to the standard text books
[4] and [11]. A reader familiar with Gröbner bases may skip this chapter, or just skim
through it if he or she is not acquainted with the notation we adopted from [4].

2.1 Notation

We introduce some notation used throughout this thesis. The set of natural numbers is
denoted N = {0, 1, 2, . . . }, and the set of positive natural numbers N>0 = N \ {0}.

Rings will always be assumed to contain an element 1 such that 1 is a neutral element.
For a subset S of a ring R, we denote by 〈S〉R the ideal of R generated by S. If the ring
R is understood, we will often just write 〈S〉 for the same object. The group of units of
R is denoted R×.

Let F be a field and F[ X ] the polynomial ring over F in the finite sequence of variables
X. The set of terms of F[ X ] will be denoted T (X), or simply T , and the set of monomials
will be denoted M = F · T . The support of a polynomial f ∈ F[ X ], i. e., the set of its
terms, is written T (f) = {t ∈ T | t occurs in f}. In particular T (0) = ∅.

Note that the above is the terminology (and notation) used in [4] and large parts of the
literature, whereas other works, such as [11], interchange the definitions of “monomial”
and “term”.

2.2 Order theory

This section briefly recalls the order theory we shall need.

Definition 2.1. A (binary) relation on a set M is a subset R ⊆ M ×M. The inverse
relation of R is the relation R−1 = {(m2,m1) | (m1,m2) ∈ R}. Instead of (m1,m2) ∈ R,
we also write m1 R m2. We say that

(i) R is reflexive if (∀m ∈M) m R m,

(ii) R is symmetric if (∀m,m′ ∈M) mR m′ ⇒ m′R m,

(iii) R is antisymmetric if (∀m, m′ ∈M) mR m′ and m′R m⇒ m = m′,

(iv) R is strict if (∀m,m′ ∈M) mR m′ ⇒ m 6= m′,

(v) R is connex if (∀m,m′ ∈M) mR m′ or m′R m,
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(vi) R is a quasi-order if R is reflexive and transitive,

(vii) R is a partial order on M if R is reflexive, antisymmetric and transitive,

(viii) R is total or linear order if R is a connex partial order. ¥

We give some ways construct new relations from given ones.

Definition 2.2. Let R be a binary relation on M.

(i) The diagonal of M is the relation ∆(M) = {(m,m) | m ∈M}.
(ii) Set R0 = ∆(M), R1 = R, and for j ≥ 2, set

Rj = {(m1,m3) ∈M ×M | (∃m2 ∈M) m1 Rj−1 m2 and m2 Rj−1 m3}.

The relation

R∗ =
∞⋃

j=0

Rj

is called the reflexive transitive closure of R.

(iii) The set Rs = R \∆(M) is the strict part of R. ¥

Definition 2.3. Let R be a binary relation on M , and let S ⊆ M. Then m ∈ S is an
R-minimal element of S if there is no m′ ∈ S that is strictly below m, i. e., that satisfies
m′Rs m. An R-maximal element of S is an R−1-minimal element of S, i. e., an m ∈ S
such that there is no m′ ∈ S strictly above m. The relation R is said to be well-founded,
respectively, noetherian, if all nonempty subsets of M have an R-minimal, respectively,
R-maximal element. ¥

Example 2.4. If R is a ring, then the set I(R) of ideals of R endowed with the set
inclusion ⊆ is a partial order. One can show (using the Axiom of Choice) that if F is
a field, then I(R) is noetherian for every multivariate polynomial ring R = F[X ], and
that this is equivalent to every ideal of R being finitely generated.

2.3 Gröbner bases

This section introduces Gröbner bases, which were first described in Bruno Buchberger’s
PhD dissertation.

Definition 2.5. A term order is a total order ≤ on T such that 1 ≤ t for all t ∈ T , and
t1 ≤ t2 ⇒ st1 ≤ st2 for all s, t1, t2 ∈ T . ¥

Suppose X = x1, . . . , xn. Mapping each term xα1
1 , . . . , xαn

n to its exponent vector
α ∈ Nn is clearly an isomorphism between the commutative monoids (T , ·) and (Nn, +).
(Relying on the order of the variables, this isomorphism is not canonical.) So to define
a term order, it suffices to give an order ≤′ ⊂ Nn × Nn that makes Nn an ordered
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monoid and satisfies (0, . . . , 0) ≤′ α for all α ∈ Nn. This is what we are going to do in
the following examples of term orders.

The total degree of a term t = Xα1
1 · · · · ·Xαn

n is deg(t) =
∑n

j=1 αj . For a polynomial
f ∈ F[ X ], we set deg(f) = −∞ if f = 0 and deg(f) = max{deg(t) | t ∈ T (f)} otherwise.

Example 2.6. The following relations are term orders.

• Lexicographical order corresponds to the product of the natural order on N. It is
also referred to as lex ordering and written ≤lex . We have α ≤lex β if and only if
either α = β, or there exists 1 ≤ i ≤ n such that αi < βi and for all 1 ≤ j < i, we
have αj = βj .

• Reverse lexicographical or inverse lexicographical is abbreviated revlex and defined
by α ≤revlex β if and only if (αn, . . . , α1) ≤lex (β1, . . . , βn).

• Graded lexicographical order or total degree order is abbreviated glex or tdeg. For
α, β ∈ Nn, we have α ≤glex β if and only if either

∑n
i=1 αi <

∑n
i=1 βi or these sums

are equal and α ≤lex β.

• Graded reverse lexicographical order or reverse total degree order is abbreviated
grevlex. We have α ≤grevlex β if and only if either

∑n
i=1 αi <

∑n
i=1 βi or these

sums are equal and α ≤revlex β.

Note that, somewhat nonintuitively, if t1, t2 ∈ T satisfy deg(t1) > deg(t2), we do not
necessarily have t1 > t2. For instance, if x > y are two indeterminates, and the ring
F[x, y] is ordered using the lexicographic ordering, then we have x > y2.

With an ordering on the terms, we can now give the definition of the head term of a
multivariate polynomial.

Definition 2.7. Let f ∈ F[ X ] \ {0}, and let ≤ be some term order on T (X). The head
term of f is the term HT≤(f) = max T (f), where the maximum is taken with respect
to the order ≤ . The head coefficient of f, written HC≤(f), is the coefficient of HT≤(f)
in f. The head monomial of f is HM≤(f) = HC≤(f) ·HT≤(f). For a subset S ⊆ F[ X ],
we denote by HT(S) the set of head terms of all nonzero elements of S. ¥

Convention. Most of the time, we will be working with one order exclusively, and not
consider distinct term orders on the same ring. Hence we will from now on assume every
multivariate polynomial ring R[ X ] to be endowed with a term order ≤ with strict part
< . Consequently, we shall drop the relation ≤ from our notation, simply writing HT,
HC, and HM .

Similar to the Euclidean algorithm in the univariate case, we introduce a notion of
reducing multivariate polynomials, an analogue to long division with remainder.

Definition 2.8. Let f, p ∈ F[ X ] \ {0} and let t ∈ T (f) occur with coefficient c in f. If
HT(p) | t, then r = f − ct

HM(p)p satisfies t 6∈ T (r), and we write

f →p r [t].
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In this context, we say f can be reduced to r modulo p by eliminating t. We call p the
reductor, f the reductee, and r the reductum. If t is left unspecified, we mean that such
a term exists in T (f). In case t = HT(f), we speak of a top-reduction, and that f is
top-reducible by p. For a subset P of F[ X ], we write f →P r if there exists p ∈ P such
that f →p r. We say f is reducible modulo P , or, more precisely, f reduces to r modulo
P . By →∗

P , we denote the reflexive transitive closure of →P . If f →∗
P f ′ and f ′ is not

reducible modulo P, then we say that f ′ is a normal form of f with respect to →P . ¥

With this notion of reduction, we are ready to give several equivalent characterizations
of Gröbner bases. The proof of the equivalences is given in [4, p. 206–207].

Theorem 2.9. Let G be a finite subset of F[X ]\{0}. Then G is a Gröbner basis if and
only if one of the following equivalent conditions is satisfied.

(i) Every f ∈ 〈G〉 has a unique normal form with respect to →G .

(ii) For every f ∈ 〈G〉, there is a reduction f →∗
G 0.

(iii) Every nonzero f ∈ 〈G〉 is reducible modulo G.

(iv) Every nonzero f ∈ 〈G〉 is top-reducible modulo G.

(v) For every s ∈ HT(〈G〉) there exists t ∈ HT(G) with t | s.
(vi) HT(〈G〉) ⊆ T HT(G)

(vii) The polynomials h ∈ F[ X ] that are in normal form with respect to →G form a
system of representatives for the partition {f + 〈G〉 | f ∈ F[X ]} of F[ X ]. ¥

Albeit useful in many situations, the characterizations given in Theorem 2.9 do not
suggest an algorithm to decide whether a given set of polynomials G is a Gröbner basis,
since all conditions in Theorem 2.9 seem to require an infinite number of checks, such
as testing whether all polynomials in 〈G〉 reduce to zero modulo G. Fortunately, this
can be reduced to a finite number of polynomials, namely the S-polynomials generated
by G.

Definition 2.10. Let g1, g2 ∈ F[X ] \ {0}. The S-polynomial of g1 and g2 is the polyno-
mial

spol(g1, g2) = HC(g2)u1g1 −HC(g1)u2g2,

where uj = lcm(HT(g1),HT(g2))
HT(gj)

for j = 1, 2. ¥

Notice that by construction of the S-polynomial, the common head term u1 HT(g1) =
u2 HT(g2) = lcm (HT(g1),HT(g2)) of the left and right summand cancels.

The following theorem is a major step towards an algorithmic construction of Gröbner
bases, as it concludes in particular that a finite number of computations suffices to check
whether a given set of polynomials is a Gröbner basis. A proof is contained in [4,
Theorem 5.48].
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Theorem 2.11. Let I 6= {0} be an ideal of F[ X ]. A subset G ⊆ I \ {0} is a Gröbner
basis if and only if for all distinct g1, g2 ∈ G, we have spol(g1, g2)→∗

G 0.

Definition 2.12. A polynomial f ∈ F[ X ] is said to be homogeneous of degree d if all
terms in T (f) have the total degree d. Suppose Z is a fresh variable, i. e., Z 6∈ X. If
g =

∑k
j=1 ajtj is some polynomial in the terms t1, . . . , tk such that d = max{deg(t) | t ∈

T (g)}, then the polynomial

fh =
k∑

j=1

ajtjZ
d−dj ,

where dj = deg(tj) for j = 1, . . . , k, is called the homogenization of f. Clearly, fh is
homogeneous of degree d. The function F[ X ]→ F[ X,Z ] mapping f to fh is called the
homogenization morphism. ¥

Although the property of a polynomial being homogeneous is independent of the term
order used, the indeterminate Z is often chosen to be the smallest variable in F[X,Z ],
so as to minimize its impact on the head term of f when forming fh.

One of the most useful features of homogeneous polynomials is the validity of the
following (easy) proposition.

Proposition 2.13. Suppose h ∈ 〈F 〉, where F = {f1, . . . , fn} is a set of homogeneous
polynomials. Then for all terms t of h, we have deg(t) ≥ minf∈F deg(f).

Proof. In the situation of the proposition, there is a polynomial combination h =∑n
j=1 hjfj . Now any term t of h must appear in some product hjfj , hence deg(t) ≥

deg(hjfj) ≥ deg(fj).

Note that not every ideal F[X ] has a basis consisting of homogeneous polynomials
only. For instance, if g is an inhomogeneous polynomial, then every generator of the
principal ideal gF[ X ] is a nonzero scalar multiple of g and therefore inhomogeneous.

Equipped with the terminology we just introduced, we can now weaken the definition
of a Gröbner basis, introducing the notion of a Gröbner basis up to some degree d.
Basically, a Gröbner basis of the ideal I up to degree d has the nice reduction properties
of a Gröbner basis of I with respect to polynomials of degree at most d. This is made
precise in the following theorem, which is proved in a generalized form in [4, Theorem
10.39].

Theorem 2.14. Suppose G is a subset of nonzero homogeneous polynomials in F[ X ]
and I = 〈G〉. Let d ∈ N, and let →∗

d be the restriction of →∗
G to F[ X ]d = {p ∈

F[ X ] | deg(p) ≤ d}. Let Id = 〈G〉 ∩ F[ X ]d. Then G is a Gröbner basis up to degree d,
or a d-Gröbner basis, if the following equivalent statements are satisfied.

(i) Every f ∈ Id has a unique normal form with respect to →d .

(ii) For every f ∈ Id, there is a reduction f →∗
d 0.

(iii) Every nonzero f ∈ Id is reducible modulo G.
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(iv) Every nonzero f ∈ Id is top-reducible modulo G.

(v) For every s ∈ HT(Id) there exists t ∈ HT(G) with t | s.
(vi) HT(Id) ⊆ T HT(G)

(vii) The polynomials h ∈ F[ X ]d that are in normal form with respect to →G form a
system of representatives for the partition {(f +I)∩F[ X ]d | f ∈ F[ X ]d} of F[X ]d.

¥

2.4 The Buchberger algorithm

We recall the basic algorithm for computing Gröbner bases, given by Buchberger [6]
in 1965. The discovery of this algorithm, named after him, enabled a computational
treatment of problems in commutative algebra, such as deciding whether a polynomial
belongs to the ideal generated by some sequence of polynomials. A proof of this center
piece of Gröbner bases theory is contained in every text book on Gröbner bases, for
instance in [4, Theorem 5.53].

Algorithm 1 Buchberger Algorithm

Input: F = {f1, . . . , fm} ⊆ F[ X ] \ {0}
Output: a Gröbner basis of 〈F 〉

1: function Buchberger(F )
2: n← m
3: gi ← fi for 1 ≤ i ≤ n
4: P ← {(gi, gj) | 1 ≤ i < j ≤ n}
5: while P 6= ∅ do
6: select some (gi, gj) ∈ P
7: P ← P \ {(gi, gj)}
8: s← spol(gi, gj)
9: h← some normal form of s modulo {g1, . . . , gn}

10: if h 6= 0 then
11: n← n + 1
12: gn ← h
13: P ← P ∪ {(gi, gn) | 1 ≤ i < n}
14: end if
15: end while
16: return {g1, . . . , gn}
17: end function

The Buchberger algorithm forms the basis for many Gröbner basis algorithms; we
comment on some of its aspects. Recall that the elements of P are called critical pairs.
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Experiments show that the computationally most intense part of the algorithm is the
reduction of a polynomial s to a normal form h. In the näıve version of the Buchberger
algorithm described above, and for many examples, h will be zero almost all the time.
This is a huge waste of time, for if, given some polynomial s, one could find out –
without much work, in particular without reducing s – whether it reduces to zero modulo
{g1, . . . , gn}, then the corresponding critical pair could be disposed of right away.

The way we described the Buchberger algorithm, programmers of concrete implemen-
tations will have to specify two strategies, namely, how to choose pairs, and how to
choose reductors when computing a normal form. Both choices can dramatically affect
the overall performance of the algorithm. For instance, the pair selection can be used
to eliminate S-polynomials that would reduce to zero. To this end, numerous strategies
have been suggested. We name Buchberger’s first and second criterion [7], the Gebauer-
Möller installation [17], the sugar strategy [18], and pair minimization [9]. Although
they are not instances of Buchberger’s method, the algorithm from [21] and Faugère’s
F5 algorithm have a similar structure and aim to lower the number of reductions to zero
using certain strategies as well.

Another approach to improve the performance of Buchberger’s algorithm is to use
less näıve reduction techniques. The most notable algorithm pursuing this approach is
Faugère’s F4 algorithm, whose good performance has drawn considerable interest in the
community. For details, we refer the reader to Faugère’s original paper [12], as well as
the publications [5, 20, 23, 24, 25].

Reducing as few polynomials to zero as possible is certainly a desirable property of a
Gröbner basis algorithm. The caveat, however, is that this goal often conflicts with other
objectives. For instance, the computational burden for a more sophisticated selection
strategy can simply outweigh its performance gain (as reported by Möller et al. for their
sample implementation in [21]), or the resulting polynomials might be fewer in number,
but harder to reduce (e. g., since they are of a much higher degree or tend to have more
terms). As we shall see later, the F5 algorithm is aimed to prevent a lot of reductions
to zero in an efficient way.

As the already huge memory requirements of Gröbner basis algorithms are often a
limiting factor, an additional objective of new algorithms is to improve the memory
efficiency. This will not be the topic of the present thesis, and neither will be the study
of the complexity of the Buchberger or F5 algorithms.

2.5 Applications of Gröbner bases

The reduction of polynomials is the analogue of division in the multivariate setting. In
view of the generality of this concept, it is not surprising that Gröbner bases are applied
in numerous areas of mathematics, computer science, and engineering. We kindly refer
the reader to [8] for an overview, and highlight just two examples in this section.

An easy, but nevertheless important problem that can be solved using Gröbner bases is
the ideal membership problem, which can be phrased as follows: Given a finite sequence
g, f1, . . . , fm in a multivariate polynomial ring F[X ] over a field F, give an algorithm that
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decides whether g ∈ 〈f1, . . . , fm〉. Equipped with the Buchberger algorithm, the ideal
membership problem can be reduced to the case where f1, . . . , fm is a Gröbner basis:
Any ideal of F[X ] but the zero ideal possesses a Gröbner basis, and 〈f1, . . . , fm〉 = {0}
implies that all fi are zero, which can be checked. Recursive application of Theorem 2.9
gives the desired algorithm: We just compute a normal form of g modulo f1, . . . , fm,
which is 0 if and only if g ∈ 〈f1, . . . , fm〉.

Algorithm 2 Ideal Membership Algorithm

Input: a Gröbner basis G ⊆ F[X ], f ∈ F[ X ]
Output: true if f ∈ 〈G〉, false if not

function IdealMembership(f, G)
if f = 0 then

return true
else

if (∃g ∈ G) HT(g) | HT(f) then
return IdealMembership(f − HM(f)

HM(g)g, G)
else

return false
end if

end if
end function

One of the highlights of Gröbner basis theory is that it can be used to solve systems
of multivariate equations over a perfect field F (i. e., a finite field or an extension of Q),
a result due to Trinks [27]. Suppose X = x1, . . . , xn is a sequence of indeterminates,
and f1, . . . , fm ∈ F[ X ]. Let L be an extension field of F. A solution of the system
F = (f1, . . . , fm) in Ln is a sequence (a1, . . . , am) in Ln such that f(ai) = 0 for 1 ≤ i ≤ m.
The set of solutions of F in Ln is denoted VL(F ). An ideal I is called zero-dimensional if,
for L algebraically closed, the set VL(F ) is finite. Suppose the ideal I = 〈f1, . . . , fm〉 is
zero-dimensional, and the xn-coordinates of distinct points in VF(F ) are distinct. Then
there is a Gröbner basis G of I with respect to a lexicographic order that is of the form

{x1 − g1, . . . , xn−1 − gn−1, gn},
where gi ∈ F[xn] for 1 ≤ i ≤ n. By factoring the univariate polynomial gn over L[ X ]
and substituting the roots, we obtain

VL(F ) = {(g1(l), . . . , gn−1(l), l) | l ∈ L, gn(l) = 0}.
If we are interested in solutions in Fn only, and F is finite, we can adjoin the so-called
field equations xq

i−xi to the ideal, forcing VL(F ) = VF(F ). For a somewhat more detailed
account of this process, we refer the reader to [24].

The main application we are interested in is cryptography. For instance, the family
of multivariate quadratic public key schemes relies on the reference problem that the
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solution of certain types of multivariate systems of equations, where the polynomials
involved have at most total degree two, is intractable, cf. [28, 29]. In fact, the so-called
MQ problem is known to be NP-complete. As computing a Gröbner basis is usually
the computationally most intense step when solving a system of multivariate equations
by means of the process sketched above, fast Gröbner basis algorithms are of immediate
practical relevance when estimating secure key sizes forMQ schemes. Other situations
where systems of multivariate equations arise and have been used for cryptanalytic efforts
include stream ciphers [15].
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3 Faugère’s F5 Algorithm

As mentioned in the previous chapter, there have been several suggestions how to improve
the performance of Gröbner basis algorithms. Becker, Weispfenning, and Kredel [4,
p. 291] comment on the algorithm proposed in by Möller, Mora, and Traverso [21] as
follows:

“This version is indeed capable of detecting more superfluous critical pairs
than any other known implementation; the cost of testing submodule mem-
bership, however, has thus far turned out to be too high to translate the
deletion of more pairs into a computational gain.”

This is where F5 enters. When devising F5, Faugère’s aim was to overcome the deficien-
cies of the algorithm by Möller et al., making their optimizations practical. Announced
already in the 1999 paper [12], “number 5” was described in 2002 in the paper [14].

We suggest to consult the paper [21] before reading [14], as it contains some of the
main ideas of F5, written in a much more accessible, if concise, style.

3.1 Syzygies and reductions to zero

In a nutshell, syzygies are solutions to a system of F[X ]-linear equations in a finitely
generated module of polynomials. They are also the key to several optimizations of
the Buchberger algorithm that help to detect S-polynomials that reduce to zero. The
term syzygy originates in celestial mechanics, where it describes a constellation of three
celestial bodies on a straight line.

Definition 3.1. An element s ∈ F[ X ]m is called a syzygy with respect to a sequence
F = (f1, . . . , fm) in F[X ] if

∑m
i=1 sifi = 0. Often the sequence f1, . . . , fm is clear from

the context and thus not explicitly mentioned. If n ≥ 2, then for each pair fi, fj with
1 ≤ i < j ≤ m, we have a trivial relation fifj − fjfi = 0, giving rise to the trivial or
principal syzygies of the form πij = fjei − fjej , where ek is the k-th standard basis
vector in F[ X ]m. ¥

The following exact sequence of F[X ]-modules illustrates the situation. Here vF

denotes the evaluation homomorphism with respect to F, defined by vF (h1, . . . , hm) =∑m
j=1 hjfj .

0 - Syz ⊂ - F[ X ]m
vF

- 〈F 〉 - 0

The set of all syzygies of a given system F = (f1, . . . , fm) is denoted Syz(f1, . . . , fm).
Since it is the kernel of the evaluation homomorphism vF , the set Syz(f1, . . . , fm) forms
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an F[X ]-module under component-wise multiplication and addition. The submod-
ule generated by all principal syzygies of f1, . . . , fm will be denoted PSyz(f1, . . . , fm).
Clearly, since vF is a homomorphism of F[ X ]-modules, two module elements a, b ∈
F[ X ]m satisfy vF (a) = vF (b) if and only if a− b is a syzygy.

It is not hard to see that a reduction to zero during the Buchberger algorithm cor-
responds to a syzygy. Indeed, if s = spol(gk, gl) = h1gk − h2gl reduces to 0 modulo a
subset G ⊂ F[ X ] \ {0}, then there is a chain of reductions

s → s−m1gi1 → s−m1gi1 −m2gi2 → . . . → s−
k∑

j=1

mjgij = 0, (3.1)

where the mj are monomials (or 0) and the gij are (not necessarily distinct) elements of
G, satisfying HT(mjgij ) ≤ HT(s) < HT(h1gk) = HT(h2gl). Without losing generality,
we can assume that gi 6= gj whenever i 6= j. Summing up monomials corresponding to
the same gi, we obtain a polynomial pi for every gi that occurs in the reduction of s.
For each gi that does not occur in the reduction, we set pi = 0. By the definition of s,
there are polynomials h1, h2 such that s = h1gk − h2gl, and as an element of 〈F 〉, every
gj has a representation

gj =
m∑

i=1

gi,jfi.

Together with (3.1), this gives a relation

0 = s−
k∑

j=1

mjgij = h1gk − h2gl −
|G|∑

j=1

pjgj

= h1

m∑

i=1

gi,k fi − h2

m∑

i=1

gi,l fi −
|G|∑

j=1

pj

m∑

i=1

gi,j fi

=
m∑

i=1


h1gi,k − h2gi,l −

|G|∑

j=1

pjgi,j


 fi,

and thus a syzygy of F.
Note that in general not every syzygy corresponds to a reduction to zero during

Buchberger’s algorithm, since only a finite number of reductions are performed, but, as
every F[ X ]-module, the module of syzygies is infinite if it is nontrivial.

A notion closely related to the module of syzygies is the property of a polynomial
system F being regular.

Definition 3.2. A sequence f1, . . . , fm ∈ F[ X ] \ {0} is called a regular sequence if
〈f1, . . . , fm〉 is proper and for every i such that 1 ≤ i < m, the polynomial fi is not a
zero divisor in F[X ]/〈fi+1, . . . , fm〉, that is,

(∀g ∈ F[ X ]) gfi ∈ 〈fi+1, . . . , fm〉 ⇒ g ∈ 〈fi+1, . . . , fm〉.
¥
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Remark 3.3. Bardet’s dissertation [3] contains an in-depth treatment of regular se-
quences, and their connection to the complexity of F5 with a view on applications to
cryptography and error-correcting codes (some of the results are also available in the
preprint [2]). She explains, citing a result from [11], that if F = (f1, . . . , fm) is a regular
sequence of homogeneous polynomials in n variables, then the ideal 〈F 〉 has dimen-
sion n −m. In particular, no overdetermined sequence can be regular. As explained in
section 2.5, multivariate polynomial systems arising in cryptographic applications are
usually overdetermined, because they consist of m equations in n variables, plus the n
field equations of the form xq

i − xi. This is bad news for cryptographers hoping to use
F5, since its termination relies on the fact that no reductions to zero occur, which in
turn is only ensured by the input being a regular sequence. (Designers of crypto systems
should not rejoice to early, though – Faugère writes [14] that it is possible to modify the
algorithm “slightly” so that it terminates for non-regular sequences as well.)

Theorem 3.4. Let f1, . . . , fm ∈ F[X ] \ {0}. Then these are equivalent:

(i) All syzygies of F are generated by principal syzygies: PSyz(F ) = Syz(F )

(ii) F is a regular sequence.

(iii) For every i such that 1 ≤ i ≤ m, the sequence fi, . . . , fm is regular.

Proof. (ii) ⇔ (iii) is obvious from the definition of a regular sequence.
(i) ⇒ (iii): Let g ∈ F[X ] such that gfk ∈ 〈fk+1, . . . , fm〉. We want to show g ∈
〈fk+1, . . . , fm〉. Since (ii) ⇔ (iii), we can assume without loss of generality that k = 1.
By hypothesis, we have a syzygy s ∈ PSyz(F ) such that s1 = g. By assumption, the
principal syzygies πij generate Syz(F ), so there are polynomials αij , 1 ≤ i < j ≤ m,
such that

s =
m∑

i=1

m∑

j=i+1

αijπij .

Since the first component π1j,1 of π1j is fj , we have g = s1 =
∑m

j=2 α1jπ1j,1 =
∑m

i=2 α1jfj ,
so g ∈ 〈f2, . . . , fm〉.

(iii) ⇒ (i): Suppose f1, . . . , fm is a regular sequence. We proceed by induction on m.
Trivially, we have Syz(fm) = 0 = PSyz(fm). For the inductive step, it suffices to show
that if PSyz(fi, . . . , fm) = Syz(fi, . . . , fm) holds for i = 2, then it holds for i = 1. So
let s ∈ Syz(F ) be a syzygy. Then s1f1 = −∑m

i=2 sifi, and since f1, . . . , fm is a regular
sequence, s1 ∈ 〈f2, . . . , fm〉. Therefore s1 =

∑m
i=2 gifi for some g2, . . . , gm ∈ F[ X ]. But

then

s1f1 =
m∑

i=2

f1gifi = −
m∑

i=2

sifi,

so s′ = (f1g2+s2, f1g3+s3, . . . , f1gm+sm) ∈ Syz(f2, . . . , fm) = PSyz(f2, . . . , fm). Lifting
s′ to (0, s′1, . . . , s

′
m−1) ∈ PSyz(F ) and subtracting principal syzygies, we get

(0, s′)− g2π12 − · · · − gmπ1m =

(
m∑

i=2

gifi, s2, . . . , sm

)
= s,
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whence s ∈ PSyz(F ).

3.2 Foundations of F5

This section aims to elucidate the theory behind Faugère’s F5 algorithm. After intro-
ducing some new terminology, we state and prove the principal theorem that forms the
basis of the F5 algorithm as formulated in [14].

Definition 3.5. A module term or positional term is an element of F[ X ]m that has
the form tek, where t is a term and ek is the k-th standard basis vector of F[ X ]m. We
denote the set of module terms by

T = {tei | t ∈ T , 1 ≤ i ≤ m}.
¥

We will now extend the total order < to the F[ X ]-module F[ X ]m.

Definition 3.6. Suppose g = (g1, . . . , gm) and h = (h1, . . . , hm) are in F[ X ]m \ {0}.
The index of g, written index(g), is the smallest i ∈ N such that gi is nonzero.

Suppose index(g) = i, index(h) = j. We write g ¹ h if and only if either

(i) i > j, or

(ii) i = j and HT(gi) ≤ HT(hi).

Furthermore, we set 0 ¹ g for the null vector 0 ∈ F[ X ]m. We write ≺ for the strict
part of ¹, i. e., g ≺ h if and only if g ¹ h and g 6= h. We will also freely use the dual
relations º and Â, and say g is smaller, respectively, larger than h if g ¹ h or g º h,
respectively.

¥
Let g ∈ F[ X ]m \ {0} be a module element with index(g) = i. Extending the notion of

a head term from polynomials to elements of F[ X ]m, we call HT(gi)ei the module head
term of g, and denote it by MHT(g).

Lemma 3.7. The relation ≺ is a strict well-founded quasi-order on F[ X ]m. In particu-
lar, ¹ is a partial order on the set of module terms. The module head terms of any two
≺-minimal elements of a subset of F[X ]m agree.

Proof. It is straightforward to verify that ≺ is irreflexive, (trivially) antisymmetric and
connex. It remains to show that ≺ is transitive and well-founded. Suppose that ∅ 6= G ⊆
F[ X ]. Since the index of all polynomials in G is bounded by m and ≤ is a well-order
on the head terms of G, both k := max{index(g) | g ∈ G} and t := min{HT(gk) | g ∈
G, index(g) = k} are well-defined. Then M := {g ∈ G | index(g) = k and HT(gi) = t}
is the set of minimal elements of G. To see that ≺ is transitive, let f ≺ g and g ≺ h.
If index(f) = index(h) = k, then HT(fk) < HT(gk) < HT(hk). Otherwise index(f) >
index(h), so again f ≺ h.

The claim about ¹ is a straightforward consequence.
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Definition 3.8. A labeled polynomial is an element (tei, p), where t ∈ T , p ∈ F[ X ],
and ei is some standard basis vector in F[ X ]m.

For a labeled polynomial r = (uek, p), we define the polynomial of r by poly(r) = p,
the signature of r by S(r) = uek, the head term of r by HT(r) = HT(p), the head
coefficient of r by HC(r) = HC(p), and the head monomial of r by HM(r) = HM(p).

We also define the following operations on labeled polynomials. If t is a term, then
tr = (tuek, tp). If λ ∈ F, then λr = (uek, λp). Note that these operations are not
induced by F[ X ]m+1, and that the product gr for a polynomial g ∈ F[X ] \ (F ∪ T )
remains undefined.

A labeled polynomial r is called admissible with respect to a sequence F of polynomials
if there exists a g ∈ F[ X ]m \ {0} such that vF (g) = poly(r) and HT(g) = S(r).

A labeled polynomial r = (uek, p) is called normalized with respect to F if u 6∈
HT(〈fk+1, . . . , fm〉). A pair (v, r), v ∈ T , is called normalized if the labeled polyno-
mial vr is normalized. A pair (r1, r2) of labeled polynomials is called a normalized pair
if, for w = lcm(HT(r1), HT(r2)), ui = w

HT(ri)
, the pairs (u1, r1), (u2, r2) are normalized

and u2r2 ≺ u1r1.
For a normalized pair of labeled polynomials (r1, r2), let spol(r1, r2) be the labeled

polynomial
(u12r1, HC(r2)u12 poly(r1)−HC(r1)u21 poly(r2)),

where u12 = lcm(HT(r1),HT(r2))
HT(r1) , u21 = lcm(HT(r2),HT(r1))

HT(r2) . ¥

What we call a labeled polynomial is called a rule by Faugère. As this might lead
to confusion with simplification rules that are often, especially in verbal discussions,
shortened to rules as well, we chose a different terminology.

Convention. Sometimes, we apply terminology to labeled polynomials which is, strictly
speaking, only defined for elements of the polynomial F[ X ]. For instance, we might say
that a set G of labeled polynomials is a Gröbner basis.

We kindly ask the reader to gracefully interpret such statements about labeled polyno-
mials as statements about the polynomials with the labels removed, that is, substituting
every labeled polynomial ρ = (vei, p) by its polynomial poly(ρ) = p. For instance, in the
above example, we actually mean that the set {poly(g) | g ∈ G} is Gröbner basis.

Lemma 3.9. Let r = (uek, p) be a labeled polynomial and let F = (f1, . . . , fm) be
a sequence of nonzero polynomials. Suppose the module element g ∈ F[ X ]m satisfies
S(r) = MHT(g).

(i) r is not normalized if and only if there is an s ∈ PSyz(F ) such that index(s) = k
and MHT(g − s) ≺ MHT(g).

(ii) If F is a regular sequence and r is admissible and normalized, then S(r) is minimal
among

{MHT(g′) | g′ ∈ F[ X ]m, vF (g′) = p}. (3.2)
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Proof. (i) Suppose r is not normalized. Then there exists an i > k and a term v such that
v HT(fi) = u. Set s = vπki ∈ PSyz . The index of s is k, and MHT(s) = v HT(fi)ek =
uek. Cancelling the head term u, we get HT(gk − sk) < HT(gk), so MHT(g − s) ≺
MHT(g). Conversely, if there exists an s ∈ PSyz(F ) such that index(s) = k and MHT(g−
s) ≺ MHT(g), then HT(gk − sk) < HT(gk), so that HT(gk) = HT(sk). Since s ∈ PSyz
and index(s) = k, HT(sk) is a multiple of a finite product

∏
j HT(fij ), where all ij > k.

In particular, gk is top-reducible by some fi with i > k.
(ii) Suppose F is a regular sequence. If r is admissible, then there exists a g ∈ F[ X ]m

such that S(r) = MHT(g) and vF (g) = p. Assume g is not minimal among the set in
(3.2), say g′ ∈ F[X ]m satisfies vF (g′) = p and MHT(g′) ≺ MHT(g). Then the difference
g− g′ has index k and is a syzygy since vF is a module homomorphism. If F is a regular
sequence, Syz(F ) = PSyz(F ) by Theorem 3.4. But then g − g′ ∈ PSyz, so by (i), r
cannot be normalized.

Closely connected to polynomial reductions are standard representations, as treated
in, e. g., [4, p. 218–219]. Note that we are using the polynomial instead of the (in some
sense equivalent) monomial version of the definition, cf. [4] for a discussion.

Definition 3.10. Let 0 6= f ∈ F[X ], P a finite subset of F[X ] \ {0}, and t ∈ T . A
representation

f =
∑

p∈P

qpp,

where for every p ∈ P, qp is a nonzero polynomial is called a t-representation of f with
respect to P if for all p ∈ P such that qp 6= 0, we have HT(qpp) ≤ t. If t = HT(f), we
say this is a standard representation of f . ¥

We now extend this well-known definition of a t-representation to labeled polynomials,
imposing additional conditions on the signatures involved.

Definition 3.11. Let P be a finite set of labeled polynomials, and s, t labeled polyno-
mials with poly(s) = f, poly(t) = g, where f, g 6= 0. We say that

f =
∑

p∈P

µp poly(p)

is a t-representation of s with respect to P if for all p ∈ P such that poly(p) 6= 0

HT(µp)HT(p) ≤ HT(t) and HT(µp)S(p) ¹ S(s).

If this is the case, we write s = OP (t). Similarly, we write s = oP (t) if there exists a
labeled polynomial t′ satisfying S(t′) ¹ S(t) and HT(t′) < HT(t) such that s = OP (t′). ¥

Theorem 3.12. Let G be a finite subset of F[ X ] with 0 /∈ G. Then G is a Gröbner
basis if and only if every f ∈ 〈G〉 has a standard representation with respect to G.

The new criterion introduced by Fauger̀e is inspired by the following theorem due to
Lazard. A proof is contained in the standard reference [4, Theorem 5.64].
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Theorem 3.13. Let G be a finite subset of F[x1, . . . , xn] with 0 /∈ G. Assume that for
all g1, g2 ∈ G, spol(g1, g2) either equals zero or it has a t-representation with respect to
G for some t < lcm(HT(g1), HT(g2)). Then G is a Gröbner basis.

In 2002, Faugère published [14] a result that basically says that it suffices to check the
hypothesis of Theorem 3.13 for all normalized pairs only. This theorem, which forms
the basis of his F5 algorithm, is proved in the remainder of the section.

The general structure of Faugère’s original (sketched) proof in [14] is similar to the
proof of Theorem 3.13 presented in [4, p. 220–221], but Faugère’s presentation is not
easy to comprehend and contains some errors. We will try to make the following more
accessible. First we need a straightforward (and purely order-theoretical) lemma that
we shall use several times in the proof.

Lemma 3.14. Let a1 º a2 º . . . be a sequence in F[ X ]m, and suppose b ∈ F[ X ]m

satisfies a1 Â b. Let n ∈ N>0, and suppose a′ ∈ (F[X ]m)n is a descending sequence
consisting of b and n − 1 members (with distinct indices) of the sequence a2, a3, . . . .
Then a′ ≺lex (a1, . . . , an).

Proof. Suppose a′k = b. By construction, we have a′i ¹ ai+1 for 1 ≤ i < k. If b Â ak, then
by transitivity a′k−1 ≺ b, a contradiction. Let l be minimal such that a′l ≺ a1. If b = a′k,
then a′i ¹ ai for k < i ≤ n and a′l ≺ al imply a′ ≺lex a.

Note that we can still conclude a′ ¹lex a if we just require the weaker condition a1 º b.

Assumption 3.15. For the remainder of this section, assume the following. Suppose
F = (f1, . . . , fm) be a sequence of monic polynomials in F[ X ]. Let G = {r1, . . . , rn} be
a set of labeled polynomials such that ri 6= rj whenever 1 ≤ i < j ≤ n. For 1 ≤ i ≤ n,
set gi = poly(ri), and G1 = {gi | 1 ≤ i ≤ n}. Suppose the following criteria are satisfied:

(i) {(e1, f1), . . . , (em, fm)} ⊆ G

(ii) G1 ⊆ 〈F 〉
(iii) All labeled polynomials in G are admissible and monic.

Moreover, for two labeled polynomials ri, rj ∈ G, define the terms

τij = lcm(HT(ri), HT(rj)) and uij =
τij

HT(ri)
.

Definition 3.16. Let I = 〈F 〉 = 〈G1〉 and 0 6= f ∈ I. Denote the group of permutations
on {1, . . . , n} by Symn, its neutral element by id, and let us define the set Df of ordered
representations of f with respect to G by
{

(s, σ) ∈ F[ X ]m × Symn |
n∑

i=1

sigσ(i) = f, HT(s1)S(rσ(1)) º HT(s2)S(rσ(2)) º . . .

}
,

where we ease our notation by employing the convention HT(0) = 0. (Recall that for the
zero vector 0 ∈ F[X ]m, we have by definition 0 ≺ g for all nonzero g ∈ F[ X ]m.)
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The set Df is not empty since F ⊆ G1, ensuring that f has a representation with
respect to the basis F of I. For an element (s, σ) ∈ Df,G, define

V(s, σ) =
(
HT(s1)S(rσ(1)), , . . . ,HT(sn)S(rσ(n))

)
,

and let V = {V(s, σ) | (s, σ) ∈ Df,G}. We define a relation @ on Df,G. Let (s, σ), (s, σ′) ∈
Df,G, and let v̄ = V(s, σ), v̄′ = V(s′, σ′). We write (s, σ) @ (s′, σ′) if and only if one of
the following conditions is true:

(i) v̄ ≺lex v̄′, where ≺lex is the lexicographic order on (F[ X ]m)n induced by ≺, i. e.,
v̄ ≺lex v̄′ iff there exists i such that v̄i ≺ v̄′i and v̄j = v̄′j whenever 1 ≤ j < i ≤ n.

(ii) v̄ = v̄′ and maxi=1,...,n HT(sigσ(i)) < maxi=1,...,n HT(s′igσ′(i))

(iii) v̄ = v̄′ and t := maxi HT(sigσ(i)) = maxi HT(s′igσ′(i)) and
∣∣{i | HT(sigσ(i)) = t}∣∣ <

∣∣{i | HT(s′igσ′(i)) = t}∣∣

¥

The proof of the main result in this section, Corollary 3.23, proceeds by Noetherian
induction using the relation @ . Hence we need the following lemma.

Lemma 3.17. The relation @ is well-founded.

Proof. Let ∅ 6= A ⊆ Df,G, and set A0 = A. Denote by πi : V → F[ X ]m the projection
on the i-th component. Then for 1 ≤ i ≤ n, the set

Ai =
{
(s, σ) ∈ Ai−1 | πi(V(s, σ)) is ≺-minimal in {πi(V(s′, σ′)) | (s′, σ′) ∈ Ai−1}

}

is not empty since ≺ is well-founded by Lemma 3.7. Thus An, which is the set of all
(s, σ) ∈ Df,G such that V(s, σ) is a ≺lex-minimal element of A, is not empty. As < is a
well-founded relation on N, there is a nonempty set S ⊆ An whose elements are minimal
with respect to conditions (ii) and (iii). So @ is a well-founded relation on Df,G.

As we want to proceed by Noetherian induction, it will be helpful to know some more
properties of @-minimal elements. We will investigate this in the following lemmata.

Lemma 3.18. Let (s, η) ∈ Df,G be a @-minimal element of Df,G. Then there is a
permutation σ ∈ Symn such that (sσ(1), . . . , sσ(n), σ) is still @-minimal and satisfies

HT(si)S(rσ(i)) = HT(sj)S(rσ(j)) and HT(sigσ(i)) < HT(sjgσ(j)) ⇒ j < i (3.3)

for all i, j ∈ {1, . . . , n}.
Proof. By renumbering G and G1, we may assume that η is the identity on {1, . . . , n}.
The claim is trivial if i = j. If i < j satisfy the assumption of implication (3.3) and
τ ∈ Symn denotes the transposition that swaps i and j, then (s′, σ′) = (sτ(1), . . . , sτ(n), τ)
satisfies (3.3) for i, j as well. Moreover, it is still a @-minimal element of Df,G. The claim
follows by induction.
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Lemma 3.19. Let (s, σ) be a @-minimal element of Df,G. Then for all i ∈ {1, . . . , n}
such that si 6= 0, the pair (si, ri) is normalized.

Proof. By renumbering G and G1, we may assume that η is the identity on {1, . . . , n}.
Say ri = (vek, gi). As ri is admissible by hypothesis (iii), there exists a ĝ ∈ F[X ]m \ {0}
such that vF (ĝ) = gi and S(ri) = vek = MHT(ĝ). By definition, the pair (HT(si), ri) is
not normalized if and only if HT(si)ri is not normalized, i. e., HT(si)v is top-reducible
by 〈fk+1, . . . , fm〉. Define a set A of labeled polynomials by A = {g ∈ G | S(g) ≺ ek}. By
hypothesis (i), A contains all labeled polynomials of the form (el, fl), where k < l ≤ m.
Since index(ĝ) = k and HT(ĝk) = v, there is a representation

siĝk = r +
∑

a∈A

λa poly(a) where r, λa ∈ F[X ], HT(r) < HT(siĝk). (3.4)

Substituting this in the representation of f by s, we obtain a new representation of f :

f =
m∑

l=1

slgl =
m∑

l=1,l 6=i

slgl + si

m∑

l=k

ĝlfl =
m∑

l=1,l 6=i

slgl + siĝkfk +
m∑

l=k+1

siĝlfl

=
m∑

l=1,l 6=i

slgl + rfk +
∑

a∈A

fkλa poly(a) +
m∑

l=k+1

siĝlfl. (3.5)

We can regard the representation (3.5) as an element (s′, σ′) of Df by grouping together
summands that belong to the same labeled polynomial (the polynomial of which we
have always written as the rightmost factor in each product) and applying a suitable
permutation to ensure that the entries are sorted by decreasing signature. Let v̄′ =
V(s′, σ′). We aim to show v̄ ≺lex v̄′, so that (s′, σ′) @ (s, id), but (s′, σ′) 6= (s, id).

To see this, first we note that the last two sums in (3.5) contribute only to module
terms HT(s′l)S(rl) of index > k, so HT(s′l)S(rl) ≺ HT(si)S(ri). Hence the first entry
where v̄ and v̄′ might differ is one of i, k′, where rk′ = (ek, fk). Let us disregard the
monotonicity of v̄, v̄′ for a moment. When passing from v̄ to v̄′, all entries of index
k remain the same, except v̄i and v̄k′ . The entry v̄i = HT(si)S(ri) is omitted, and
v̄k′ = HT(sk′)ek is replaced by HT(sk′ + r)S(rk′). We distinguish three cases.

• If k′ < i, then HT(si)S(ri) ¹ HT(sk′)ek, and so HT(sk′) ≥ HT(siv) > HT(r).
Therefore HT(sk′ + r)ek = HT(sk′)ek. As i 6= k′ and v̄i is omitted, we have
v̄′j = v̄j+1 for all j ≥ i. Since

∣∣{j | index(v̄′j) = k}∣∣ < |{j | index(v̄j) = k}| ,

there exists an index l ≥ i such that index(v̄′l) > k = index(v̄l), so that in particular
v̄′l ≺ v̄1. Lemma 3.14 yields v̄′ ≺lex v̄.

• If k′ = i, then v = 1, and HT(sk′) = HT(si) > HT(r), so v̄i is replaced by the
smaller entry HT(r)ek. The claim follows again by Lemma 3.14.
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• If k′ > i, then HT(sk′)ek ≺ HT(si)S(ri). This means HT(sk′) < HT(siv), so either
sk′ +r = 0 or HT(sk′ +r)ek ≺ HT(si)S(ri). In either case, v̄i is omitted, and v̄k′ is
replaced by an entry that is not ≺-larger. By a similar reasoning as in Lemma 3.14
(only that now we have two b′s), we see that v̄′ ≺lex v̄.

The lemma we just proved might seem remarkable at first, since we did not hypothesize
the ri to be normalized, and a multiple tri cannot be normalized if ri is not. However,
G always contains at least one normalized labeled polynomial, namely (em, fm). For
instance, consider the (extreme) case that fm = 1. Since 1 is reducible modulo 〈fm〉,
not even the standard labeled polynomials (ei, fi), where 1 ≤ i < m, are normalized. A
minimal representation of a nonzero polynomial f ∈ F[ X ] will therefore be just f = ffm,
or (s, σ) with s = (f, 0, . . . , 0) and rσ(1) = (em, fm).

Lemma 3.20. Suppose (s, σ) is a @-minimal element of Df,G, and let

t = max
{
HT(sigσ(i)) | si 6= 0

}
.

(i) Among all pairs (si, gσ(i)) that satisfy HT(sigσ(i)) = t, there is exactly one pair
(sj , gσ(j)) such that HT(sj)S(rσ(j)) is maximal.

(ii) There is no pair (sk, rσ(k)) 6= (sj , rσ(j)) such that index(S(rσ(k))) = index(S(rσ(j)))
and HT(sjgσ(k)) = t.

Proof. Again, we may assume that σ = id . The existence of (sj , rj) is clear since the
representations are finite. For the uniqueness in (i), it suffices to show (ii). Let I =
{i | HT(sigi) = t} , w = max{HT(si)S(ri) | i ∈ I} and J = {i ∈ I | index(S(ri)) =
index(w)}. It suffices to show |J | = 1. Suppose for a contradiction that |J | > 1. Let
j0 = index(w). Then, as for every i ∈ J the labeled polynomial ri is admissible, there
is a representation gi =

∑m
j=j0

wijfj with HT(siwij0)ej0 = HT(si)S(ri) ¹ w. Let Jc =
{1, . . . , n} \ J. We get a new representation of f :

f =
∑

i∈J

sigi +
∑

i∈Jc

sigi =
∑

i∈J

siwij0fj0 +
∑

i∈J

si

m∑

j=j0+1

wijfj +
∑

i∈Jc

sigi

=

(∑

i∈J

siwij0

)
fj0 +

m∑

j=j0+1

(∑

i∈J

siwij

)
fj +

∑

i∈Jc

sigi (3.6)

Similarly as for (3.5), we obtain an element (s′, σ′) ∈ Df,G from the representation (3.6).
Let v̄′ = V(s′, σ′). Again, we want to show v̄′ ≺lex v̄.

Let k be minimal such that v̄k has index j0. When passing from v̄ to v̄′, all entries of
index < j0 remain unchanged. Therefore to prove v̄′ ≺lex v̄, it suffices to show that we
have (v̄′k, . . . , v̄

′
n) ≺lex (v̄k, . . . , v̄n).

Suppose rj′0 = (ej0 , fj0). Define u = sj′0 if j′0 ∈ Jc and u = 0 if j′0 ∈ J. In v̄′, the entries
v̄l, where l ∈ J ∪ {j′0}, are omitted and replaced by the entry

ν = HT

(
u +

∑

i∈J

siwij0

)
ej0 .
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We see that ν ¹ max{v̄l | l ∈ J ∪ {j′0}} ¹ v̄k. By hypothesis, |J | ≥ 2, so that v̄′

has less entries of index j0 than v̄. Hence there exists an l > k such that v̄′l = 0 or
index(v̄′l) > j0. In either case, v̄′l ≺ v̄k, so we can apply Lemma 3.14 to conclude v̄′ ≺lex v̄.
This contradicts the minimality of (s, id), whence the claim is proved.

Let r = (tei, p), s = (uej , q) be labeled polynomials. We say that r S-reduces to
r′ = (tei, p

′) modulo s, written r →S r′, if p top-reduces to p′ modulo q, and, for v ∈ T
such that v HT(q) = HT(p), we have uvej ¹ tei. If p′ = 0, we say that r S-reduces to 0
modulo s.

We are now ready to prove the main theorem behind F5. A sketch of the proof, with
an overall structure remarkably similar to the proof in [4, p. 220–221], is contained in
Faugère’s paper [14]; the idea of using principal syzygies already appears in [21].

Theorem 3.21. Let w ∈ T , and k∗ ∈ {1, . . . ,m}. Suppose the S-polynomial of every
pair ri, rj ∈ G such that (ri, rj) is normalized and S(spol(ri, rj)) ≺ wek∗ is either zero
or spol(ri, rj) = oG(uijri).

Then for every nonzero admissible labeled polynomial f̃ such that poly(f̃) ∈ 〈F 〉 and
S(f̃) ≺ wek∗ , the polynomial f has a standard representation with respect to G1. More-
over, f̃ S-reduces to 0 modulo G.

Proof. Let I = 〈F 〉 = 〈G1〉 and suppose the labeled polynomial f̃ = (veα, f) with
0 6= f ∈ I is admissible with respect to F and satisfies veα ≺ wek∗ . Since Df 6= 0,
there is a @-minimal element (s′, σ′) ∈ Df , necessarily with HT(s′i)S(rσ′(i)) ≺ wek∗ for
1 ≤ i ≤ n. Renumbering the elements of G and G1 does not affect this bound, and so,
together with Lemma 3.18, we can assume without loss of generality that there exists
(s, id) such that (s, id) ∈ Df is a @-minimal element satisfying (3.3). Moreover, with
v̄ = V(s, id), we still have v̄i ≺ wek∗ for 1 ≤ i ≤ n.

Our goal is to show that f has a standard representation with respect to G1. Suppose
the contrary, and define t, I, J as in the proof of Lemma 3.20. Let i ∈ J and j ∈
I \ {i}. Then t = HT(si)HT(gi) = HT(sj)HT(gj), so τij divides t. Consequently uij |
HT(si) and uji | HT(sj). Lemma 3.19 implies that uijri and ujirj are normalized. By
Lemma 3.20, we have index(S(ri)) < index(S(rj)), so that ujirj ≺ uijri. Thus the pair
(ri, rj) is normalized.

Now define mi = HM(si) and mj = HC(si)
HC(sj)

HM(sj). We calculate

migi −mjgj = HC(si)HT(si)gi −HC(si) HT(sj)gj

= HC(si)
(

uijt

τij
gi − ujit

τij
gj

)

= HC(si)
t

τij
spol(gi, gj).

(3.7)

Since (ri, rj) is normalized and S(spol(ri, rj)) ¹ HT(si)S(ri) ≺ wek∗ , we have by
hypothesis spol(ri, rj) = oG(uijri) (the S-polynomial cannot be zero since otherwise
replacing si by si−HM(si) and sj by sj +HC(si)HT(sj) gave a smaller representation).
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Furthermore, HT(si)HT(gi) = HT(sj)HT(gj) = t, hence lcm(HT(gi), HT(gj)) | t. As
HT(uijri) = lcm(HT(gi), HT(gj)), we find spol(ri, rj) = oG(HT(si)ri). Together with
(3.7), this gives

migi −mjgj = HC(si)
t

τij
spol(gi, gj) = oG(HT(si)ri).

This yields a new representation of f :

f = oG(HT(si)ri) + s′igi − HC(si)
HC(sj)

s′jgj + αsjgj +
n∑

k=1,k 6=i,j

skgk, (3.8)

where, for k ∈ {i, j}, s′k = sk − HM(sk) and α = 1 + HC(si)
HC(sj)

. Similar to the steps
before, we obtain (s′, σ′) ∈ Df,G from (3.8). Let v̄′ = V(s′, σ′). We claim that v̄′ ≺lex v̄,
contradicting the minimality of (s, id) once again.

By Definition 3.11, the expression oG(HT(si)ri) involves only summands of the form
mr poly(r), r ∈ G, such that HT(mr) HT(r) < HT(si)HT(ri) and

HT(mr)S(r) ≤ HT(si)S(ri).

Using (3.3), we conclude that v̄′l = v̄l whenever 1 ≤ l < i. As i 6= j, we have v̄′i ≺ v̄i, and
thus v̄′ ≺lex v̄.

This contradicts our initial assumption that HT(f) < t. Therefore (s, id) is a standard
representation of f with respect to G. Now the second claim is straightforward: we know
there is at least one i ∈ {1, . . . , n} for which HT(sigi) = HT(f), and so HT(f − csigi) <
HT(f), where c ∈ F× such that c HC(si) = HC(f). This is an S-reduction, and we may
continue recursively until we have reduced f to zero.

Definition 3.22. In the situation of the preceding theorem, we say that G is a Gröbner
basis up to signature wek∗ of 〈F 〉, or simply that G is a wek∗-Gröbner basis of 〈F 〉.

Now we are ready to prove the central result of this section.

Corollary 3.23 (F5 Criterion). Suppose the S-polynomial of every pair ri, rj ∈ G such
that (ri, rj) is normalized is either zero or spol(ri, rj) = oG(uijri). Then G1 is a Gröbner
basis of the ideal generated by F.

Proof. Let f ∈ 〈G1〉. Then there is a representation (s, σ) ∈ Df,G. Let wek∗ be some
signature larger than max{HT(si)S(rσ(i)) | i ∈ {1, . . . , n}}. By the hypothesis on the
S-polynomials, we can apply Theorem 3.21, concluding that f has a standard represen-
tation with respect to G1. Thus G is a Gröbner basis of 〈F 〉 by Theorem 3.12.

Let us point out that while Corollary 3.23 and Theorem 3.13 are quite similar, neither
is a generalization of the other. Theorem 3.13 treats only polynomials and hypothesizes
t-representations for all non-zero S-polynomials, whereas Corollary 3.23 uses labeled
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polynomials and supposes only that some nonzero S-polynomials have a t-representation,
taking the signatures of the involved polynomials into account.

The following result can be found as a remark in [14], except that the existence of G′ is
not postulated. This additional hypothesis is in fact always satisfied, given an algorithm
that only treats S-polynomials of normalized pairs (such as F5 for regular sequences, as
we shall see). But at this stage, the requirement seems indispensable.

Corollary 3.24. If the hypothesis of Corollary 3.23 is satisfied by all S-polynomials of
degree less or equal to d for some d ∈ N, and there is a Gröbner basis G′ of homogeneous
polynomials such that G1 ⊇ G′ and for all g ∈ G′ \G1, deg(g) > d, then G1 is a Gröbner
basis up to degree d of the ideal generated by F.

Proof. Let f be a nonzero polynomial in 〈F 〉 = 〈G1〉 with deg(f) ≤ d. Since G′ is a
Gröbner basis, there is a reductor g of f in G′. In fact we even have g ∈ G1, since all
elements of G′ are homogeneous of degree greater d. Thus G1 is a d-Gröbner basis by
[4, Theorem 10.39].

3.3 Pseudo code

In this section, we describe the F5 algorithm in pseudo code. We emphasize that we
have corrected several smaller mistakes in the pseudo code from [14] (for instance, the
check for normalized pairs was erroneous).

The notation used is hopefully natural: x ← v assigns the value v to the variable
x, ( ) denotes the empty sequence, and a sequence (a1, . . . , an) is enlarged by simply
defining an+1. The variables r and Rules will be considered global to the algorithm, and
are shared by most routines. The term r-index refers to an index i ∈ N specifying a
member ri of the global sequence r. If A is a set, respectively, a sequence, we denote
its cardinality, respectively, length, by |A| . If two finite sequences a = (a1, . . . , ak) and
b = (b1, . . . , bl) are given, we denote their concatenation c = (a1, . . . , ak, b1, . . . , bl) by
c← a concat b.
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Algorithm 3 F5 – Main loop

global r // array of labeled polynomials
global Rules // array of simplification rules

Input: A sequence F = (f1, . . . , fm) of nonzero homogeneous polynomials in F[X ]
Output: a Gröbner basis of 〈F 〉
1: function F5(F )
2: m← |F |
3: Rules ← (( ))m

j=1

4: r ← ( )
5: rm ← (em, HC(fm)−1fm)
6: G← (∅)m

i=1

7: Gm ← {m}
8: for i← m− 1, . . . , 1 do
9: Gi ← AlgorithmF5(fi, i, G)

10: if (∃k ∈ Gi) poly(rk) = 1 then
11: return {1}
12: end if
13: end for
14: return {poly(rk) | k ∈ G1}
15: end function
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Algorithm 4 F5 – Core routine

Input: f ∈ F[ X ], i ∈ N, G a sequence of sets of r-indices
Output: set G′ of r-indices with i ∈ G′

1: function AlgorithmF5(f, i,G)
2: ri ← (ei, HC(f)−1f)
3: G′ ← Gi+1 ∪ {i}
4: P ← ∅
5: for j ∈ Gi+1 do
6: P ← P ∪ CritPair(i, j, i, G)
7: end for
8: d← min{deg(p) | p ∈ P}
9: Pd ← {p ∈ P | deg(p) = d}

10: while P 6= ∅ do
11: Sd ← SPols(Pd)
12: Rd ← Reduction(Sd, G

′, G)
13: for k ∈ Rd do
14: P ← P ∪ ⋃{CritPair(k, l, i, G) | l ∈ G′}
15: G′ ← G′ ∪ {k}
16: end for
17: end while
18: return G′

19: end function
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Algorithm 5 F5 – CritPair

Input: rk, rl are defined, i is the current iteration in F5
Output: corresponding critical pair if (rk, rl) or (rl, rk) normalized

1: function CritPair(k, l, i, G)
2: t← lcm(HT(rk), HT(rl))
3: u1 ← t/HT(rk)
4: u2 ← t/HT(rl)
5: if S(u1rk) ≺ S(u2rl) then
6: // swap k and l
7: k′ ← k
8: k ← l
9: l← k′

10: u1 ← t/HT(rk)
11: u2 ← t/HT(rl)
12: end if
13: Let (t1, ek1) = S(rk)
14: Let (t2, ek2) = S(rl)
15: if u1t1 is top-reducible by Gk1+1 then
16: return ∅
17: end if
18: if u2t2 is top-reducible by Gk2+1 then
19: return ∅
20: end if
21: return {(t, u1, k, u2, l)}
22: end function
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Algorithm 6 F5 – SPols

Input: B a set of critical pairs
Output: F a sequence of r-indices

1: function SPols(B)
2: F ← ( )
3: for (t, u, k, v, l) ∈ B do
4: c1 ← HC(rk)
5: c2 ← HC(rl)
6: s← upoly(rk)− c1/c2v poly(rl)
7: if s 6= 0 and ¬IsRewritable(u, k) and ¬IsRewritable(v, l) then
8: N ← |r|+ 1
9: rN ← (uS(rl), s)

10: AddRule(N)
11: F|F |+1 ← N
12: end if
13: end for
14: sort F s.t. i < j ⇒ S(rFi) ≺ S(rFj )
15: return F
16: end function

Algorithm 7 F5 – Reduction

Input: T, G′ sets of r-indices, G = (Gi)m
i=1 sequence of sets of r-indices

Output: set of r-indices D

1: function Reduction(T, G′, G)
2: D ← ∅
3: while T 6= ∅ do
4: choose k ∈ T such that S(rk) is ≺-minimal among {S(rk′) | k′ ∈ T}
5: T ← T \ {k}
6: h← a normal form of poly(rk) w.r.t. {poly(rj) | j ∈ G′}
7: rk ← (S(rk), h)
8: K, T ′ ← TopReduction(k,G′ ∪D,G)
9: D ← D ∪K

10: T ← T ∪ T ′

11: end while
12: return D
13: end function
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Algorithm 8 F5 – FindReductor

Input: k an r-index, G′ a set of r-indices, G = (Gi)m
i=1 sequence of sets of r-indices

Output: a set R of r-indices, possibly empty

1: function FindReductor(k, G′, G)
2: t← HT(rk)
3: for j ∈ G′ do
4: t′ ← HT(rj)
5: Let vjekj

= S(rj)
6: if t′ | t then
7: u← t/t′

8: if uS(rj) = S(rk) or IsRewritable(u, j, k) or uvj is top-reducible with
respect to Gkj+1 then

9: continue
10: else
11: return {j}
12: end if
13: end if
14: end for
15: return ∅
16: end function
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Algorithm 9 F5 – TopReduction

Input: k an r-index, G′ a set of r-indices, G = (Gi)m
i=1 sequence of sets of r-indices

Output: D,T two (possibly empty) sets of r-indices

1: function TopReduction(k, G′, G)
2: if poly(rk) = 0 then
3: print “Warning, reduction to zero – F5 may not terminate”
4: return ∅, ∅
5: end if
6: p← poly(rk)
7: J ← FindReductor(k, G′, G)
8: if J = ∅ then
9: p← p/HC(p)

10: rk ← (S(rk), p)
11: return {k}, ∅
12: else
13: Let j be the single element of J
14: q ← poly(rj)
15: u← HT(p)/HT(q)
16: p← p−HC(p)/HC(q)uq
17: if uS(rj) ≺ S(rk) then
18: rk ← (S(rk), p)
19: return ∅, {k}
20: else
21: N ← |r|+ 1
22: rN ← (uS(rj), p)
23: AddRule(N)
24: return ∅, {k, N}
25: end if
26: end if
27: end function
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Algorithm 10 F5 – Simplification rules

Input: j, an r-index
1: procedure AddRule(j)
2: Let (t, ei) = S(rj)
3: Rulesi ← ((t, j)) concat Rulesi

4: end procedure

Input: u ∈ T , k an r-index
Output: true or false
1: function IsRewritable(u, k)
2: k′ ← Rewrite(u, k)
3: return k 6= k′

4: end function

Input: u ∈ T , k an r-index
Output: an r-index
1: function Rewrite(u, k)
2: Let (v, el) = S(rk)
3: for j ← 1, . . . , |Rulesl| do
4: Let (t, j′) = Rulesl,j

5: if t | uv then
6: return j′

7: end if
8: end for
9: return k

10: end function

3.4 Proof of F5

We provide proof of the correctness, termination and, in some sense, efficiency, of F5.
Unfortunately, we were unable to free F5 from the hypothesis that F is a regular sequence
in order to show the termination of F5(F ), and some gaps remain.

Notation. During the algorithm presented in the previous section, sets of labeled poly-
nomials are stored as indices referring to the global variable r. To ease the notational
pain, we establish a notation for dereferencing these indices. Suppose S is a variable
holding indices referring to elements of r, and suppose at a certain step of the algorithm,
val(r) and val(S) are the values of r and S, respectively. When discussing this step, we
will identify variables with their values, and we denote by Ŝ the set, resp., sequence,
obtained from val(S) by replacing every index j by the labeled polynomial val(r)j .
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Proposition 3.25 (Faugère’s Proposition 2). Let R̃ be the set of all labeled polynomials
rk occurring during the execution of F5. Then every element of R̃ is admissible.

Proof. Every labeled polynomial except for the standard polynomials (ei, fi) is built from
others in one of four steps in TopReduction or SPols. Thus we proceed by induction:
First we show that every standard labeled polynomial satisfies the claim, then we argue
that any statement in the algorithm that alters or creates labeled polynomials produces
only admissible ones.

Let (ej , fj) be a standard labeled polynomial. It is admissible since fj = vF (ej).
It remains to show that step 9 in SPols and steps 10, 18, 22 in TopReduction

create only admissible labeled polynomials. Consider line 10 in TopReduction. If
r = (tei, p) is an admissible labeled polynomial with p 6= 0, then r′ = (tei,

1
HC(p)p) is

admissible, since only HT(p), not HC(p) matters for r′ to be admissible.
We claim that the three remaining steps which introduce or change labeled polynomials

all share the same form: Given two admissible labeled polynomials rj1 , rj2 and two terms
u1, u2 ∈ T such that

u2 S(rj2) ≺ u1 S(rj1), (3.9)

a new labeled polynomial rj3 = (u1 S(rj1), u1 poly(rj1)−u2 poly(rj2)) is formed. Indeed,
the signatures in (3.9) cannot be equal in TopReduction since FindReductor would
have discarded such a reductor. In SPols, the relation (3.9) is ensured by the procedure
CritPair which swaps the components of a critical pair if necessary.

We show that in this situation r is admissible. Since rj1 , rj2 are admissible, there exist
a, b ∈ F[X ]m such that rj1 =

∑m
j=k ajfj and rj2 =

∑m
j=l bjfj , where 1 ≤ k ≤ l ≤ m,

index(a) = k, index(b) = l, and HT(ak)ek = S(rj1). This gives a representation

poly(rj3) =
m∑

j=k

(u1aj − u2bj)fj .

The index of u1a−u2b is k, since k ≤ l. If k < l, then u2bk = 0; if k = l, then u2 HT(bk) <
HT(u1)HT(ak) by (3.9). In either case, we have HT(poly(rj2)) = u1 HT(ak), so the new
labeled polynomial rj3 is admissible.

The next proposition shows that F5 treats only normalized pairs, and that the routine
CritPair does not reject any normalized pair.

Proposition 3.26. Suppose that for every j ∈ {i + 1, . . . , m}, the set Gj is a Gröbner
basis of the ideal generated by fj , . . . , fm.

(i) All labeled polynomials in Gi created during the execution of F5(fi, i, G) are nor-
malized.

(ii) Every tuple (t, u1, k, u2, l) returned by CritPair(k, l, i, G) represents a normalized
critical pair (rk, rl).

(iii) If (rk, rl) is normalized, then CritPair(k, l, i, G) returns a tuple (t, u1, k, u2, l).
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(iv) If (rk, rl) is normalized, then CritPair(l, k, i, G) returns a tuple (t, u1, k, u2, l).

Proof. (i) We proceed by induction on the creation of labeled polynomials: We argue
that the standard labeled polynomials of the form (ei, fi) created during F5 are normal-
ized, and that, given normalized labeled polynomials, line 9 of SPols and lines 22 of
TopReduction result only in normalized labeled polynomials.

F5, line 5 and AlgorithmF5, line 2: If a standard labeled polynomial (ei, fi), where
1 ≤ i < m, is not normalized, then the constant 1 is top-reducible by 〈fi+1, . . . , fm〉.
But then Gi+1 ∩ F× 6= ∅, i. e., 〈fi+1, . . . , fm〉 = F[ X ], in which case F5 had terminated
already after step i + 1 due to line 11. Hence (ei, fi) is normalized.

SPols, line 9: If a labeled polynomial rN is created in line 9 of SPols from a
normalized critical pair (t, u1, k, u2, l) produced by CritPair, then in particular u1rk is
normalized. Since S(rN ) = u1 S(rk), this implies rN is normalized.

TopReduction, line 22: Due to the check in line 8 of FindReductor, line 22 of
TopReduction yields a normalized labeled polynomial.

(ii) Regarding (ii), simply note that in lines 6–11, CritPair swaps the components
of a given critical pair if necessary and that it ensures in lines 16 and 19 that both u1rk

and u2rl are normalized. Hence any pair produced by CritPair is normalized.
(iii) Conversely, any normalized pair passes the checks in lines 15 and 18, proving (iii).
(iv) follows from (iii) and the swap performed in lines 6–11 of CritPair.

Unfortunately, our proof of F5 is not complete; it seemed within reach, but we were
unable to show that certain optimizations were correct. One of these gaps concerns
the so-called simplification rules where certain products urk of a term u and a labeled
polynomial rk are called rewritable.

We say that a module term tek divides another module term vel, written tek | vel, if
k = l and there is a term u such that ut = v, i. e., utek = vel.

Definition 3.27. Let rk, rl be labeled polynomials occurring during the execution of
F5(F ), and let u, v be terms. We say that the pair (u, rk) is rewritable by (v, rl) if l > k
and tS(rl) = uS(rk). If p = (ri, rj) is a critical pair, then we call p rewritable if one of
(uij , ri), (uji, rj) is rewritable.

We state some conjectures regarding optimizations included in F5. All of them are
implicitly used by Faugère in his paper [14], but unfortunately he does not provide
a proof, just examples in simplified cases. Although not having succeeded in proving
them, after studying the paper [21], the author of the present thesis is convinced they
– or similar statements ensuring the correctness of F5 – can be proven using the linear
algebra viewpoint described in [12, 21]. (Faugère also gives a linear algebra example in
[14].) It is should therefore be a theoretically (and practically) rewarding task to find
an “F4-like” variant of F5.

Conjecture 3.28. Let urk be a product of a term u and a labeled polynomial rk occurring
during step i of F5(F ). Let Fi = (fi, . . . , fm, g1, . . . , gn−m), where

{fi, . . . , fm, g1, . . . , gn−m} = Ĝi \ {poly(rk)}.
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If there is a nonzero syzygy s ∈ Syz(F ′) such that MHT(s) | uS(rk), then urk is re-
dundant. In particular, if urk is a component of a critical pair, then the critical pair is
redundant, and if urk is used as a reductor, then the reductor need not be used. More
specifically,

(i) if no labeled polynomial is reduced to zero in F5, then it suffices to treat critical
pairs that are not rewritable;

(ii) if no labeled polynomial is reduced to zero in F5, then it suffices to employ only
reductors urk such that (u, rk) is not rewritable; and

(iii) it suffices to employ only reductors urk such that (u, rk) is normalized.

We briefly describe how to derive the more specific statements in the above conjecture
from the general case. Statements (i) and (ii) are both based on an idea that we first
found in the paper [21] by Möller, Mora and Traverso: Suppose urk is rewritable by
(v, rl). Since rl was not reduced to zero, there is a labeled polynomial rj ∈ Ĝi \{rk} such
that S(rj) = S(rl). As rl is admissible by Proposition 3.25, there exists a representation
h = (h1, . . . , hm) ∈ F[X ] such that vF (h1, . . . , hm) = gj and MHT(h1, . . . , hm) = S(rl)
divides uS(rk). Thus s = (h1, . . . , hm, 0, . . . , 0) − ej is a nonzero syzygy in Syz(Fi)
such that MHT(s) | uS(rk). Concerning statement (iii), assume that Ĝi+1 is a Gröbner
basis of 〈fi+1, . . . , fm〉, and that S(rk) = tei. Since urk is not normalized, there is an
rj ∈ Ĝi+1 such that HT(rj) | ut. Since gj ∈ 〈fi+1, . . . , fm〉, there is a representation
gj =

∑m
j=i+1 hjfj . Therefore gjfi −

∑m
j=i+1 hjfifj = 0, and so

s = gei −
m∑

j=i+1

hjej =
m∑

j=i+1

hjπij ∈ PSyz(F ) ⊆ Syz(Fi)

is a syzygy with MHT(s) | uS(rk).
The reduction in F5 is similar, but not identical to the one used in the homogeneous

version of Buchberger’s algorithm described in [23, 24]. Most notably, it deviates in the
following points.

(i) Only top-reductions are performed.

(ii) Some reductors are discarded. Hence, polynomials might not necessarily be re-
duced to a normal form, as all reductors might have been rejected.

(iii) New polynomials might be created during the reduction.

(iv) Polynomials are treated in increasing order by signature.

Despite these differences, the following lemma shows that the function Reduction still
does what one would expect.

Lemma 3.29. If F = (f1, . . . , fm) is a regular sequence of homogeneous polynomials
in F[ X ] \ {0}, then the following holds for any call Reduction(T,G) made during the
execution of F5(F ).
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(i) The procedure Reduction terminates after finitely many steps.

(ii) Assume the S-polynomial corresponding to a normalized critical pair (t, u, rj , v, rk)
is

rl = (uS(rj),HC(rk)upoly(rj)−HC(rj)v poly(rk)). (3.10)

Suppose D is the result of a call Reduction(T,G). Let D̂ = {rα | α ∈ D}, and
Ĝ = {rα | α ∈ G}. Then for all rl ∈ T̂ defined as in (3.10),

rl = OĜ∪D̂(rl) = oĜ∪D̂(urj). (3.11)

Proof. (i) Termination. Suppose s is the value of the variable k assigned in line 4 of
Reduction(T, G). In fact, s is uniquely determined in this situation, because no two
S-polynomials have the same signature (otherwise the left component of the second S-
polynomial would be rewritable). Then s is passed to TopReduction, resulting in one
of four possible return values:

(i) ∅, ∅: rs is discarded because poly(rs) = 0

(ii) {s}, ∅: poly(rs) is in normal form with respect to A

(iii) ∅, {s}: rs is reduced by an element of A

(iv) ∅, {s,N}: a copy of rs, reduced by A, is introduced

In cases (i) and (ii), s will not be treated again in Reduction, whereas in cases (iii)
and (iv), the variable k will be assigned the value s again. In case (iii), this is obvious
due to the uniqueness of s. In the situation of (iv), the new labeled polynomial rN has
a larger signature than rs, hence S(rs) will still be minimal.

Therefore every polynomial rs is reduced until it is either discarded, as in case (i), or
included in D, as in case (ii).

Say t = HT(rs), and a polynomial is created in case (iv). Then in subsequent calls,
FindReductor will not yield the same reductor for polynomials of head term t as
before, since a new simplification rule was added. By construction, the new polynomial
is homogeneous of the same degree and has a smaller head term than t, therefore it
cannot serve to reduce t. So for every polynomial that is initially in R̂, case (iv) is
entered only a finite number of times. Furthermore, there cannot be an infinite number
of polynomials created this way, since their head terms are strictly decreasing, and there
are only a finite number of possible reductors.

Clearly, case (iii) cannot occur infinitely often, so we conclude that the function Re-
duction terminates after a finite number of steps.

(ii) Representation of S-polynomials. Suppose we are in the situation of the lemma.
As argued above, rl is repeatedly top-reduced by Ĝ ∪ D̂. If rl is eventually reduced to
zero, there is nothing to show. Otherwise, suppose (S(rl), p) is the reduced version of rl

whose r-index is included in D. Due to the top-reductions performed, there is a standard
representation of poly(rl)

poly(rl) = cp +
∑

j∈M

pj poly(rj), (3.12)
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in the sense of Definition 3.10, where M ⊆ G2∪D is the set of r-indices of the reductors
used, the polynomial p is monic, c ∈ F×, and the pj are nonzero polynomials.

The last if -clause in TopReduction ensures that for every j ∈ M and every term
t ∈ pj , we have tS(rj) ≺ S(rl), so in particular HT(pj)S(rj) ≺ S(rl).

Now we see that (3.12) is an rl-representation of rl with respect to Ĝ∪ D̂ in the sense
of Definition 3.11. This gives the first equation in (3.11). For the second, we just notice
that S(rl) ¹ S(ur) and HT(rl) = HT(spol(rj , rk)) < τjk = uHT(rj).

Theorem 3.30 (Faugère’s Theorem 2). Let F = (f1, . . . , fm) be a regular sequence of
homogeneous polynomials in F[X ] \ {0}. Then the result of F5(F ) is a Gröbner basis of
the ideal generated by F.

Proof. Aiming to apply Corollary 3.23, we verify that its hypotheses are satisfied.
Without loss of generality, we may assume that the polynomials f1, . . . , fm are monic,

as this does not change the ideal and every fi is divided by its head coefficient in line 5
of F5, respectively, line 2 of AlgorithmF5.

F5 may terminate “early” if during some stage i of the algorithm, the ideal 〈F 〉 turns
out to be the trivial ideal F[ X ] in line 11. In this case, Ĝi certainly is a (probably highly
redundant) Gröbner basis of 〈F 〉. Hence we can assume that 〈F 〉 6= F[ X ].

Assumption 3.15 (i). By the argument above, we can assume every fi is monic.
Each labeled polynomial of the form (ei, fi) is included in the set Gi, and so eventually
(ei, fi) ∈ Ĝ1 for every i = 1, . . . , m, since Ĝm ⊆ · · · ⊆ Ĝ1.

Assumption 3.15 (ii). The algorithm constructs the polynomials in Ĝ1 in four ways,
which we can describe recursively:

• The algorithm includes input polynomials fi,

• it creates S-polynomials from polynomials in 〈F 〉,
• it divides polynomials in 〈F 〉 by a constant, and

• it subtracts polynomials in 〈F 〉 from others in 〈F 〉.
As these operations do not leave the ideal, we get Ĝ1 ⊂ 〈F 〉.

Assumption 3.15 (iii). This hypothesis is a consequence of Proposition 3.25, and of
line 10 in TopReduction.

Hypothesis of Corollary 3.23. Suppose (rk, rl) is a normalized pair with k, l ∈ G1. Then
by Proposition 3.26 (iii)–(iv), the S-polynomial spol(rk, rl) is treated in some step i of
the algorithm. Let D be the result of the call to Reduction(T, G) with spol(rk, rl) ∈ T̂ .
As every element of D is eventually included in the intermediate Gröbner basis in line 15
of AlgorithmF5, we have D ⊆ Gi by the end of stage i. By Lemma 3.29, it follows that
poly(rl) was either reduced to zero modulo Ĝi, or spol(rk, rl) = oĜi

(uklrk) = oĜ1
(uklrk).

Therefore, all hypotheses of Corollary 3.23 are satisfied, and so Ĝ1 is a Gröbner basis
of the ideal 〈F 〉.
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It should be noted that in [14], Faugère sketches a proof of the above theorem that
argues using truncated Gröbner bases, cf. Corollary 3.34.

The following conjecture states that the algorithm F5 terminates if there is no reduc-
tion to zero. Unfortunately, we were unable to complete Faugère’s sketch given in [14],
and so we can only give a partial proof of what otherwise would have been a theorem.
Experimental evidence the author has collected with his implementation of F5 seems to
support the claim.

Conjecture 3.31. Suppose F = (f1, . . . , fm) is a sequence of homogeneous monic poly-
nomials such that no reduction to zero occurs during the algorithm F5(F ). Then F5(F )
terminates.

Partial proof. Let R be the result of a call of the function Reduction and Ĝi the
intermediate Gröbner basis prior to including the elements of R̂. It suffices to show that
if R 6= ∅, then 〈HT(Ĝi)〉 6= 〈HT(Ĝi ∪ R̂)〉, for then, as F[ X ] is noetherian, eventually R
will be the empty set and remain empty.

Suppose R̂ is nonempty. Without loss of generality, we may furthermore assume
that R is finite and i = 1. Choose rk ∈ R̂ such that S(rk) is ≺-maximal. We show
that rk is not top-reducible by any other element of Ĝ1 ∪ R̂ and thus in particular
〈HT(Ĝ1)〉 6= 〈HT(Ĝ1 ∪ {rk})〉.

Suppose by way of contradiction that there exists an rl ∈ (Ĝ1 ∪ R̂) \ {rk} such that
HT(rl) | HT(rk), say uHT(rl) = HT(rk) with u ∈ T . Clearly poly(rl) 6∈ 〈Ĝ2〉, otherwise
rk could have been reduced by Ĝ2 in line 6 of Reduction.

We distinguish four cases.

Case 1. url is normalized. Note that uS(rl) 6= S(rk), otherwise rk would have been dis-
carded due to the rewriting rules.

Case 1.1. S(rk) ≺ uS(rl). We claim that the critical pair (HT(rk), u, rl, 1, rk) was in-
troduced in the list. Indeed, (u, rl) is normalized since uS(rl) is not top-
reducible by G2 and by Proposition 3.26, rk and therefore (1, rk) is nor-
malized. Together with the assumption that S(rk) ≺ uS(rl), this implies
that the critical pair is normalized, hence it was created by CritPair by
Proposition 3.26 (iii)–(iv). The corresponding S-polynomial produced by the
procedure SPols is (uS(rl), url − rk). As the signature of a labeled polyno-
mial is not changed during the reduction and by assumption no reduction to
zero occurs, R̂ contains some labeled polynomial with signature uS(rl). But
S(rk) ≺ uS(rl), contradicting the assumption that S(rk) is maximal.

Case 1.2. uS(rl) ≺ S(rk). Since S(rk) is maximal, rk was the last labeled polynomial
to be included in D̂. In particular, when TopReduction is passed rk, the
labeled polynomial rl is already in D̂. But then uS(rl) ≺ S(rk) implies that
rk can be reduced by rl, a contradiction.

Case 2. url is not normalized. Since rl is admissible by Proposition 3.25, there exists
s′ ∈ F[ X ]m such that s′1 6= 0, vF (s′) = poly(rl), and HT(s′1)e1 = S(rl). Let
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us′1 = v +
∑m

i=2 λifi be a reduced representation, i. e., with λ2, . . . , λm ∈ F[ X ]
and v ∈ F[X ] not reducible by Ĝ2. Since us′1 is reducible by Ĝ2, either v = 0 or
HT(v) < HT(us′1). If v = 0, then upoly(rl) ∈ 〈Ĝ2〉, so poly(rk) would have been
reduced by Ĝ2. Therefore v 6= 0. We have

upoly(rl) = us′1f1 +
m∑

i=2

us′ifi = vf1 +
m∑

i=2

(λif1 + us′i)fi. (3.13)

Now define a set T = {t ∈ T (v) | HT(tf1) > HT(rk)} . From the algorithm, recall
the notation r1 = (e1, f1). Since v is in normal form with respect to 〈f2, . . . , fm〉,
the labeled polynomial tr1 is normalized for every t ∈ T.

Case 2.1. T = ∅. In this case there is a representation
∑m

i=2(λif1 + us′i)fi =
∑

g∈Ĝ2
µgg

where the µg are polynomials that satisfy either µg = 0 or HT(µgg) ≤ HT(rk).
As the head term of upoly(rl) is HT(rk), it must occur in the righthand
expression in (3.13) somewhere. We conclude that HT(vf1) = HT(rk), in
which case rk would have been reduced by the normalized labeled polynomial
HT(v)r1, or some g ∈ Ĝ2 satisfies HT(µgg) = HT(rk), in which case rk would
have been reduced by g.

Case 2.2. T 6= ∅. This case is what makes the claim a conjecture rather than a theorem.
Since v is in normal form with respect to Ĝ2, any labeled polynomial tr1,
where t ∈ T, is normalized. Faugère claims that all these labeled polynomials
were included in some critical pair, and that therefore there exists a labeled
polynomial rj ∈ Ĝ2 such that S(rj) = HT(v)e1 and HT(rj) = HT(rk). If so,
then rk could have been reduced by rj , a contradiction.

We could settle case 2.2 in the proof of Conjecture 3.31 if we knew that for any
value of Ĝ1 during the algorithm, it was always true that Ĝ1 is a wek∗-Gröbner basis
of 〈f1, . . . , fm〉, where wek∗ = max{S(rk) | rk ∈ Ĝ1}. If this was the case, then from
the proof of Theorem 3.21, we would conclude that url could have been S-reduced by
a normalized labeled polynomial u′rl′ with rl′ ∈ Ĝ1. This would the reductor for rk we
were looking for.

The next theorem confirms that, indeed, principal syzygies are avoided by F5. Corol-
lary 3.33 concludes what we were striving for: There are no reductions to zero during
F5 if the input is a regular sequence.

Theorem 3.32. Let F = (f1, . . . , fm) be a sequence of nonzero monic homogeneous
polynomials. If a labeled polynomial rk reduces to zero during the algorithm F5(F ), then
there exists a syzygy

s ∈ Syz(F ) \ PSyz(F ) such that MHT(s) = S(rk).
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Proof. Suppose the labeled polynomial rk reduces to zero. Then by Proposition 3.25,
there exists s ∈ F[ X ]m such that vF (s) = 0 and MHT(s) = S(rk). We see that s ∈
Syz(F ). Now suppose s ∈ PSyz(F ), and let i = index(s). Then s is a sum of multiples of
principal syzygies πij with j > i, so HT(si) ∈ HT(〈fi+1, . . . , fm〉). This contradicts the
fact that rk is normalized by Proposition 3.26. Hence s ∈ Syz(F ) \ PSyz(F ).

Corollary 3.33. Suppose F = (f1, . . . , fm) is a regular sequence of nonzero homoge-
neous polynomials. Then F5(F ) terminates, and no labeled polynomial is reduced to zero
by the algorithm.

Proof. If F is a regular sequence, then Syz(F ) = PSyz(F ) by Theorem 3.4. The asser-
tions follow from Theorem 3.32 and Conjecture 3.31.

As we have promised on page 25, we can now prove an alternative version of Corol-
lary 3.24. It is unfortunate that we have to require that F is a regular sequence (so that
F5(F ) terminates).

Corollary 3.34. If the hypothesis of Corollary 3.23 is satisfied by all S-polynomials of
degree less or equal to d for some d ∈ N, and G1 is a regular sequence, then G1 is a
Gröbner basis up to degree d of the ideal generated by F.

Proof. G′ = F5(G1) satisfies the requirement that G1 ⊆ G′, all g ∈ G′ are homogenous
and either g ∈ G1 or deg(g) > d. The claim follows from Corollary 3.24.

Finally, we give an overview between the theorems in this text and corresponding
statements from Faugère’s article [14]. The reader should be aware, however, that while
this gives a general overview, the precise hypotheses and conclusions vary.

Faugère’s F5 Paper This Thesis

n/a Theorem 3.21

Theorem 1 Corollary 3.23

Proposition 2 Proposition 3.25

Proposition 3 Proposition 3.26

Theorem 2 Theorem 3.30

Theorem 3 Conjecture 3.31

Theorem 4 Theorem 3.32

Corollary 3 Corollary 3.33

Remark 1 Corollary 3.34

partly in Theorem 2 Lemma 3.29

implicit Conjecture 3.28

3.5 Implementing F5

While Faugère maintains in [14] that it is “very easy” to modify the Buchberger algorithm
to yield F5, it was a considerable effort for the author to implement the algorithm from
the pseudo code given in [14].

At the time of writing, we are aware of four other implementations, by Jean-Charles
Faugère (C), Robert Pearce (Maple), A. J. M. Segers (Magma), and Allan Steel (C),
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respectively. Probably efforts are being made in other research teams as well. Of these
authors, only Pearce [22] and Segers [24] have published their code. However, neither
implementation seemed to be stable in our tests. Therefore, we decided to implement
F5 ourselves. Our language of choice was the computer algebra system Magma [10]
developed at the University of Sydney.

In the following, we share our experiences from this project.

Language While Magma has an easy syntax and a very nice structured approach to
algebraic computation, its lack of certain language features turned out to be inconvenient
when implementing F5. In particular, we missed the support for global variables (after
all, all labeled polynomials are stored in the global r!), pointers, objects, as well as more
features to manipulate sparse matrices. Regarding an efficient implementation, the
interpreted Magma code would of course not be able to keep up with an implementation
in a compiled language such as C or C++. As one will certainly be experimenting
with different variants of an algorithm, support for modularity is also a highly desirable
feature of the programming language used. We therefore recommend implementors of
F5 to use an object-oriented language such as C++. This will also allow a specialized
memory management, a feature that is desirable as Gröbner basis computations can
quickly require huge amounts of memory.

Stages interdependent Unlike in the classic Buchberger algorithm, and also in F4, pair
selection and polynomial reduction in F5 strongly depend on each other. For instance,
rendering a labeled polynomial rk inadmissible during the reduction would destroy the
relationship between the signature S(rk) and the polynomial poly(rk). Consequently,
decisions such as whether a pair involving rk is normalized or whether a given multiple
of rk is rewritable might be affected. This interdependency makes it also harder to
combine F5 with other optimizations of the Buchberger algorithm.

Pre-reduce input Inspired by the option ReduceInitial for Magma’s Buchberger al-
gorithm, our implementation first tries to mutually reduce the input polynomials to a
normal form. For most examples we tried, this resulted in a small speed-up.

Unnecessary reductions In our description, line 6 of Reduction computes a normal
form of rk with respect to G′. However, if TopReduction just returned via line 24,
then rk is already in normal form with respect to G′. Therefore it is suggested to execute
line 6 of Reduction only if the preceding call to TopReduction returned a set T ′

of cardinality ≥ 1. On a similar note, line 8 passes the set G′ ∪D to TopReduction.
However, since the polynomial rk reduced in TopReduction is in normal form with
respect to G, it is sufficient to pass the new polynomials (G′ ∪D) \G.

Keep basis reduced We experienced a speed-up by computing the (unique) reduced
Gröbner basis Gred

i of the Gröbner basis {poly(rk) | k ∈ Gi} after completing step i, and
subsequently checking if polynomials are top-reducible with respect to Gred

i instead of
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Ĝi. It is not suggested to replace the polynomials in Ĝi completely, as this would almost
certainly result in inadmissible polynomials.

F5 6= F5 The reader should carefully note that there are different descriptions of what
actually constitutes the F5 algorithm. There is the original description given by Faugère
in [14], in which he also mentions the variants F5/2, F ′

5, and F ′′
5 ; Bardet [3] describes

“F5-matriciel” and “F5-matriciel/2”; in section 3.3, we have given a description slightly
different from the original suggestion. See section 3.7 for ideas how to improve the
reduction in F5.

Data structures To increase the performance and memory efficiency of the algorithm,
more sophisticated data structures than those employed in out implementation are likely
to be quite beneficial in practice. For instance, organizing the simplification rules using
a tree structure rather than a list seems promising. If the input is not a regular sequence
and a large number of polynomials is reduced to zero, then the labeled polynomials
should be stored in a more dynamic data structure than an array.

Sorting the input Due to its incremental structure, F5 does not treat every input
polynomial equally. Therefore the performance of the algorithm can be considerably
affected by the order of the input. It appears that this is the reason why Bardet suggests
in [3] to order the input such that deg(fm) ≤ · · · ≤ deg(f1). (Actually, she suggests to
order the sequence the other way around, but her algorithms treat fi before fi+1, contrary
to our notation.)

Earlier pair elimination Critical pairs that turn out to be rewritable are eliminated in
the function SPols, but until then they are stored in the queue. It would be worth
investigating if it pays off to add to CritPair a check whether a given critical pair is
rewritable. If this is the case, the pair can be disposed of right then, shortening the
length of the queue. If not, the simplification rules that the pair was compared against
should be memorized (e. g., by storing the indices of the last rules checked) to prevent
SPols from looking at them a second time.

Termination As many examples, in particular those arising from cryptographic prob-
lems, are not regular sequences, it is very desirable to improve F5 so that termination is
guaranteed even if there are reductions to zero. Probably one has to store which pairs,
respectively, reductors, were discarded as they were rewritable by a labeled polynomial
which was reduced to zero later on, and treat those again.

3.6 Performance

We do not claim that our implementation of F5 is particularly efficient, as already the
choice of an interpreted language indicates. Rather, its primary goal is correctness – after
all, we do not know of any other public implementation that terminates for all regular
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sequences; it is meant to serve as a base for further research (cf. section 4.2). Neverthe-
less, we report some performance results and compare it to the F4 implementation by
Segers [24]. We also list the timings of Magma’s highly efficient F4 implementation (due
to Allan Steel), indicating that – not surprisingly – it is playing in a completely different
league than the other two. (To be fair, it should be noted that Segers’ implementation
does not employ sparse matrix techniques.)

We share some observations made during our experiments.

• For many examples, there are considerably less reductions to zero. At the same
time, however, the total number of polynomials considered is sometimes higher
(examples Weispfenning 94, Segers). Confirming Corollary 3.33, we did not observe
any reduction to zero for regular sequences.

• The reduction used in F4 is very fast. Although F4 has to reduce considerably
more polynomials in the examples f744, Cyclic 7, and Katsura 8, it is faster or not
much slower than F5. (The degree and weight of the polynomials is also a factor
in this, though.) It is therefore natural to ask how to speed up the reduction of F5

using the ideas from F4, cf. section 3.7.

• The maximal degree of the polynomials considered by F5 is usually slightly higher
than the maximal degree of the polynomials considered by F4, probably causing a
higher reduction workload per polynomial.

• The examples arising from multivariate cryptographic schemes (such as C∗ and
HFE, while only one HFE example is listed) that include the so-called field equa-
tions are never regular sequences (cf. Remark 3.3). Not surprisingly, F5 fails to
terminate quite often for this class of polynomial systems.

• To compare the memory consumption of F4 and F5, efficient implementations of
comparable sophistication are needed.

Further in-depth analyses using equally sophisticated implementations is needed to
call the race between F4 and F5, in particular the draw conclusions about the amount
of memory needed. It would be very desirable if F5 could be modified – probably
the simplification rules have to be used more carefully – to ensure termination of the
algorithm even for non-regular sequences.

The polynomial systems and the parameters for the examples (such as the fields
and orderings used) are found in the appendix. All computations were done on an
Athlon XP 2500 with 512 MB RAM running Magma 2.11-14.

The first column gives the name of the algorithm; the second column lists the total
number of polynomials reduced by the algorithm, including the input as well as S-
polynomials; the third column shows how many of these polynomials were in fact reduced
to zero; the fourth column lists the CPU time consumed by the algorithm, measured
using Magma’s Cputime() command; the last column shows the largest degree of a
polynomial treated.
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The exact systems, term orders and fields used can be found in the file examples.mag
in the distribution of the F5 sample implementaton available at

http://www.cdc.informatik.tu-darmstadt.de/∼stegers/.

Weispfenning94
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 45 18 0.509 14

F5 68 4 0.49 16

F4 Magma 46 ? 0 15

Buchberger 87
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 13 7 0.02 6

F5 11 3 0.01 7

F4 Magma 15 ? 0 7

Eco 6
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 92 60 0.56 9

F5 56 16 0.279 9

F4 Magma 92 ? 0.011 10

Segers’ HFE system
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 156 129 0.5 4

F5 380 218 3.65 10

F4 Magma 174 ? 0.01 5

Möller-Mora-Traverso 1992
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 12 4 0.019 7

F5 10 0 0.011 8

F4 Magma 12 ? 0 9

Uteshev-Bikker
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 35 27 0.36 7

F5 20 0 0.049 7

F4 Magma 43 ? 0 8

Lichtblau
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 76 29 14.76 29

F5 76 0 5.25 34

F4 Magma 76 ? 0.779 30

Liu
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 41 18 0.329 9

F5 19 0 0.031 9

F4 Magma 42 ? 0 10
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Gerdt93
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 16 3 0.14 6

F5 10 1 0.009 6

F4 Magma 15 ? 0 7

Sym3-3
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 16 4 0.109 10

F5 11 0 0.029 10

F4 Magma 17 ? 0 11

Trinks
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 46 37 0.181 5

F5 18 1 0.03 6

F4 Magma 26 ? 0 7

Hairer1
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 34 24 0.31 8

F5 16 0 0.03 8

F4 Magma 28 ? 0 9

f633
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 295 213 14.6 6

F5 75 2 0.46 8

F4 Magma 209 ? 0.009 7

Katsura 5
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 77 62 0.801 6

F5 57 0 0.269 7

F4 Magma 68 ? 0.01 7

Katsura 6
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 159 100 3.43 7

F5 74 0 0.731 7

F4 Magma 164 ? 0.01 8

Katsura 7
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 371 195 25.7 8

F5 185 0 9.911 9

F4 Magma 377 ? 0.05 9

Katsura 8
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 883 422 182.53 9

F5 423 0 135.129 11

F4 Magma 881 ? 0.3 10
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Cyclic 5
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 104 80 0.501 13

F5 39 0 0.179 13

F4 Magma 112 ? 0 14

Cyclic 6
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 350 305 6.419 15

F5 218 16 7.07 17

F4 Magma 388 ? 0.021 17

Cyclic 7
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 1909 1851 268.699 19

F5 1328 101 858.41 20

F4 Magma 2205 ? 0.5 20

Gonnet 83
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers aborted in degree 6 due to memory requirements

F5 7336 5089 3123.480 13

F4 Magma 8224 ? 0.72 10

f744
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 1817 1602 365.180 8

F5 1346 477 2326.680 11

F4 Magma 1464 ? 0.220

Schrans-Troost 1990
Algorithm Polynomials Reds. to 0 CPU Time Degree

F4 Segers 701 629 65.25 9

F5 ≈ 1228 aborted in step i = 3 after 12+ hours

F4 Magma 774 ? 0.169 10

3.7 Combining F4 and F5: An attempt

For efficiency reasons, Faugère suggests in [14] to “translate” F5 to an algorithm in
“F4 fashion.” As current records [12, 25] in computing Gröbner bases were obtained
using (presumably highly optimized) variants of the F4 algorithm, we tried to develop
an F5 variant based on linear algebra techniques similar as those employed in F4. Such
a “hybrid” version specialized for fields of characteristic two, called F5/2, was also used
by Faugère to break Patarin’s first HFE challenge [16]. Although we did not succeed in
completing a working algorithm, we hope our experiences might be of some use to the
reader when tackling the problem himself. We hope she or he will do better, and let the
author know!

It should be noted that Bardet’s dissertation [3] contains a description of an “F5-
matriciel,” however in a very concise and simplified version. Allan Steel, developer of
the Gröbner basis package of Magma, reported in private communication [26] to have an
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“F4-like” implementation of F5 as well, but it is unpublished. The most advanced matrix-
based implementation is to our knowledge still Faugère’s, included in his software FGb.

The F4 algorithm benefits from transforming the reduction of polynomials to the
problem of reducing a (potentially very large, and very sparse) matrix over the coefficient
ring to row echelon form. Efficiently solving large systems of linear equations over finite
fields is a difficult, but well-studied problem, which arises for instance in index-calculus
methods for computing discrete logarithms. This translation enables the use of efficient
sparse linear algebra techniques to speed up the reduction (a discussion of some of the
techniques in use can be found in [16], for instance). Apart from the reduction, another
advantages of F4 is its flexibility: the pair selection strategy can be chosen freely, and
it is suitable for non-homogeneous systems. However, even with a well-established pair
selection criterion such as the Gebauer-Möller installation, still quite some polynomials
reduce to zero – for instance, in the example Cyclic 7 above, Segers’ F4 implementation
still reduces about 97% of the polynomials to zero!

The major feature of F5, on the other hand, is that it prevents all reductions to zero
caused by principal syzygies and by the syzygies caused by new polynomials (using the
simplification rules). In many examples, its selection is optimal in the sense that there
are no reductions to zero. But there is still a lot of work to complete on F5: termination
of the algorithm is not guaranteed in many important cases; no multireduction technique
is employed; pair selection and reduction are interdependent due to the requirements that
all polynomials treated be admissible. In general, F5 does not seem to be understood
very well, but the success of [16] makes it look promising.

In our approach to a hybrid version, we extended a basic version of F4 (without the
Simplify routine) to proceed incrementally and treat only normalized pairs. To this
end, we assigned all polynomials a signature as in F5, and prevented the addition or
subtraction of two polynomials with the same signature, as this might have caused a
cancellation in the respective representations, rendering the labeled polynomials inad-
missible. (A phenonemon we refer to as as signature corruption.) This lead us to use
a variant of the restricted Gaussian algorithm suggested by Bardet [3]: The polynomi-
als are stored in the Macaulay matrix, with lower rows having smaller signatures, the
signature of every one of them is stored separately, and is referenced by the row index.
Moreover, the rows are sorted by increasing signature, so that the first row has the least
signature. The signatures are not changed during the reduction, and the only operation
permitted during the algorithm is to add a scalar multiple of row i to row j and store
the result in row j, provided that i < j.

We also tried to use the criteria employed by F5 in the routine FindReductor by
including them in what corresponds to the symbolic preprocessing step in F4. However,
we encountered the difficulty that, while F4 selects reductors solely based on the term
they reduce, F5 discards a reductor if its signature agrees with the reductee’s, preventing
a possible signature corruption. Just as in line 6, we imposed no restrictions on a reductor
rk if index(S(rk)) > i, where i is the current step of the algorithm.

It is unfortunate that our hybrid implementation turned out not to be correct. Due
to the limited scope of this thesis project, we did not have time to continue this work.
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4 Conclusion

This chapter concludes the present report by briefly listing the contributions made and
suggesting some topics for further work.

4.1 Contributions

The contributions we made are both theoretical and practical. On the practical side, we
corrected minor errors in Faugère’s pseudo code, and completed the – to our knowledge
– first working public implementation of F5, and one of only three working implementa-
tions at all (again, to our knowledge). While not designed for efficiency, it will doubtless
be useful to anybody tackling the task of implementing F5, and others who wish to ex-
periment with the algorithm, for instance to check what kind of input systems are easily
solved by F5. In addition, we listed some experimental results, hinting that the version
of F5 presented in [14] can be considered as more or less näıve, and that Faugère’s actual
implementations are a lot more sophisticated. In sections 3.5 and 3.7, we suggested fur-
ther improvements the F5 algorithm and pointed out some problems encountered when
attempting to merge F4 and F5 to an “F4.5” algorithm.

On the theoretical side, we have slightly refined Faugère’s main theorem in Theo-
rem 3.21 and Corollary 3.23, and given the first full proof, completing the sketches
published in [14]. Furthermore, we gave a more accessible account of the termination
and correctness proofs of F5, while supposing the correctness of certain optimizations
(Conjecture 3.28). We also hope to have provided some insight into the inner workings
of F5, and stimulated further research on efficient Gröbner basis algorithms and their
applications, in particular in cryptography.

4.2 Future work

Devising, implementing and analyzing Gröbner basis efficient algorithms is a non-trivial
taks. While we made some contributions, a lot more work needs to be done.

First, a complete proof of F5, if possible even in a less technical style providing some
more insight, is needed. In view of applications, it is imperative to extend F5 to accept
non-regular – in particular, overdetermined! – sequences.

The author is convinced that an “F4-like” (Faugère) version of F5 would not only
improve the efficiency of the algorithm, but would also be easier to understand and
prove (and hence, improve). In this context, one should first go back to the paper by
Möller et al. [21] and compare their algorithm to F5. Their algorithm also has the nice
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feature of enabling the use of syzygies known in addition to those in PSyz(F ) and those
caused by the reduction (i. e., the simplification rules).

Using the sample implementation by the author, an efficient public implementation
would enable a fairer performance comparison of F4 vs. F5. Furthermore, the memory
requirements could be analyzed, a task which cannot be fulfilled using an implementation
in a high level language such as Magma.

To compare the efficiency of F5, a more extensive theoretical and practical comparison
with the pair minimization technique of Caboara, Kreuzer and Robbiano [9] or at least
the criteria by Gebauer and Möller seems in order.
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XL and Gröbner basis algorithms, in: P. J. Lee, editor, ASIACRYPT 2004, Lecture
Notes in Computer Science 3329 (2004), pp. 338–353.

[2] Bardet, M., J.-C. Faugère and B. Salvy, Complexity of Gröbner basis computation
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A Source code: F5

This chapter contains a sample implementation of Faugère’s F5 algorithm in the language
of Magma v2.11-14 [10]. Due to space limitations, this listing contains only the central
functions, and is intended to help the understanding of the algorithm. The full source
code with all helper functions is available on the author’s homepage:

http://www.cdc.informatik.tu-darmstadt.de/∼stegers/

Readers new to Magma should note that, following the terminology of [11], Magma
calls terms what we call monomials in this thesis and vice versa. For the sake of (local)
consistency, this terminology is used in the source code as well.

/*

For a procedure name, the identifier in brackets

refers to the names J.-C. Faugere chose in his paper:

"A new efficient algorithm for computing Gr"obner bases

without reduction to zero ($F_5$)", ISSAC ’02: Proceedings

from the International Symposium on Symbolic and Algebraic

Computation, ACM Press, 2002.

Version 1.2 of the paper available at

http://www-calfor.lip6.fr/~jcf/Papers/@papers/f5.pdf

During the algorithm, polynomials are augmented using so-called

signatures. These "labeled polynomials", or "rules", as Faug‘ere calls

them, are implemented as tuples in Magma as follows: a labeled

polynomial f is a tuple < t, i, p >, where

t is a term,

i the index of the i-th canonical basisvector F_i of the module P^m,

p the polynomal,

such that the signature of the labeled polynomial is S(p) = t*e_i.

Most of the time, these labeled polynomials will be elements of a unique

global array r, and be referenced by their indices in r, or r-indices for short.

Critical pairs are stored as tuples <l, u, j, v, k>, where

l is the LCM of the critical pair

u,v are terms, and

j,k are (distinct) r-indices of labeled polynomials.

The variable R contains a sequence sequences of simplification rules,

similar to the array Rule in Faug‘ere’s paper. A simplification rule

in R[i] is a tupel <t,k>, where t is a term and k is an r-index of a

labeled polynomial r_k that has the signature t*e_i.

*/

import "critpairs.mag": NUMBER_OF_CRITERIA;

/*-------------------------------------------------+

| |

| |

| Main Algorithm |

| |

| |

+-------------------------------------------------*/
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/***********************************************************

AlgorithmF5

returns a (not necessarily reduced) Groebner basis

for the ideal generated by {f_i} union G_iplus1.

Eventually, G_iplus1 is set to the resulting basis.

Input:

m_i_fi = <m,i,f_i>

m total number of input polynomials

i # of current global iteration

f_i polynomial to be added in this

iteration

G_iplus1 sequence of r-indices of the labeled

polynomials forming the (non-reduced)

Gr"obner basis of the ideal generated

by f_{i+1}, ..., f_m

G_iplus1Reduced: the unique reduced Gr"obner basis

of the ideal generated by

f_{i+1}, ..., f_m

rules sequence of simplificationr rules

statsPerCall: receives statistics generated during

this call, conforms with stats.mag

***********************************************************/

intrinsic AlgorithmF5(~m_i_fi::Tup,

~r::[],

~G_iplus1::[],

~G_iplus1Reduced::[],

~rules::[],

~statsPerCall::[])

{Compute a Groebner basis of the ideal <G_iplus1 cat [f_i]>.}

m := m_i_fi[1];

i := m_i_fi[2];

f_i := m_i_fi[3];

pol_ring := Parent(f_i);

pair_univ := PairUniverse(pol_ring);

rule_univ := RuleUniverse(pol_ring);

// Statistics per call of F5

// (data structure discussed in IncrementalF5)

// Statistics per degree

statsPerDeg := Stats_Init(m);

r[i]:= <1, i, f_i / LeadingCoefficient(f_i)>;

G_i := Append(G_iplus1,i);

Stats_PolCreate(~statsPerCall,[i],~r);

newPolIndices := [i];

// Given G_{i+1}, compute the unique Groebner basis of the

// ideal generated by G_{i+1}.

procedure ReduceIntermediateBasis(~reduced,~r,~newPols)
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// Inefficient variant as in the paper (no reduction):

//reduced cat:= [pol_ring| r[l][3]: l in newPols];

// Efficient variant (using Magma’s Reduce()):

reduced := ReduceGroebnerBasis(reduced cat [pol_ring| r[l][3]: l in newPols]);

// Honest variant (using interpreted reduction code, not Magma’s):

//reduced := ReduceGroebnerNaive(reduced cat [pol_ring| r[l][3]: l in newPols]);

end procedure;

// Collect head terms of G_{i+1}, ..., G_m

// to speed up reduction (phi) and reducibility test (psi)

heads := [ [car<Integers(),pol_ring,pol_ring>|

<l,LM(G_iplus1Reduced[comp][l]),LC(G_iplus1Reduced[comp][l])>:

l in [1..#G_iplus1Reduced[comp]]]: comp in [1..m]];

// Hand-written top reduction of a

// labeled polynomial x w.r.t. G_{i+1}

function phi(x)

if x[3] ne Parent(x[3])!0 then

LMx := LM(x[3]);

LCx := LC(x[3]);

end if;

while (x[3] ne 0) and exists(g){h: h in heads[i+1] | IsDivisibleBy(LMx,h[2])} do

y := x[3];

x[3] -:= LCx/g[3] * (LMx div g[2]) * G_iplus1Reduced[i+1][g[1]];

if x[3] ne Parent(x[3])!0 then

LMx := LM(x[3]);

LCx := LC(x[3]);

end if;

if GetAssertions() and not AssertReducedTo(y,x[3]) then

print "x:",y;

print "g:",g;

print "x’:",x[3];

error "not reduced! stopping.";

end if;

end while;

return x;

// very expensive test:

assert x[3] eq NormalForm(x[3],G_iplus1Reduced[i+1]);

end function;

// For a labeled polynomial x = <t, k, p>, psi(x) is true iff the term t

// is top-reducible mod G_{k+1} and k<m, false otherwise (i.e. if k=m).

// In other words, psi(x) is true iff x is not normalized.

function psi(x)

if x[2] eq m then

return false;

end if;

return exists{h: h in heads[x[2]+1] | IsDivisibleBy(x[1],h[2])};

end function;

P := [ pair_univ | ];

for j in G_iplus1 do

result := <-42>;

CritPair(i,j,~r,i,~psi,~result);

pair, is_pair,critUsed := Explode(result);

assert TestCritPair(pair,is_pair,r,pol_ring);

if is_pair then // check if the pair wasn’t redundant

Append(~P,pair);

if GetAssertions() and not AssertPairNormalized(pair,r,m,pol_ring) then
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print "";

print "critUsed:",critUsed;

printf "Accepted non-normalized pair %o at spot 1\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,~heads,~psi);

assert false;

end if;

Stats_PairCreate(~statsPerCall,pair);

else

if GetAssertions() and AssertPairNormalized(pair,r,m,pol_ring) then

printf "Missed normalized pair %o at spot 1\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,~heads,~psi);

assert false;

end if;

Stats_PairDiscard(~statsPerCall,critUsed);

end if;

end for;

Sort(~P, ~HasLowerDegreeCritPair);

while not IsEmpty(P) do

statsPerDeg := Stats_Init(m);

d := DegreeCritPair(P[1]); // smallest occurring degree

D := DegreeCritPair(P[#P]);

P_d := [ pair_univ | pair: pair in P | DegreeCritPair(pair) eq d ];

ChangeUniverse(~P_d,pair_univ);

printf "\n----- Selecting new P_d...\n";

printf "Size of G_%o so far: %o\n", i, #G_i;

printf "Size of G_%o: %o\n", i+1, #G_iplus1;

printf "Size of G_%o reduced:%o\n", i+1, #G_iplus1Reduced[i+1];

printf "Number of remaining critical pairs: %o\n",#P;

printf "Minimal degree: %3o\n",d;

printf "Maximal degree: %3o\n",D;

printf "Selecting %o pair(s) of degree d=%o...\n\n",#P_d,d;

P := P[#P_d+1..#P];

assert #SequenceToSet(P) eq #P;

//printf "P after removing P_%o: %o\n", d, P;

//printf "P_%o: %o\n",d,P_d;

print "Computing S-polynomials...";

R_d := [];

spols_redPairs := [* *];

Spols(~G_i, ~P_d, i, ~r, ~rules,~spols_redPairs);

spols := spols_redPairs[1];

redundantPairs := spols_redPairs[2];

printf "Number of S-polynomials before reduction: %o\n",#spols;

Stats_PolCreate(~statsPerDeg,spols,~r);

assert #P_d ge #spols;

Stats_PolDiscard(~statsPerDeg,#P_d-#spols);

phi_psi_stats := <phi, psi,statsPerDeg>;

//ReductionF5(~spols, G_i, i, ~r, ~phi_psi_stats, ~rules);

ReductionF5(~spols, newPolIndices, i, ~r, ~phi_psi_stats, ~rules);

// Update statsPerDeg from the tuple

statsPerDeg := phi_psi_stats[3];

printf "Number of S-polynomials after reduction: %o\n\n", #spols;
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print "#R_d:",#R_d;

R_d := R_d cat spols;

printf "Adding critical pairs for reduced polynomials...\n", #R_d;

nNewPairs := 0;

for k in R_d do

new_pairs := [pair_univ | ];

for l in G_i do

result := <-42>; // initialize variable receiving result

CritPair(k, l, ~r, i, ~psi, ~result);

pair, is_pair,critUsed := Explode(result);

assert TestCritPair(pair,is_pair,r,pol_ring);

if is_pair then

Include(~new_pairs,pair_univ!pair);

Stats_PairCreate(~statsPerDeg,pair);

if GetAssertions() and not AssertPairNormalized(pair,r,m,pol_ring) then

printf "Accepted non-normalized pair %o\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,~heads,~psi);

assert false;

end if;

else

Stats_PairDiscard(~statsPerDeg,critUsed);

if GetAssertions() and AssertPairNormalized(pair,r,m,pol_ring) then

printf "Missed normalized pair %o\n", pair;

PrintPairInfo(pair,~r,~G_iplus1Reduced,~heads,~psi);

assert false;

end if;

end if;

end for;

nNewPairs +:= #new_pairs;

P cat:= new_pairs;

// Add rule k to intermediate basis:

Append(~G_i, k);

Append(~newPolIndices,k);

end for;

printf "Number of new critical pairs: %6o\n", nNewPairs;

//printf "#G_i after adding s-polynomials: %o\n",#G_i;

//printf "G_i after adding s-polynomials: %o\n",G_i;

//print "r after one d-loop:",r;

print "Sorting critical pairs...";

Sort(~P, ~HasLowerDegreeCritPair);

//printf "Statistics for degree %o:\n",d;

//Stats_Print(statsPerDeg);

Stats_Update(~statsPerCall,statsPerDeg);

end while;

G_iplus1 cat:= newPolIndices;

assert #SequenceToSet(G_iplus1) eq #G_iplus1;

// initalize for reduction

G_iplus1Reduced[i] := G_iplus1Reduced[i+1];

//Rereduce intermediate basis

ReduceIntermediateBasis(~G_iplus1Reduced[i],~r,~newPolIndices);
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print "Size of reduced basis:", #G_iplus1Reduced[i];

//printf "\n\n\nStatistics for stage %o:\n\n",i;

//Stats_Print(statsPerCall);

end intrinsic;

/***********************************************************

Prereduce [no equivalent in Faug‘ere’s text]

Mutual reduction of the input polynomials before

starting F5. Corresponds to Magma’s option ReduceInitial

for the Buchberger algorithm.

Input:

F sequence of polynomials

Returns (in ~F):

F the reduced polynomials

***********************************************************/

intrinsic Prereduce(~F::[])

{Reduce the input before starting F5. Corresponds to Magma’s option

ReduceInitial for the Buchberger algorithm.}

// Faster in most examples (exceptions: Cyclic n, Segers HFE)

F := Reduce(F);

end intrinsic;

/***********************************************************

IncrementalF5 [IncrementalF5]

Input:

F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

ensure_gb If true, IncrementalF5 will check

using Magma’s IsGroebner() that after

each step i, G_i is a Groebner basis.

Slows down the algorithm considerably.

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

G1 the non-reduced Groebner basis of F

as computed by F5. Consists of labeled

polynomials.

is_gb (for testing purposes) true if G1 is

a Groebner basis, false otherwise

stats a statistics object (see stats.mag)

summarizing this run of IncrementalF5

***********************************************************/
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intrinsic IncrementalF5(F,ensure_gb) -> [],[],BoolElt,[]

{Outer routine of F5.}

error if IsEmpty(F), "IncrementalF5: F must not be empty!";

P := Parent(F[1]);

rule_univ := RuleUniverse(P);

Prereduce(~F);

m := #F;

// Initialize statistics

stats := Stats_Init(m);

rules := ResetRules(m,P);

// Define the Macaulay matrix

r := [rule_univ| ];

r[m] := < 1, m, F[m] / LeadingCoefficient(F[m])>;

printf "====================== Stage %o/%o ====================== \n",m,m;

printf "Adding polynomial r[1].\n\n";

G_iplus1 := [ m ];

G_iplus1Reduced := [ [P| ]: i in [1..m+1] ];

G_iplus1Reduced[m] := [ F[m] ];

Stats_PolCreate(~stats,[m],~r);

for i := m-1 to 1 by -1 do

statsPerCall := Stats_Init(m);

printf "====================== Stage %o/%o ====================== \n",i,m;

m_i_fi := <m,i,F[i]>;

AlgorithmF5(~m_i_fi,~r,~G_iplus1,~G_iplus1Reduced,~rules,~statsPerCall);

G_rules := [r[l]: l in Sort(G_iplus1)];

print "";

print "";

if ensure_gb then

is_gb := IsGroebner([r[l][3]: l in G_iplus1]);

if is_gb then

printf "G_%o *is* a Groebner basis\n",i;

printf "G_%o generates <f_%o, ..., f_m>: %o\n",i,i,

Ideal([r[l][3]: l in G_iplus1]) eq Ideal([F[l]: l in [i..m]]);

printf "Size of basis is %o.\n",#G_iplus1;

printf "Size of reduced basis is %o.\n", #G_iplus1Reduced[i];

else

printf "G_%o is *not* a Groebner basis. Size is %o.\n",i,#G_iplus1;

if ensure_gb then

printf "Aborted after step i = %o and returning G_i\n",i;

return G_iplus1Reduced[i],G_rules,is_gb;

end if;

end if;

print "";

else

is_gb := true;

end if;

//printf "G_%o = %o\n\n",i,G_iplus1;

Stats_Update(~stats,statsPerCall);

end for;
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print "Statistics for all stages:";

Stats_Print(stats);

return G_iplus1Reduced[1],G_rules,is_gb,stats;

end intrinsic;

/***********************************************************

F5opt

Wrapper for the F5 algorithm, e.g. for use in a

comparison with other algorithms.

Input:

F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

ensure_gb If true, IncrementalF5 will check

using Magma’s IsGroebner() that after

each step i, G_i is a Groebner basis.

Slows down the algorithm considerably.

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

stats a statistics object (see stats.mag)

summarizing this run of IncrementalF5

name a string identifying the algorithm,

currently simply "F5"

***********************************************************/

intrinsic F5opt(F::[],ensure_gb::BoolElt) -> [],[],MonStgElt

{Faugere’s F5 algorithm}

error if IsEmpty(F), "F must not be empty!";

P := Parent(F[1]);

homogenized := false;

isHomogeneous := IsHomogeneousSystem(F);

// Make sure we didn’t forget to homogenize

if not isHomogeneous[1] then

read answer,"System is not homogeneous! Homogenize first y/n? [y]";

if answer ne "n" then

homogenized := true;

F,P := HomogenizeExample(F,P);

end if;

end if;

Gpols,Grules,b,stats := IncrementalF5(F,ensure_gb);

if isHomogeneous[1] then

print "Input system was homogeneous.";

else

printf "Input system was *not* homogeneous,";

if homogenized then

print " it was homogenized first.";

else

print " but it was not homogenized. You’re lucky it terminated at all!";
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end if;

end if;

if ensure_gb then

same_ideal := Ideal(F) eq Ideal(Gpols);

print "Generates same ideal:", same_ideal;

else

print "Did not check if G_1 is actually a Groebner basis.";

end if;

return Gpols,stats, "F5";

end intrinsic;

/***********************************************************

F5

Wrapper for the F5 algorithm, useful for calls from

the Magma console.

Input:

F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

***********************************************************/

intrinsic F5(F::[]) -> [],[],MonStgElt

{Faugere’s F5 algorithm, not checking that G_i is a Groebner basis after each step i.}

return F5opt(F,false);

end intrinsic;

/***********************************************************

F5ensure

Wrapper for the F5 algorithm, useful for calls from

the Magma console when debugging the algorithm.

Input:

F sequence of nonzero homogeneous

polynomials (if F is not regular,

termination is not guaranteed)

Returns:

Gred the unique reduced Groebner basis

of the ideal generated by F, identical

to the result of the call

GroebnerBasis(F);

in Magma

***********************************************************/
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intrinsic F5ensure(F::[]) -> [],[],MonStgElt

{Faugere’s F5 algorithm, checking that G_i is a Groebner basis after each step i.}

return F5opt(F,true);

end intrinsic;

/*-------------------------------------------------+

| |

| |

| Computation of Critical Pairs |

| and S-Polynomials |

| |

| |

+-------------------------------------------------*/

/***********************************************************

Criteria used to detect non-normalized critical pairs

***********************************************************/

// Both components have index <= i

CRITERION_ONE := 1; //

// Larger component is not normalized

CRITERION_TWO := 2;

// Smaller component is not normalized

CRITERION_THREE := 3;

// Number of criteria above, used for stats

NUMBER_OF_CRITERIA := 3;

/***********************************************************

Rewrite [Rewritten]

Simplifies a given a pair (u,r[k]) using a list of

simplification rules.

Input:

u: term

k: r-index

iter: # of iteration in F5

r: global list of labeled polynomials

rules: global list of simplification rules

result: tupel to hold the result

Returns (in ~result):

A tupel of the form <u’,k’>, where u is a term

and k’ the highest r-index with r[k’][2]=iter and

r[k’][1] a divisor of u*r[k’]. In particular

k=k’ if the given pair could not be simplified.

***********************************************************/

intrinsic Rewrite(u::RngMPolElt, k::RngIntElt, iter::RngIntElt, ~r::[], ~rules::[], ~result::Tup)

{Simplifies a given a pair (u,r) using the given list of rules.}

assert LC(u) eq 1;

t := LM(r[k][1]);

i := r[k][2];

assert LC(t) eq 1;
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for j in [1..#rules[i]] do

t_j := rules[i,j][1];

k_j := rules[i,j][2];

assert LC(t_j) eq 1;

// assert entry rules[i,j] is correct:

assert LM(r[k_j][1]) eq t_j;

assert r[k_j][2] eq i;

if IsDivisibleBy(u*t,t_j) then

result := < (u*t)div t_j, k_j >;

return;

end if;

end for;

result := < u, k >; // could not be simplified

end intrinsic;

/***********************************************************

IsRewritable [Rewritten?]

Checks if a term u can be rewritten using a given

labeled polynomial r[k].

Input:

u: term

k: r-index

iter: # of global iteration

r: global list of labeled polynomials

rules: global list of rules

Returns (in ~result):

True if the term u can be rewritten using the

labeled polynomial r_k, false otherwise.

***********************************************************/

intrinsic IsRewritable(u::RngMPolElt,k::RngIntElt,iter::RngIntElt,~r::[],~rules::[],~result::BoolElt)

{Checks if a term u can be rewritten using a given labeled polynomial r[k].}

subresult := <-42>;

Rewrite(u,k,iter,~r,~rules,~subresult);

term, l := Explode(subresult);

assert LC(term) eq 1;

result := l ne k;

end intrinsic;

/***********************************************************

CritPair

Given two r-indices i,j, check if one of the two

critical pairs (r_i,r_j), (r_j,r_i) is normalized.

If so, assemble and return it.

Input:

i: r-index of a normalized labeled

polynomial

j: r-index of a normalized labeled

polynomial

r: "global" array of labeled polynomials

k: current iteration in IncrementalF5

psi: function that returns true for a

labeled polynomial x iff x is
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top-reducible mod G_{l+1}, where

l = x[2]

Returns (in ~result):

result a list [* p, is_pair, crit *]

is_pair: is true if this critical pair is

normalized, false otherwise.

p: If is_pair is true, p is a critical

pair, i.e. a tuple <t,u,k,v,l>,

where t is the LCM of the HTs of

the polynomials indexed by k,l,

u is t div HT(r[k]), v is t div

HT(r[l]). {k,l} is {i,j} (not

necessarily [k,l]=[i,j], as the

components may be swapped (cf.

Faug‘ere’s Def. 3). The pair is

guaranteed to be normalized.

crit: number of the criterion used to

identify the pair as redundant

(see constants above)

***********************************************************/

intrinsic CritPair(i::RngIntElt, j::RngIntElt, ~r::[], iter::RngIntElt, ~psi::Program, ~result::Tup)

{Compute critical pair for two rules, if necessary.}

pol_ring := Parent(r[i][3]);

rule_univ := RuleUniverse(pol_ring);

pair_univ := PairUniverse(pol_ring);

t := LCMCritPair(r[i],r[j]);

u_1 := pol_ring!t div pol_ring!LM(r[i][3]);

u_2 := pol_ring!t div pol_ring!LM(r[j][3]);

if SignatureLess(<u_1*r[i][1],r[i][2]>,<u_2*r[j][1],r[j][2]>) lt 0 then

// swap rules

tmp := i;

i := j;

j := tmp;

tmp := u_1;

u_1 := u_2;

u_2 := tmp;

end if;

t_1 := LM(r[i][1]);

t_2 := LM(r[j][1]);

k_1 := r[i][2];

k_2 := r[j][2];

function Criterion1()

if k_1 gt iter then

//TODO: can’t happen!

//printf "crit (1) ruled out pair %o.\n", [i,j];

return false;

else

return true;

end if;

end function;

function Criterion2()

if psi(<u_1*t_1,k_1,1>) then

//printf "crit (2) ruled out pair %o\n", [i,j];

return false;

else

return true;
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end if;

end function;

function Criterion3()

if psi(<u_2*t_2,k_2,1>) then //DELTA_Faugere

//printf "crit (3) ruled out pair %o\n", [i,j];

return false;

else

return true;

end if;

end function;

pair := pair_univ!<t, u_1, i, u_2, j>;

if not Criterion1() then

result := < pair, false, CRITERION_ONE >;

return;

elif not Criterion2() then

result := < pair, false, CRITERION_TWO >;

return;

elif not Criterion3() then

result := < pair, false, CRITERION_THREE >;

return;

else

//printf "New crit pair: <%o, %o, r_%o, %o, r_%o>\n", t,u_1,i,u_2,j;

result := < pair, true, 0 >;

return;

end if;

end intrinsic;

/***********************************************************

Spols [Spol]

Calculate S-polynomials for a sequence of

critical pairs, eliminating redundant

S-polynomials using simplification rules.

Input:

G_i: current intermediate Groebner

basis of <f_i,...,f_m>

critpairs: sequence of critical pairs

iter: # of current global iteration

r: "global" list of labeled polynomials,

receives any S-polynomials created

rules: "global" list of simplification rules,

is updated if any S-polynomials are

created

F_dropped: tuple, receives the return value

Returns (in ~F_dropped):

F_dropped[1]: sequence of the r-indices of the

S-polynomials for the given critical

pairs except those that were detected

as unnecessary

F_dropped[2]: sequence of those critical pairs

in critpairs for which the S-polynomial

was dropped, i.e., not inserted into r
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***********************************************************/

intrinsic Spols(~G_i::[],~critpairs::[], iter::RngIntElt, ~r::[], ~rules::[], ~F_dropped)

{Calculate non-redundant S-polynomials for a sequence of critical pairs.}

pol_ring := Parent(r[iter][3]);

rule_univ := RuleUniverse(pol_ring);

// # of S-polynomials that are 0

nZero := 0;

F := [ ];

droppedL := [];

print "Spols: Total number of pairs to examine:", #critpairs;

for pair in critpairs do

u := pair[2];

v := pair[4];

il := pair[3];

jl := pair[5];

assert il ne jl;

// ** Determine if we need the S-polynomial **

// Criterion 1: is none of the polys zero?

needSpol := (r[il][3] ne 0) and (r[jl][3] ne 0);

lc_il := LC(u*r[il][3]);

lc_jl := LC(v*r[jl][3]);

sp := u*r[il][3]- lc_il / lc_jl * v*r[jl][3];

if sp eq 0 then

// Skip zeroes

//printf "\nS-Polynomial of pair %o is 0, skipping\n",pair;

//printf "r_%o = %o\n", il, r[il];

//printf "r_%o = %o\n", jl, r[jl];

nZero +:= 1;

continue;

end if;

// Criterion 2: Can the left summand be rewritten?

if needSpol then

result := false;

IsRewritable(u, il, iter, ~r, ~rules, ~result);

needSpol := not result;

end if;

// Criterion 3: Can the right summand be rewritten?

if needSpol then

IsRewritable(v, jl, iter, ~r, ~rules, ~result);

needSpol := not result;

end if;

if needSpol then

N := #r + 1; // "increment" N (it’s actually not global)

assert AssertReducedTo(u*r[il][3],sp);

assert AssertReducedTo(v*r[jl][3],sp);

r[N] := rule_univ!<u * r[il][1], r[il][2], sp>;

AddRule(~rules,~r,N,pol_ring);

Append(~F,N);

else
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droppedL cat:= [pair];

end if;

end for;

cmpFunc := -42; //initialize with dummy value

IndexSignatureLess(~r,~cmpFunc);

Sort(~F, cmpFunc);

if GetAssertions() then

degs := {TotalDegree(r[l][3]): l in F};

error if #degs gt 1, "S-polynomials have different degrees!:",degs;

end if;

F_dropped := [* F, droppedL *];

end intrinsic;

/*-------------------------------------------------+

| |

| |

| Reduction of Polynomial Sequences |

| |

| |

| |

+-------------------------------------------------*/

/****************************************************

FindReductor [IsReducible]

Input:

k0_k: a tuple <k0,k> of integers (see below)

k0: r-index of labeled polynomial to reduce

k: # of global iteration

G: sequence of r-indices of polynomials w.r.t.

which r[k0] is to be reduced

r: "global" list of polynomials

psi: function that returns true iff a rule

is top-reducible w.r.t. G_{i+1}

rules: "global" list of simplification rules

result: variable to receive return value

Returns (in ~result):

A tupel < red, is_top_red >.

is_top_red: false if the polynomial of r[k0] cannot

be top-reduced by the polynomials specified

by G (modulo optimizations)

red: a reductor of r[k0] if r[k0] can be

top-reduced (modulo optimizations)

*****************************************************/

intrinsic FindReductor(k0_k::Tup, ~G::[], ~r::[], ~phi_psi_stats::Tup, ~rules::[], ~result)

{Find a reductor for a given labeled polynomial.}

k0 := k0_k[1];

k := k0_k[2];

67



psi := phi_psi_stats[2];

pol_ring := Parent(r[k0][3]);

rule_univ := RuleUniverse(pol_ring);

lt_0 := pol_ring!LeadingMonomial(r[k0][3]);

for j in G do

lt_i := pol_ring!LeadingMonomial(r[j][3]);

k_j := r[j][2];

if not IsDivisibleBy(lt_0,lt_i) then

// discard reductor by criterion (d)

continue;

else

u := lt_0 div lt_i;

ut := u * r[j][1];

if (ut eq r[k0][1]) and (r[j][2] eq r[k0][2]) then

// discard reductor by criterion (d)

continue;

end if;

canBeRewritten := false;

IsRewritable(u,j,k,~r,~rules,~canBeRewritten);

if canBeRewritten then

// discard reductor by criterion (c)

continue;

elif psi(<ut,k_j,1>) then

// discard reductor by criterion (b)

continue;

else

// conditions (a) through (d) are satisfied

result := < j,true >;

return;

end if;

end if;

end for;

// no reductor found or all discarded

result := < 0,false >;

end intrinsic;

/****************************************************

TopReduction [TopReduction]

Performs a top-reduction using a normalized

reductor on a given labeled polynomial,

if possible. If no normalized reductor can be

found, the polynomial is divided by its leading

coefficient. If the reductor has a larger signature

than the reductee, the reductum is added as a new

labeled polynomial, and the list of simpification

rules is updated.

Input:

k0_k: tuple <k0,k>, see below

k0: the index of a polynomial in r

that is to be top-reduced

k: # of global iteration
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G: list of r-indices of labeled polynomials

w.r.t. which to reduce r[k0]

r: list of labeled polynomials,

might be updated

phi_psi_stats: tuple <phi,psi,stats> (see below)

phi: function that, given a labeled

polynomial <t,j,p>, returns

<t,j,NormalForm(p,G_{k+1})>

psi: function that returns true iff a

labeled polynomial <t,j,p> is

top-reducible w.r.t. G_{j+1}

stats a statistics object (see stats.mag)

that might be updated

R: simplification rules, might be

updated

result: variable to receive return value

Result (in ~result):

result = [* no_red_to_zero, h, red_list *]

no_red_to_zero: false iff the r[k0] was reduced

to zero

red_list: Sequence of r-indices of polynomials

to be reduced, possibly empty;

unspecified if no_red_to_zero is false

h: r-index of any rules for which no normalized

reductor could be found, and hence may be

declared done by Reduction.

If no_red_to_zero is false or red_list is

empty, h is unspecified.

*****************************************************/

intrinsic TopReduction(k0_k::Tup, ~G::[], ~r::[], ~phi_psi_stats::Tup, ~R::[], ~result)

{Reduces a polynomial w.r.t. a list of polynomials. Adds new rules as it sees fit.}

k0 := k0_k[1];

k := k0_k[2];

error if k0 gt #r, "TopReduction: Rule index k0 is invalid!";

pol_ring := Parent(r[k0][3]);

old := r[k0];

if r[k0,3] eq Zero(pol_ring) then

printf "Warning, r[%4o] is 0! Input is not a regular sequence. Stage: %o\n",k0,k;

Stats_RedToZero(~phi_psi_stats[3],k);

result := [* false, 0,[ ] *];

return;

end if;

// k1 corresponds to the index of r’ in Faugere’s paper

FindReductor(<k0,k>, ~G, ~r, ~phi_psi_stats, ~R, ~result);
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k1, top_reducible := Explode(result);

lc_0 := LeadingCoefficient(r[k0][3]);

if (not top_reducible) then

// lc_0 is nonzero (see if-clause above)

normalized_rule := <r[k0][1], r[k0][2], r[k0][3] div lc_0>;

r[k0] := normalized_rule;

result := [* true, k0, [ ] *];

return;

else

lt_0 := LeadingMonomial(r[k0][3]);

lt_1 := LeadingMonomial(r[k1][3]);

lc_1 := LeadingCoefficient(r[k1][3]);

u := pol_ring!lt_0 div pol_ring!lt_1;

new_sig := <u * r[k1][1], r[k1][2]>;

if SignatureLess(new_sig, <r[k0][1],r[k0][2]>) lt 0 then

r[k0][3] := r[k0][3] - lc_0 / lc_1 * u * r[k1][3];

assert AssertReducedTo(old[3],r[k0][3]);

result := [* true, 0, [k0] *];

return;

else

N := #r + 1;

r[N] := <new_sig[1], new_sig[2], u*r[k1][3] - lc_1/lc_0*r[k0][3]>;

if r[N][3] eq 0 then //DEBUG

//print "TopRed: Unexpected reduction to zero occurred!"; //TODO what’s so unexp. here?

Stats_RedToZero(~phi_psi_stats[3],k);

result := [* false, 0, [] *];

return;

end if;

AddRule(~R,~r,N,pol_ring);

Stats_PolCreate(~phi_psi_stats[3],[N],~r);

assert AssertReducedTo(r[k0][3],r[N][3]);

result := [* true, 0, [N,k0] *];

// (Segers says k0 is superfluous, but if left out F5 loops)

return;

end if;

end if;

end intrinsic;

/****************************************************

Reduction [Reduction]

Input:

todo: sequence of t-indices of representing

polynomials to reduce
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G: SeqEnum of indices of r representing

polynomials w.r.t. which to reduce

r set of all labeled polynomials known

(will possibly be updated)

k # of global iteration

phi_psi_stats: tuple <phi,psi,stats> (see below)

phi: function that, given a labeled

polynomial <t,j,p>, returns

<t,j,NormalForm(p,G_{k+1})>

psi: function that returns true iff a

labeled polynomial <t,j,p> is

top-reducible w.r.t. G_{j+1}

stats a statistics object (see stats.mag)

that might be updated

rules: simplification rules, might be

updated

Returns (in ~todo):

sequence of r-indices of labeled polynomials

to be included in the Groebner basis

*****************************************************/

intrinsic ReductionF5(~todo::[], G::[], k::RngIntElt, ~r::[], ~phi_psi_stats::Tup, ~rules::[])

{Reduction step in F5.}

done := [];

pol_ring := Parent(r[k][3]);

// list of reduced S-polynomials known to be in NF w.r.t. G_i+1, currently

inNFwrtG_iplus1 := [Integers()| ];

nPolsCreated := 0;

while (not IsEmpty(todo)) do

//TODO could be made more efficient. -- Isn’t this redundant?!

IndexRemoveDoubles(~todo,~r,pol_ring,~todo);

cmpFunc := -42; //initialize variable

IndexSignatureLess(~r,~cmpFunc);

Sort(~todo,cmpFunc);

size := #todo;

h := todo[1]; // r-index of polynomial with minimal signature

Remove(~todo,1);

// Moved here from TopRed to be able to avoid

// calling phi more often than necessary

pos := 0;

BinSearch(~inNFwrtG_iplus1,h,~pos); //TODO #inNFwrtG_iplus1 <= 1, so this is unnecessary?!!

if pos lt 1 then

// r[h] was not reduced by phi yet or has changed since then

r[h] := phi_psi_stats[1](r[h]);

else

nPolsCreated +:= 1;

end if;

//DELTA_Pearce: one could pass todo as well, claims Pearce

GcatDone := done cat G;
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result := [];

TopReduction(<h,k>, ~GcatDone, ~r,~phi_psi_stats, ~rules,~result);

is_reg_seq, h1, todo1 := Explode(result);

if #todo1 gt 1 then

// h was not reduced, so we don’t have to call phi(h)

// the next time h is treated

IncludeSorted(~inNFwrtG_iplus1,h);

else

ExcludeSorted(~inNFwrtG_iplus1,h);

end if;

if is_reg_seq then

if IsEmpty(todo1) then // Faug‘ere doesn’t need this ’if’ as he

Append(~done,h1); // just returns the empty set for h

else

todo := todo cat todo1;

end if;

end if;

size := #todo;

end while;

//print "Number of polynomials created during reduction:",nPolsCreated;

todo := done;

end intrinsic;
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B Polynomial Systems

This chapter lists the polynomial systems used for the benchmarks in section 3.6. When
giving the polynomial ring of an example, we sort the variables in decreasing order (for
instance, y < x in R[x, y]). We use the notation Fq for the finite field with q elements. All
examples were computed in the grevlex order (see Example 2.6). Those that contained
non-homogeneous polynomials were homogenized, whereas the reference given might list
only the original system.

Note that all these examples can be downloaded as Magma source files from the
authors web page at

http://www.cdc.informatik.tu-darmstadt.de/∼stegers/ .

Weispfenning94

Ring: F7583[x, y, z, h]
Source: http://www.symbolicdata.org/

Regular sequence: no
Polynomial system: y4 + xy2z + x2h2 − 2xyh2 + y2h2 + z2h2, xy4 + yz4 − 2x2yh2 − 3h5,
−x3y2 + xyz3 + y4h + xy2zh− 2xyh3

Buchberger 87

Ring: F7583[h, r, t, x, y, z]
Source: http://www.symbolicdata.org

Regular sequence: no
Polynomial system: hx− rt, hz − r2, h2y − rt2

Eco6

Ring: F7583[x1, x2, x3, x4, x5, x6, h]
Source: http://www.symbolicdata.org/

Regular sequence: no
Polynomial system: x1 + x2 + x3 + x4 + x5 + h, x5x6 − 5h2, x1x5x6 + x4x6h− 4h3,
x1x4x6 + x2x5x6 + x3x6h− 3h3, x1x3x6 + x2x4x6 + x3x5x6 + x2x6h− 2h3,
x1x2x6 + x2x3x6 + x3x4x6 + x4x5x6 + x1x6h− h3

Segers’ HFE System

Ring: F2[x1, . . . , x7, h]
Source: Reference [24]
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Regular sequence: no
Polynomial system: x1x2 + x2

2 + x2
3 + x2x4 + x3x4 + x2

4 + x1x5 + x2x5 + x4x5 + x2
5 +

x1x6 + x2x6 + x2
6 + x6x7 + x6h + x7h,

x2
1 + x1x2 + x1x3 + x2x3 + x1x4 + x2

4 + x1x5 + x2x5 + x3x5 + x4x5 + x2x6 + x5x6 +
x1x7 + x2x7 + x3x7 + x4x7 + x5x7 + x6x7 + x1h + x3h + x5h + h2,
x1x2 + x1x3 + x2

3 + x1x4 + x2x4 + x2
4 + x4x5 + x1x6 + x3x6 + x2x7 + x3x7 + x4x7 +

x5x7 + x6x7 + x1h + x3h + x4h + x5h + x6h + x7h,
x2

1 + x2
2 + x1x3 + x1x4 + x3x4 + x1x5 + x2x5 + x3x5 + x4x5 + x1x6 + x1x7 + x2x7 +

x4x7 + x6x7 + x2
7 + x1h + x2h + x3h + x4h + x5h + x7h + h2,

x2
1 + x2x3 + x2x4 + x3x4 + x1x5 + x3x5 + x4x5 + x2

5 + x4x6 + x5x6 + x4x7 + x6x7 + x2
7 +

x2h + x3h + x5h + x6h + x7h,
x2

1+x1x2+x2x5+x2
5+x4x6+x5x6+x2

6+x5x7+x6x7+x1h+x2h+x4h+x5h+x6h+x7h+h2,
x1x3 + x2x3 + x1x4 + x3x4 + x2

4 + x1x5 + x2x5 + x4x5 + x2
5 + x2x6 + x2

6 + x1x7 + x2x7 +
x5x7 + x2

7 + x2h + x5h + x6h,
x2

1 + x1h, x2
2 + x2h, x2

3 + x3h, x2
4 + x4h, x2

5 + x5h, x2
6 + x6h, x2

7 + x7h

Faugere 2002 / Moeller-Mora-Traverso 1992

Ring: Q[x, y, z, t]
Source: References [21, 14]
Regular sequence: yes
Polynomial system: yz3 − x2t2, xz2 − y2t, x2y − z2t

Uteshev-Bikker

Ring: F7583[x, y, z, t, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
x2 + xy + y2 − 2xz − 4yz + 3z2 − 3xt + 2yt + t2 − 3xh− 2yh + 3zh− 2th− 2h2,
2x2 − xy + y2 − xz − yz − 6z2 − xt + yt− 5zt− 3t2 − 5xh + yh + 5zh + 2th + 5h2,
x3 + y3 − x2z + xyz − 5y2z − 5xz2 + 7yz2 − 3z3 + xyt− 5z2t + xt2 + 2t3 + x2h− 3xyh−
y2h + 2xzh + 2z2h− 3xth− 2zth− 3t2h− xh2 + yh2 + 11zh2 − 2th2 − 3h3,
−x3+6x2y−12xy2+6y3−x2z−4xyz+6y2z+5xz2+4yz2+15z3+6xyt−7y2t−xzt+11xt2+
4t3 +3x2h+2xyh+2y2h−z2h+2yth−zth+5t2h−35xh2−14yh2 +4zh2−10th2−15h3

Liu

Ring: F2[x, y, z, t, a, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system: yz − yt− xh + ah, zt− zx− yh + ah, tx− yt− zh + ah,
xy − zx− th + ah
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Lichtblau

Ring: Q[t, x, y]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
x−110t2 +495t3−1320t4 +2772t5−5082t6 +7590t7−8085t8 +5555t9−2189t10 +374t11,
y − 22t + 110t2 − 330t3 + 1848t5 − 3696t6 + 3300t7 − 1650t8 + 550t9 − 88t10 − 22t11

Gerdt93

Ring: F7583[h, l, s, x, y, z]
Source: http://www.symbolicdata.org/

Regular sequence: false
Polynomial system: hl − l2 − 4ls + hy, h2s− 6ls2 + h2z, xh2 − l2s− h3

Sym3-3

Ring: F7583[h, x, y, z]
Source: http://www.symbolicdata.org/

Regular sequence: yes
Polynomial system: yz3 + h3x− 2h4, x3z + h3y − 2h4, xy3 + h3z − 2h4

Trinks

Ring: F7583[w, p, z, t, s, b, h]
Source: http://www.symbolicdata.org/

Regular sequence: no
Polynomial system: 35p + 40z + 25t− 27s, 45p + 35s− 165b− 36h, −11sb + 3b2 + 99wh,
25ps− 165b2 + 15wh + 30zh− 18th, 15pt + 20zs− 9wh, −11b3 + wph + 2zth

Hairer1

Ring: F7583[c2, c3, b3, b2, b1, a21, a32, a31, h]
Source: http://www.symbolicdata.org/

Regular sequence: yes
Polynomial system: b3 + b2 + b1 − h, c3 − a32 − a31, c2 − a21, 2c3b3 + 2c2b2 − h2,
6c2b3a32 − h3, 3c2

3b3 + 3c2
2b2 − h3

f633

Ring: F7583[U6, U5, U4, U3, U2, u6, u5, u4, u3, u2, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: no
Polynomial system: 2u6 + 2u5 + 2u4 + 2u3 + 2u2 + h, 2U6 + 2U5 + 2U4 + 2U3 + 2U2 + h,
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4U5u6 + 4U4u6 + 4U3u6 + 4U2u6 − 4U6u5 + 4U4u5 + 4U3u5 + 4U2u5 − 4U6u4 − 4U5u4 +
4U3u4 + 4U2u4 − 4U6u3 − 4U5u3 − 4U4u3 + 4U2u3 − 4U6u2 − 4U5u2 − 4U4u2 − 4U3u2 +
2u6h + 2u5h + 2u4h + 2u3h + 2u2h + h2,
−4U5u6 − 4U4u6 − 4U3u6 − 4U2u6 + 4U6u5 − 4U4u5 − 4U3u5 − 4U2u5 + 4U6u4 +
4U5u4 − 4U3u4 − 4U2u4 + 4U6u3 + 4U5u3 + 4U4u3 − 4U2u3 + 4U6u2 + 4U5u2 + 4U4u2 +
4U3u2 + 2U6h + 2U5h + 2U4h + 2U3h + 2U2h + h2,
U2u2 − h2, U3u3 − h2, U4u4 − h2, U5u5 − h2, U6u6 − h2

Katsura 5

Ring: F7583[x, y, z, t, u, v, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
2x2 + 2y2 + 2z2 + 2t2 + 2u2 + v2 − vh,
xy + yz + 2zt + 2tu + 2uv − uh,
2xz + 2yt + 2zu + u2 + 2tv − th,
2xt + 2yu + 2tu + 2zv − zh,
t2 + 2xv + 2yv + 2zv − yh,
2x + 2y + 2z + 2t + 2u + v − h

Katsura 6

Ring: F7583[x1, x2, x3, x4, x5, x6, x7, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
x1 + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 − h,
2x3x4 + 2x2x5 + 2x1x6 + 2x2x7 − x6h,
x2

3 + 2x2x4 + 2x1x5 + 2x2x6 + 2x3x7 − x5h,
2x2x3 + 2x1x4 + 2x2x5 + 2x3x6 + 2x4x7 − x4h,
x2

2 + 2x1x3 + 2x2x4 + 2x3x5 + 2x4x6 + 2x5x7 − x3h,
2x1x2 + 2x2x3 + 2x3x4 + 2x4x5 + 2x5x6 + 2x6x7 − x2h,
x2

1 + 2x2
2 + 2x2

3 + 2x2
4 + 2x2

5 + 2x2
6 + 2x2

7 − x1h

Katsura 7

Ring: F7583[x1, x2, x3, x4, x5, x6, x7, x8, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
x2

1 + 2x2
2 + 2x2

3 + 2x2
4 + 2x2

5 + 2x2
6 + 2x2

7 + 2x2
8 − x1h,

2x1x2 + 2x2x3 + 2x3x4 + 2x4x5 + 2x5x6 + 2x6x7 + 2x7x8 − x2h,
x2

2 + 2x1x3 + 2x2x4 + 2x3x5 + 2x4x6 + 2x5x7 + 2x6x8 − x3h,
2x2x3 + 2x1x4 + 2x2x5 + 2x3x6 + 2x4x7 + 2x5x8 − x4h,
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x2
3 + 2x2x4 + 2x1x5 + 2x2x6 + 2x3x7 + 2x4x8 − x5h,

2x3x4 + 2x2x5 + 2x1x6 + 2x2x7 + 2x3x8 − x6h,
x2

4 + 2x3x5 + 2x2x6 + 2x1x7 + 2x2x8 − x7h,
x1 + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 + 2x8 − h

Katsura 8

Ring: F7583[x1, x2, x3, x4, x5, x6, x7, x8, x9, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
x2

1 + 2x2
2 + 2x2

3 + 2x2
4 + 2x2

5 + 2x2
6 + 2x2

7 + 2x2
8 + 2x2

9 − x1h,
2x1x2 + 2x2x3 + 2x3x4 + 2x4x5 + 2x5x6 + 2x6x7 + 2x7x8 + 2x8x9 − x2h,
x2

2 + 2x1x3 + 2x2x4 + 2x3x5 + 2x4x6 + 2x5x7 + 2x6x8 + 2x7x9 − x3h,
2x2x3 + 2x1x4 + 2x2x5 + 2x3x6 + 2x4x7 + 2x5x8 + 2x6x9 − x4h,
x2

3 + 2x2x4 + 2x1x5 + 2x2x6 + 2x3x7 + 2x4x8 + 2x5x9 − x5h,
2x3x4 + 2x2x5 + 2x1x6 + 2x2x7 + 2x3x8 + 2x4x9 − x6h,
x2

4 + 2x3x5 + 2x2x6 + 2x1x7 + 2x2x8 + 2x3x9 − x7h,
2x4x5 + 2x3x6 + 2x2x7 + 2x1x8 + 2x2x9 − x8h,
x1 + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 + 2x8 + 2x9 − h

Cyclic 5

Ring: F7583[a, b, c, d, e, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
a + b + c + d + e,
ab + bc + cd + ae + de,
abc + bcd + abe + ade + cde,
abcd + abce + abde + acde + bcde,
abcde− h5

Cyclic 6

Ring: F7583[a, b, c, d, e, f, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: no
Polynomial system:
abcdef − h6,
abcde + abcdf + abcef + abdef + acdef + bcdef,
abcd + bcde + abcf + abef + adef + cdef,
abc + bcd + cde + abf + aef + def,
ab + bc + cd + de + af + ef,
a + b + c + d + e + f
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Cyclic 7

Ring: F7583[a, b, c, d, e, f, g, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/

Regular sequence: yes
Polynomial system:
abcdefg − h7,
abcdef + abcdeg + abcdfg + abcefg + abdefg + acdefg + bcdefg,
abcde + bcdef + abcdg + abcfg + abefg + adefg + cdefg,
abcd + bcde + cdef + abcg + abfg + aefg + defg,
abc + bcd + cde + def + abg + afg + efg,
ab + bc + cd + de + ef + ag + fg,
a + b + c + d + e + f + g

Gonnet 83

Ring: F7583[a0, a2, a3, a4, a5, b0, b1, b2, b3, b4, b5, c0, c1, c2, c3, c4, c5, h]
Source: http://www.symbolicdata.org/

Regular sequence: no
Polynomial system:
a5b5,
a5b4 + a4b5,
a4b4,
a5b3 + a3b5,
a5b3 + a3b5 + 2a5b5,
a3b3 + a5b3 + a3b5 + a5b5,
2a3b3 + a5b3 + a3b5,
a4b2 + a2b4,
a2b2,
a5b1 + a4b3 + a3b4 + b5h,
a4b1 + b4h,
a2b1 + b2h,
a0b1 + a4b1 + a3b2 + a2b3 + b0h + 2b1h + b4h + c1h,
a5b0 + a5b1 + a4b3 + a3b4 + 2a5b4 + a0b5 + 2a4b5 + b5h + c5h,
a4b0 + a4b1 + a5b2 + a0b4 + 2a4b4 + a2b5 + b4h + c4h,
a3b0 + 2a3b1 + a5b1 + a0b3 + a4b3 + a3b4 + 2b3h + b5h + c3h,
a3b0+a5b0+a3b1+a5b1+a0b3+a4b3+a3b4+a5b4+a0b5+a4b5+b3h+b5h+c3h+c5h−h2,
a2b0 + a2b1 + a0b2 + a4b2 + a2b4 + b2h + c2h,
a0b0 + a4b0 + a0b1 + a4b1 + a3b2 + a5b2 + a2b3 + a0b4 + a4b4 + a2b5 + b0h + b1h + b4h +
c0h + c1h + c4h

f744

Ring: F7583[U7, U6, U5, U4, U3, U2, u7, u6, u5, u4, u3, u2, h]
Source: http://fgbrs.lip6.fr/jcf/Benchs/
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Regular sequence: no
Polynomial system:
2u7 + 2u6 + 2u5 + 2u4 + 2u3 + 2u2 + h,
2U7 + 2U6 + 2U5 + 2U4 + 2U3 + 2U2 + h,
8U6u7 + 8U5u7 + 8U4u7 + 8U3u7 + 8U2u7 + 8U6u6 + 8U5u6 + 8U4u6 + 8U3u6 + 8U2u6 +
8U5u5+8U4u5+8U3u5+8U2u5+8U4u4+8U3u4+8U2u4+8U3u3+8U2u3+8U2u2−17h2,
8U7u6 + 8U6u6 + 8U7u5 + 8U6u5 + 8U5u5 + 8U7u4 + 8U6u4 + 8U5u4 + 8U4u4 + 8U7u3 +
8U6u3+8U5u3+8U4u3+8U3u3+8U7u2+8U6u2+8U5u2+8U4u2+8U3u2+8U2u2−17h2,
16U5U3u4 + 16U5U2u4 + 16U5U2u3 + 16U4U2u3 + 8U5u4h + 8U5u3h + 8U4u3h +
8U5u2h + 8U4u2h + 8U3u2h + 18U5h

2 + 18U4h
2 + 18U3h

2 + 18U2h
2 + 11h3,

16U4u5u3 + 16U4u5u2 + 16U3u5u2 + 16U3u4u2 + 8U4u5h + 8U3u5h + 8U2u5h +
8U3u4h + 8U2u4h + 8U2u3h + 18u5h

2 + 18u4h
2 + 18u3h

2 + 18u2h
2 + 11h3,

U2u2 − h2, U3u3 − h2, U4u4 − h2, U5u5 − h2, U6u6 − h2, U7u7 − h2

Schrans-Troost

Ring: F7583[x1, x2, x3, x4, x5, x6, x7, x8, h]
Source: http://www.math.msu.edu/∼jan/Demo/TIMINGS.html

Regular sequence: yes
Polynomial system:
8x2

1 + 8x1x2 + 8x1x3 − 8x2x3 + 2x1x4 + 2x1x5 + 2x1x6 − 2x5x6 + 2x1x7 − 2x4x7 − x1h,
8x1x2 + 8x2

2 − 8x1x3 + 8x2x3 + 2x2x4 + 2x2x5 + 2x2x6 − 2x4x6 + 2x2x7 − 2x5x7 − x2h,
−8x1x2 + 8x1x3 + 8x2x3 + 8x2

3 + 2x3x4 + 2x3x5− 2x4x5 + 2x3x6 + 2x3x7− 2x6x7− x3h,
2x1x4 + 2x2x4 + 2x3x4 + 8x2

4 − 2x3x5 + 8x4x5 − 2x2x6 + 2x4x6 − 2x1x7 + 2x4x7 +
6x4x8 − 6x5x8 − x4h,
−2x1x4 − 2x2x5 − 2x3x6 + 2x1x7 + 2x2x7 + 2x3x7 + 2x4x7 + 2x5x7 + 8x6x7 + 8x2

7 −
6x6x8 + 6x7x8 − x7h,
−2x2x4 − 2x1x5 + 2x1x6 + 2x2x6 + 2x3x6 + 2x4x6 + 2x5x6 + 8x2

6 − 2x3x7 + 8x6x7 +
6x6x8 − 6x7x8 − x6h,
−2x3x4 + 2x1x5 + 2x2x5 + 2x3x5 + 8x4x5 + 8x2

5 − 2x1x6 + 2x5x6 − 2x2x7 + 2x5x7 −
6x4x8 + 6x5x8 − x5h,
−6x4x5 − 6x6x7 + 6x4x8 + 6x5x8 + 6x6x8 + 6x7x8 + 8x2

8 − x8h
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