
Preimage Attack on Hashing with Polynomials

proposed at ICISC’06

Donghoon Chang

Center for Information Security Technologies(CIST),
Korea University, Korea

dhchang@cist.korea.ac.kr

Abstract. In this paper, we suggest a preimage attack on Hashing with
Polynomials proposed at ICISC’06 [1]. The algorithm has n-bit hash out-
put and n-bit intermediate state. (for example, n = 163). The algorithm
is very simple and light so that it can be implement in low memory envi-
ronment. Our attack is based on the meet-in-the-middle attack. We can
find a preimage with the time complexity 2n−t + 2t and the memory 2t.
We recommend that hash functions such as Hashing with Polynomials
should have the intermediate state size at least two times bigger than
the output size.

Keywords : Hash Function, Polynomial, Preimage Attack.

1 Introduction.

Nowadays, since MD4-style hash function were broken, new style hash functions
are studied intensively. On the other hand, new style hash functions have little
security analysis. So, probably secure hash algorithms are more important. Since
hash functions are used practically, new hash functions must be efficient also.
This paper describe a preimage attack on Hashing with Polynomials which is
totally different from MD4-style hash functions. This means that the algorithm
must be modified. Frankly speaking, even though the algorithm is modified, we
can not have a confidence that the modified algorithm is secure. This means that
provably secure hash function is required.

2 Hashing with Polynomials

R = F2n = F2[x]/(p(x)) where p(x) is an irreducible polynomial of degree n.
α is a root of p(x). P (α) and Q(α) are two elements of R. For a bit ‘0’ or
‘1’, H(0) = P (α) and H(1) = Q(α). ui(α) and vi(α) are fixed elements of R.
f(x, y) = s = x ◦ y = (x + u1(α)) · (y + u2(α)) + x · v1(α) + y · v2(α). H(S1S2) =
f(H(S1), H(S2)). Then, Hashing with Polynomials is defined like Fig. 1 and Fig.
2. For example, the author [1] suggests particular polynomials for Hashing with
Polynomials as follows: p(x) = x163 + x7 + x6 + x5 + x4 + x + 1, P (α) = α7 + 1,

Q(α) = α8 + 1, u1(α) = α2, u2(α) = α, v1(α) = 1 and v2(α) = α. However, our
attack does not depend on the polynomials, i.e. we can find a preimage for any
polynomials.

HashPoly(M) = O (n-bit hash output)
M is any bit length (at least 2 bits) message for which M = m0||m1|| · · · ||mt−1 and
each mi is 32-bit for 0 6 i 6 t − 2 and mt−1 has 32 bits at most.

1.Compute the hash hi of each block mi independently, going left to right bit by bit and
using the recursive formula H .
2.Compute the hash of M inductively, going left to right block by block and using the
recursive formula H .
3. Output O which is the final n-bit value.

Fig. 1. Hashing with Polynomials.
.

……

…

Fig. 2. Hashing with Polynomials.

3 Preimage Attack on Hashing with Polynomials

This section, we show a preimage attack on Hashing with Polynomials proposed
at ICISC’06 [1].

Easy to Invert Function f

Here, we show that it is easy to invert f.

f(x, y) = s = x ◦ y = (x + u1(α)) · (y + u2(α)) + x · v1(α) + y · v2(α)

Fig. 3. f(x, y) = s = x ◦ y = (x + u1(α)) · (y + u2(α)) + x · v1(α) + y · v2(α).

Given any value s, we choose a y and then we can easily get x satisfying above
equation because all terms are fixed values except x.

the Meet-in-the-Middle Attack

Hashing with Polynomials [1] uses Merkle-Damg̊ard-construction and use a func-
tion f easy to invert. And the size of intermediate value is same as that of the hash
output value. This means we can apply the meet-in-the-middle attack as follows.

……

Fig. 4. Merkle-Damg̊ard Construction : Meet-in-the-Middle Attack.

Given an output O, we choose any mi ∼ mt−1 and get hi ∼ ht−1 correspond-
ing to them by the recursive function H . Then we can know the value in ∗ in Fig.
4 and store it in a table. Like this, we repeat to choose mi ∼ mt−1 2t times and
repeat to store the value in ∗ in Fig. 4. Then we choose randomly m0 ∼ mi−1

and get the value in ∗ and then check if the value is in the table. If there is the
value in the table, we can know a preimage of the hash output O. According
to the birthday attack, it is enough to repeat to choose m0 ∼ mi−1 2n−t times.
Therefore, we can find a preimage with the time complexity 2n−t + 2t and the
memory 2t.

4 Conclusion

In this paper, we show a preimage attack on Hashing with Polynomials. We
comment that the size of the intermediate value should be at least two times
bigger than that of the hash output. Even though the algorithm is modified,
more careful analyses on it are required.

References

1. V. Shpilrain, Hashing with Polynomials, ICISC’06, to appear.

