
Preimage Attacks on CellHash and SubHash

Donghoon Chang

Center for Information Security Technologies(CIST),
Korea University, Korea

dhchang@cist.korea.ac.kr

Abstract. CellHash [3] and SubHash [4] were suggested by J. Daemen,
R. Govaerts and J. Vandewalle in 1991 and 1992. SubHash is an improved
version from CellHash. They have 257-bit internal state and 256-bit hash
output. In this paper, we show a preimage attack on CellHash (SubHash)
with the complexity 2129+t and the memory 513 ∗ 2128−t bits for any t

(with the complexity about 2241 and the memory 513 ∗ 217 bits). Even
though we modify them in a famous way, we show that we can find a
preimage on the modified CellHash (the modified SubHash) with the
complexity 2194 and the memory 513 ∗ 264 bits (with the complexity
about 2241 and the memory size 513∗217 bits). So we recommend that a
simple invertible structure-repeated hash functions such as CellHash and
SubHash have the size of internal state two times longer at least than
the output size of hash function. For example, Parallel FFT-Hashing [6]
and RadioGatún [1] are such a case.

Keywords : Hash Function, Preimage Attack.

1 Introduction.

Since MD4-style hash functions were broken [7–12], nowadays the research on
new structures different from MD4-style structure is required. CellHash [3] and
SubHash [4] are different structures from MD4-style hash functions. Even though
they were suggested more than 15 years ago, there is no security evaluation on
them. In this paper, we describe preimage attacks on them. Even though we
add the feedforward process on them that an input intermediate value XOR
with its output intermediate value, we show that we can find their preimages
with complexity less than exhaustive search. This means that they have weak
structures. So this paper’s results provide the design principle of hash function
to hash function designers. For example, based on this result, we recommend
that a simple invertible structure-repeated hash functions such as CellHash and
SubHash have the size of internal state two times longer at least than the output
size of hash function. Parallel FFT-Hashing [6] and RadioGatún [1] are such a
case.

2 CellHash and SubHash

CellHash and SubHash have 257-bit internal state and 256-bit hash output.
They use only bit-wise operations and permutation in order to implement them
efficiently in hardware. Fig. 1 and Fig. 2 show CellHash and SubHash algorithms.
Message padding methods for them are as follows : In case of CellHash, the
message is extended with the minimum number of 0’s so that its length in bits
is at least 248 and congruent to 24 modulo 32. The number of bits added in
represented in a byte that is subsequently appended, most significant bit first
[3]. In case of SubHash, the message is extended with a number p of 0-bits so
that its length in bits is a multiple of 32 and 0 6 p < 32. Subsequently the
message is extended with 1 32-bit word representing the value 232 − 1− p, most
significant bit first [4].

CellHash(M) = o0||o1|| · · · ||o255 (256-bit hash output)
M is the padded message for which M = m0||m1|| · · · ||mn−1 and each mi is 32-bit.

1. For i = 0, ... ,256 Do hi := ci (c0|| · · · ||c256 is the 257-bit initial value.)
2. For j = 1, ... ,n Do (: Round j − 1)

2.1 a0||a1|| · · · ||a255 = mj−1||mjmodn|| · · · ||mj+6modn, each ai is 1-bit.
2.2 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
2.3 h0 = h0

2.4 hi = hi−3 ⊕ hi ⊕ hi+3, 0 6 i < 257 (in parallel)
2.5 hi = hi ⊕ ai−1, 1 6 i < 257 (in parallel)
2.6 hi = h10∗i, 0 6 i < 257 (in parallel)

3. Output o0||o1|| · · · ||o255 = ht||ht+1|| · · · ||ht+255 where t = 0 or t = 1.

Fig. 1. CellHash Algorithm.
.

3 Preimage Attacks on CellHash and SubHash

In this section, we describe preimage attacks on CellHash and SubHash. These
attacks are based on the concept of Meet-in-the-Middle Attack. Firstly, we in-
troduce the concept of Meet-in-the-Middle Attack for finding a preimage of hash
function.

Meet-in-the-Middle Attack

We consider the iterated hash function construction such as Merkle-Damg̊ard
construction like Fig. 3. In Fig. 3, given a hash output o, we want to find its
preimage. When the output size is 256-bit and it takes the complexity 2256 to

SubHash(M) = o0||o1|| · · · ||o255 (256-bit hash output)
M is the padded message for which M = m0||m1|| · · · ||mn−1 and each mi is 32-bit.

1. For i = 0, ... ,256 Do hi := ci (c0|| · · · ||c256 is the 257-bit initial value.)
2. For i = 0, ... ,255 Do ai := 0
3. For j = 0, ... ,n − 1 Do (: Round j)

3.1 a0||a1|| · · · ||a31 = mj and a32||a33|| · · · ||a255 = a0||a1|| · · · ||a223 (in parallel)
3.2 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
3.3 h0 = h0

3.4 hi = hi ⊕ hi+3 ⊕ hi+8, 0 6 i < 257 (in parallel)
3.5 hi = hi ⊕ ai−1, 1 6 i < 257 (in parallel)
3.6 hi = h12∗i, 0 6 i < 257 (in parallel)

4. For j = 0, ... ,7 Do (: Round j + n)
4.1 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
4.2 h0 = h0

4.3 hi = hi ⊕ hi+3 ⊕ hi+8, 0 6 i < 257 (in parallel)
4.4 hi = h12∗i, 0 6 i < 257 (in parallel)

5. For j = 0, ... ,15 Do (: Round j + n + 8)
5.1 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
5.2 h0 = h0

5.3 hi = hi ⊕ hi+3 ⊕ hi+8, 0 6 i < 257 (in parallel)
5.4 hi = h12∗i, 0 6 i < 257 (in parallel)
5.5 oj || · · · ||oj+15 = h11,24,37,48,60,73,84,98,117,130,143,154,168,200,235,249

6. Output o0||o1|| · · · ||o255.

Fig. 2. SubHash Algorithm.
.

find a preimage of f , it also takes the complexity 2256 to find a preimage of the
iterated hash function. When it takes the complexity 1 to find a preimage of f ,
we can find a preimage with using the meet-in-the-middle attack. We assume
that x1 and x2 are independent from x3 and x4. Given an output o, we choose
randomly x3 and x4 and compute the corresponding value in ∗ in Fig. 3 and
store them in table. Like this, we get 2128−t cases (Here, we assume that xi has
64-bit size at least). Similarly, from x1 and x2 we compute the corresponding
value s in ∗ in Fig. 3. If s is in the table, we can get a preimage of o. According
to the birthday paradox, In order to get one preimage we have to compute s

from random x1 and x2 2129+t times. Therefore, we can get a preimage with the
complexity 2129+t and the momory size 2128−t.

Fig. 3. Merkle-Damg̊ard Construction in case of 4 block-message. IV is the initial value.

When it takes the complexity 2129 to find a preimage of f , we can find a
preimage with using the meet-in-the-middle attack. We assume that x1 and x2

are independent from x3 and x4. Given an output o, we choose randomly x3 and
x4 and compute the corresponding value in ∗ in Fig. 3 and store them in table.
Like this, we get 2128−t cases with the complexity 2257−t (Here, we assume that xi

has 64-bit size at least). Similarly, from x1 and x2 we compute the corresponding
value s in ∗ in Fig. 3. If s is in the table, we can get a preimage of o. According
to the birthday paradox, In order to get one preimage we have to compute s

from random x1 and x2 2129+t times. Therefore, we can get a preimage with the
complexity 2129+t + 2257−t and the momory size 2128−t. In case of t = 64, we
can get a preimage with the complexity 2194 and the momory size 264.

Easy to invert Step 2.2 of CellHash in Fig. 1 and Step 3.2, 4.1, 5.1 of

SubHash Fig. 2

Except Step 2.2 in CellHash, Step 2.3-2.6 of CellHash are linear parts, which are
easy to invert. Step 2.4 is invertible if the size of the intermediate value is no mul-
tiple of 9 [3]. We focus on Step 2.2. Step 2.2 is invertible if the size of the interme-
diate value is odd [3]. We want to find an input 257-bit h0||h1|| · · · ||h256 when we
are given an output value of Step 2.2 (We denote the value by b0||b1|| · · · ||b256.).

b0 = h0 ⊕ (h1 ∨ h2)

b1 = h1 ⊕ (h2 ∨ h3)

b2 = h2 ⊕ (h3 ∨ h4)

·

·

b254 = h254 ⊕ (h255 ∨ h256)

b255 = h255 ⊕ (h256 ∨ h0)

b256 = h256 ⊕ (h0 ∨ h1)

From last equation, we try to compute. We guess h0 and h1, then h256 is
determined. Then h255 is determined. Similarly, all other values are also deter-
mined. Only we check if guessed h0 and h1 satisfy first and second equations.
Since h0 and h1 can be one among (0,0), (0,1), (1,0) and (1,1), it is enough to
check 4 times at most. Step 3.2, 4.1, 5.1 of SubHash Fig. 2 is also computed
in the same way. Therefore, we can say that it is possible to invert Step 2.2 of
CellHash in Fig. 1 and Step 3.2, 4.1, 5.1 of SubHash Fig. 2 with complexity 1.

Preimage Attack on CellHash

Each 32-bit message word is applied eight times. We denote Step 2.1-2.6 by f .
Then we can describe CellHash like Fig. 4. We denote j-th round 256-bit input
message by Xj = mjmodn||mj+1modn|| · · · ||mj+7modn.

…

Fig. 4. Message Input Method of CellHash.

Now we try to find a preimage of any given hash output o. Our target padded
message is m0||m1|| · · · ||m31. Among the message (corresponding to X0 ∼ X31),
we give fixed 256-bit values to X0 and X16, which means that m0||m1|| · · · ||m7

and m16||m17|| · · · ||m23 are fixed. Then, we can know that when we give random
values to X8 and X24, the values of X0 ∼ X16 (which depend only on X8) are
independent from the values of X17 ∼ X31 (which depend only on X16). There-
fore, we can apply the meet-in-the-middle attack in output position of Round
16. As described above, Therefore, we can get a preimage with the complexity
2129+t and the momory size 2128−t.

Preimage Attack on SubHash

Each 32-bit message word is applied eight times. We denote j-th round 256-bit
input message by Xj = mj ||mj−1|| · · · ||mj−7 where m

−1 = m
−2 = · · · = m

−7 =
032. Our target padded message is m0||m1|| · · · ||m23 (n = 24). We know that a
given hash output are computed from last sixteen rounds, Round 32∼47. From
a given hash output, We know 16 bits in 257-bit output of each of last sixteen
rounds. Here, we focus on unknown 241 bits among 257-bit output of Round 32.
We find the 241 bits satisfying the remaining 240 bits among 256-bit hash output
through exhaustive searching. So, we can expect 2 candidates with complexity
2241, which means that we can 1 candidate with complexity 2240. Now, we have
257-bit output of Round 32. And wee can get the output of Round 23 by inverting
the 257-bit output of Round 32. Therefore, we can use same method as the
preimage attack on CellHash. Among the message (corresponding to X0 ∼ X23),
we give fixed 256-bit values to X15, which means that m15||m14|| · · · ||m8 are
fixed. Then, we can know that when we give random values to X7 and X23,
the values of X0 ∼ X15 (which depend only on X7) are independent from the
values of X16 ∼ X23 (which depend only on X23). Therefore, we can apply the
meet-in-the-middle attack in output position of Round 15. As described above,
Therefore, we can get a preimage with the complexity 2129+t and the momory
size 2128−t satisfying the output of Round 23. So, we can find a preimage of a
given hash output with complexity 2240 +2129+t and the memory size 2128−t. In
case of t = 111, we can find a preimage of a given hash output with complexity
2241 and the memory size 217.

4 The Modified Versions of CellHash and SubHash

CellHash and SubHash have inverting-easy round functions. On the other hand,
in order to make the inverse difficult, MD4-style hash functions use the feedfor-
ward operation that the input intermediate is added to the output intermediate
in each compression function. In case of block-cipher based hash functions such
as PGV construction [2, 5], XOR operation is used as the feedforward operation.
Therefore it is required to check the security of CellHash and SubHash with the
feedforward operation. In case of CellHash and SubHash, there is no addition
operation because they use only bit-wise operations and the permutation. So,
we consider their modified versions, CellHash and SubHash which use the feed-
forward operation with XOR. Fig. 5 and Fig. 6 show the modified versions of
CellHash and SubHash.

5 Preimage Attacks on the Modified Versions of CellHash

and SubHash

Inverting Problem of Round Function of CellHash and SubHash

In case of the modified CellHash, Section 2.1-2.8 of Fig. 5 is the round func-
tion. Since Step 2.4-2.8 are linear, given an output of the round function, we

modCellHash(M) = o0||o1|| · · · ||o255 (256-bit hash output)
M is the padded message for which M = m0||m1|| · · · ||mn−1 and each mi is 32-bit.

1. For i = 0, ... ,256 Do hi := ci (c0|| · · · ||c256 is the 257-bit initial value.)
2. For j = 1, ... ,n Do (: Round j − 1)

2.1 zi = hi, 0 6 i < 257
2.2 a0||a1|| · · · ||a255 = mj−1||mjmodn|| · · · ||mj+6modn, each ai is 1-bit.
2.3 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
2.4 h0 = h0

2.5 hi = hi−3 ⊕ hi ⊕ hi+3, 0 6 i < 257 (in parallel)
2.6 hi = hi ⊕ ai−1, 1 6 i < 257 (in parallel)
2.7 hi = h10∗i, 0 6 i < 257 (in parallel)
2.8 hi = hi ⊕ zi, 0 6 i < 257

3. Output o0||o1|| · · · ||o255 = ht||ht+1|| · · · ||ht+255 where t = 0 or t = 1.

Fig. 5. The Modified CellHash Algorithm.
.

can get the output of Step 2.3 which is represented by the linear combinations
of h0 ∼ h256. We want to find an input 257-bit h0||h1|| · · · ||h256 when we are
given an output value of Step 2.3 which is represented by the linear combina-
tions of h0 ∼ h256. We denote the linear combination of i-th bit position by
Li(h0, h1, · · · , h256).

L0(h0, h1, · · · , h256) = h0 ⊕ (h1 ∨ h2)

L1(h0, h1, · · · , h256) = h1 ⊕ (h2 ∨ h3)

L2(h0, h1, · · · , h256) = h2 ⊕ (h3 ∨ h4)

·

·

L254(h0, h1, · · · , h256) = h254 ⊕ (h255 ∨ h256)

L255(h0, h1, · · · , h256) = h255 ⊕ (h256 ∨ h0)

L256(h0, h1, · · · , h256) = h256 ⊕ (h0 ∨ h1)

The right parts of above equations is nonlinear. We can expect that there is
one solution because the number of variables is same as that of equation. But,
we can not find the solution directly by Gaussian Elimination. Since each h2i

is related to two equations, we guess 129 values of h2i for 0 6 i 6 128. Then
above can be represented by the linear combination, so we can find the solution
by Gaussian Elimination. Therefore, it takes the complexity 2129 to find the
solution.

modSubHash(M) = o0||o1|| · · · ||o255 (256-bit hash output)
M is the padded message for which M = m0||m1|| · · · ||mn−1 and each mi is 32-bit.

1. For i = 0, ... ,256 Do hi := ci (c0|| · · · ||c256 is the 257-bit initial value.)
2. For i = 0, ... ,255 Do ai := 0
3. For j = 0, ... ,n − 1 Do (: Round j)

3.1 zi = hi, 0 6 i < 257
3.2 a0||a1|| · · · ||a31 = mj and a32||a33|| · · · ||a255 = a0||a1|| · · · ||a223 (in parallel)
3.3 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
3.4 h0 = h0

3.5 hi = hi ⊕ hi+3 ⊕ hi+8, 0 6 i < 257 (in parallel)
3.6 hi = hi ⊕ ai−1, 1 6 i < 257 (in parallel)
3.7 hi = h12∗i, 0 6 i < 257 (in parallel)
3.8 hi = hi ⊕ zi, 0 6 i < 257

4. For j = 0, ... ,7 Do (: Round j + n)
4.1 zi = hi, 0 6 i < 257
4.2 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
4.3 h0 = h0

4.4 hi = hi ⊕ hi+3 ⊕ hi+8, 0 6 i < 257 (in parallel)
4.5 hi = h12∗i, 0 6 i < 257 (in parallel)
4.6 hi = hi ⊕ zi, 0 6 i < 257

5. For j = 0, ... ,15 Do (: Round j + n + 8)
5.1 zi = hi, 0 6 i < 257
5.2 hi = hi ⊕ (hi+1 ∨ hi+2), 0 6 i < 257 (in parallel)
5.3 h0 = h0

5.4 hi = hi ⊕ hi+3 ⊕ hi+8, 0 6 i < 257 (in parallel)
5.5 hi = h12∗i, 0 6 i < 257 (in parallel)
5.6 hi = hi ⊕ zi, 0 6 i < 257
5.7 oj || · · · ||oj+15 = h11,24,37,48,60,73,84,98,117,130,143,154,168,200,235,249

6. Output o0||o1|| · · · ||o255.

Fig. 6. The Modified SubHash Algorithm.
.

Preimage Attack on the Modified CellHash

Each 32-bit message word is applied eight times. We denote j-th round 256-
bit input message by Xj = mjmodn||mj+1modn|| · · · ||mj+7modn. Now we try to
find a preimage of any given hash output o. Our target padded message is
m0||m1|| · · · ||m31. Among the message (corresponding to X0 ∼ X31), we give
fixed 256-bit values to X0 and X16, which means that m0||m1|| · · · ||m7 and
m16||m17|| · · · ||m23 are fixed. Then, we can know that when we give random
values to X8 and X24, the values of X0 ∼ X16 (which depend only on X8) are
independent from the values of X17 ∼ X31 (which depend only on X16). There-
fore, we can apply the meet-in-the-middle attack in output position of Round
16. As described above, Therefore, we can get a preimage with the complexity
2194 and the momory size 264.

Preimage Attack on the Modified SubHash

Each 32-bit message word is applied eight times. We denote j-th round 256-bit
input message by Xj = mj ||mj−1|| · · · ||mj−7 where m

−1 = m
−2 = · · · = m

−7 =
032. Our target padded message is m0||m1|| · · · ||m23 (n = 24). We know that a
given hash output are computed from last sixteen rounds, Round 32∼47. From
a given hash output, We know 16 bits in 257-bit output of each of last sixteen
rounds. Here, we focus on unknown 241 bits among 257-bit output of Round 32.
We find the 241 bits satisfying the remaining 240 bits among 256-bit hash output
through exhaustive searching. So, we can expect 2 candidates with complexity
2241, which means that we can 1 candidate with complexity 2240. Now, we have
257-bit output of Round 32. And wee can get the output of Round 23 by inverting
the 257-bit output of Round 32. Therefore, we can use same method as the
preimage attack on CellHash. Among the message (corresponding to X0 ∼ X23),
we give fixed 256-bit values to X15, which means that m15||m14|| · · · ||m8 are
fixed. Then, we can know that when we give random values to X7 and X23,
the values of X0 ∼ X15 (which depend only on X7) are independent from the
values of X16 ∼ X23 (which depend only on X23). Therefore, we can apply the
meet-in-the-middle attack in output position of Round 15. As described above,
Therefore, we can get a preimage with the complexity 2129+t and the momory
size 2128−t satisfying the output of Round 23. So, we can find a preimage of a
given hash output with complexity 2240 + 2129+t + 2257−t and the memory size
2128−t. In case of t = 111, we can find a preimage of a given hash output with
complexity 2241 and the memory size 217.

References

1. G. Bertoni, J. Daemen, G. V. Assche and M. Peeters, RadioGatún, a belt-and-mill

hash function, In Second Hash Workshop of NIST, 2006.

2. J. Black, P. Rogaway and T. Shrimpton, Black-box analysis of the block-cipher-

based hash function constructions from PGV, Advances in Cryptology - CRYPTO’02,
LNCS 2442, Springer-Verlag, pp. 320-335, 2002.

3. J. Daemen, R. Govaerts and J. Vandewalle, A Framework for the Design of One-Way

Hash Functions Including Cryptanalysis of Damg̊ard’s One-Way Function Based on

a Cellular Automaton, Asiacrypt’91, LNCS 739, Springer-Verlag, pp. 82-96, 1993.

4. J. Daemen, R. Govaerts and J. Vandewalle, A Hardware Design Model for Crypto-

graphic Algorithms, ESORICS’92, pp. 419-434, 1992.

5. B. Preneel, R. Govaerts and J. Vandewalle, Hash functions based on block ciphers:A

synthetic approach, Advances in Cryptology - CRYPTO’93, LNCS 773, Springer-
Verlag, pp. 368-378, 1994.

6. C.P. Schnorr and S. Vaudenay, Parallel FFT-Hashing, FSE’93, LNCS 809, Springer-
Verlag, pp. 149-156, 1994.

7. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In Advances in Cryptology-Eurocrypt’2005, volume 3494 of
Lecture Notes in Computer Science, pages 1–18, Springer-Verlag, 2005.

8. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Advances

in Cryptology-Eurocrypt’2005, volume 3494 of Lecture Notes in Computer Science,
pages 19–35, Springer-Verlag, 2005.

9. X. Wang, H. Yu and Y. L. Yin. Efficient Collision Search Attacks on SHA-0. In
Advances in Cryptology-Crypto’2005, volume 3621 of Lecture Notes in Computer

Science, pages 1–16, Springer-Verlag, 2005.

10. X. Wang, Y. L. Yin and H. Yu. Finding Collisions in the Full SHA-1. In Advances in

Cryptology-Crypto’2005, volume 3621 of Lecture Notes in Computer Science, pages
17–36, Springer-Verlag, 2005.

11. H. Yu, X. Wang, A. Yun and S. Park. Cryptanalysis of the Full HAVAL with 4
and 5 Passes. To appear in FSE’2006, Springer-Verlag, 2006.

12. H. Yu, G. Wang, G. Zhang and X. Wang. The Second-Preimage Attack on MD4.
In CANS’2005, volume 3810 of Lecture Notes in Computer Science, pages 1–12,
Springer-Verlag, 2005.

