
Preimage Attack on Parallel FFT-Hashing

Donghoon Chang

Center for Information Security Technologies(CIST),
Korea University, Korea

dhchang@cist.korea.ac.kr

Abstract. Parallel FFT-Hashing was suggested by C. P. Schnorr and
S. Vaudenay in 1993 [4]. That is a simple and light hash algorithm. Its
basic component is a multi-permutation. We show a preimage attack
on Parallel FFT-Hashing with complexity 2113 which is less than the
complexity 2128. This shows that the structure of Parallel FFT-Hashing
has some weaknesses.

Keywords : Hash Function, Preimage Attack.

1 Introduction.

Nowadays, the novel construction of hash function is required because MD4-style
hash functions were broken. In second NIST Hash Workshop in Aug. 2006, sev-
eral new hash functions were sugested. Lyubashevsky et al. suggested ‘Provably
Secure FFT Hashing’ which is a hash function family and one hash function can
be randomly chosen from the family. Security of Provably Secure FFT Hashing
is based on a solving certain lattice problems in the worst case. Bertoni et al.
suggested a hash function ‘RadioGatún’ which is a belt-and-mill hash function.
Their idea of design makes the size of inner state bigger than output size and uses
only bitwise operations and rotations in order to implement easily and fastly in
any flatform rather than using multiplication and addition operations. Gligoroski
et al. suggested ‘Edon-R’ which is an infinite family of hash functions based on
the concept of shapeless quasigroup. Charles et al. suggested hash functions from
expander graphs. Bentahar et al. suggested ‘LASH’.

By the way, all above hash functions except LASH and hash function based
on expander graph requre big memory sizes. For example, RadioGatún’s word
size is 64 bit by default. So its internal state is 64*58 bits. In case of Edon-R, it
uses shapeless quasigroup where the operation should be defined. As described,
256*256*8 bits are required when the order of the group is 28. In case of Provably
Secure FFT Hashing, we need the memory to store the key whose size is about
4600 bits in case of 513 bit hash output.

Even well-known hash functions such as Tiger and Whirlpool have big mem-
ory sizes because they use S-box.

This paper concern about Parallel FFT-Hashing suggested by C. P. Schnorr
and S. Vaudenay in 1993 [4] improved from previous results [2, 3, 1, 6, 5]. Parallel



FFT-Hashing uses a simple component ‘multipermutation’ repeatedly. There-
fore, its algorithm can be implemented in low memory device environment such
as RFID and the sensor network. But, this paper shows that we can find a
premiage with complexity 2113 less than exhaustive search complexity 2128.

2 Parallel FFT-Hashing

In this section, we describe Parallel FFT-Hashing [4]. Here + is the addition
modulo 216 on E ∼= {0, 1, · · · , 216 − 1}, * is the multiplication in E ∼= Z

∗

216+1
.

L is the one-bit circular left shift on {0, 1}4 (such that L(i) = 2i for i 6 7 and
L(i) = 1 + 2(i− 8) for i > 7) and R is the one-bit circular right shift on E. And
c = 0818 and s = 5. In our attack, we can find a premiage for any s (even for
big s). (c0, c1, c2, c3):=(oxef01, ox2345, ox6789, oxabcd), (c4, c5, c6, c7):=(oxdcba,
ox9876, ox5432, ox10fe), c8+i:=ci for i=0,...,7 where ci is the bitwise logical
negation of ci.

PaFFTHashing(M) = o1||o2|| · · · ||o7

M is the padded message for which M = m0||m1|| · · · ||mn−1 ∈ En

1. For i = 0, ... ,15 Do ei := ci (c0|| · · · ||c15 is the initial value.)
2. For j = 0, ... ,⌈n/3⌉+s-2 Do ( : Step j)

2.1 For i = 0, ... ,11 Do

eL(i) := eL(i) + m3j+(imod3) for even i.
eL(i) := eL(i) ∗ m3j+(imod3) for odd i.

2.2 For i = 0, ... ,7 Do in parallel
e2i := eL(2i) ⊕ eL(2i+1), e2i+1 := eL(2i) ⊕ (eL(2i+1) ∧ c)⊕R2i+1(eL(2i+1))

2.3 For i = 0, ... ,15 Do ei := ei ∗ ci

3. Output h4(M) := o1||o2|| · · · ||o7 for which oi = eL(2i) ∗ eL(2i+1).

Fig. 1. Parallel FFT-hashing.
.

Fig. 2. Step j of Parallel FFT-Hashing.



3 Preimage Attack on Parallel FFT-Hashing

In this section, we show how to get a preimage for a givn hash output o0||o1|| · · · ||o7.
The padded preimage is m0||m1|| · · · ||m32 for which each mi is 16 bits. Last
four words w29 ∼ w32 indicate the message length. We let m28 ‘1015’. Therefore,
m0 ∼ m27 is a real message. Our attack idea is a meet-in-the-middle attack in
location of output of Step 2. See Fig. 3 and Fig. 4.

First, Fig. 3 : At first, we choose w0 ∼ w7. Then our goal is to find (m0, · · · , m8)
satisfying w0 ∼ w7. Since w6 and w7 depend only on m0 ∼ m5, we can know
that there are about 264 (m0, · · · , m5) satisfying w6 and w7. And also it is easy
to get such a (m0, · · · , m5). Therefore, it is enough to check w0 ∼ w5 with com-
plexity 296 in order to get one (m0, · · · , m8) satisfying w0 ∼ w7. So, we can find
216 (m0, · · · , m8) satisfying w0 ∼ w7 with complexity 2112. We store such 216

(m0, · · · , m8,d0, · · · , d7).

Fig. 3. First Part : Three Steps.

Second, Fig. 4 : Given a hash output o0||o1|| · · · ||o7, since the multipermutation
is an invertable permutation, we can invert o0||o1|| · · · ||o7 upto the output of
Step 6 by giving arbitrary random value to m21 ∼ m27. Then Since w0 ∼ w7 is
already fixed, (8)∼(14) also are determined. And also through inverting process,
(15) is also fixed. Here we give a value to m19 such that (14) and (15) are sat-
ified. Then we give arbitrary random values to m18 and m20. Now we have the
ouput of Step 5. Then we give a value to m16 such that (13) is satisfied. Then we
give arbitrary random values to m15 and m17. Then we give values to m12 and
m13 such that (8) and (10) are satisfied. Then automatically, (4), (6) and (7)
are determined. So, m11 and m9 are also determined. Then (5) is automatically



determined because m9 is fixed and each box is a multipermutation. A permu-
taton B : E2 → E2, B(a, b) = (B1(a, b), B2(a, b)), is a multipermutation if for
every a, b ∈ E the mappings Bi(a, ∗), Bi(∗, b) for i = 1, 2 are permutation on
E. Then m10 is also automatically determined. Therefore, we can get m9 ∼ m32

satisfying w0 ∼ w7 with complexity 1. We know that since twelve words are free,
there are 2176 m9 ∼ m32.

Third, for each m9 ∼ m32 satisfying w0 ∼ w7, we get b0 ∼ b7 and then check if
bi = di for all i. According to birthday attack, it is enough to check for 2112 m9 ∼
m32 because we have 216 (m0, · · · , m8,d0, · · · , d7) satisfying w0 ∼ w7. Therefore,
given a hash output o0||o1|| · · · ||o7, we can find a premiage m0||m1|| · · · ||m27

before padding with the total complexity 2113(= 2112+2112) and the bit memory
size 224 which is from 216 (m0, · · · , m8,d0, · · · , d7) in the first part.

4 Conclusion

In this paper, we described a premiage attack on Parallel FFT-Hashing. Our
attack did not depend on the value of s, which means that the security analysis of
collision resistance of Parallel FFT-Hashing [4, 5] can not guarantee the security
against the preimage attack. And also our attack can be used in case of any
word size (in this paper, we only consider 16-bit word size) in the same way.

References

1. T. Baritaud, H. Gilbert and M. Girault, FFT Hashing is not Collision-free, Euro-
crypt’92, LNCS 658, Springer-Verlag, pp. 35-44, 1992.

2. C.P. Schnorr, FFT-Hashing : An Efficient Cryptographic Hash Function, Presented
at the rump session of the Crypto’91.

3. C.P. Schnorr, FFT-Hash II, efficient hashing, Eurocrypt’92, LNCS 658, Springer-
Verlag, pp. 45-54, 1992.

4. C.P. Schnorr and S. Vaudenay, Parallel FFT-Hashing, FSE’93, LNCS 809, Springer-
Verlag, pp. 149-156, 1994.

5. C.P. Schnorr and S. Vaudenay, Black Box Cryptanalysis of Hash Networks based on

Mulitipermutations, Eurocrypt’94, LNCS 950, Springer-Verlag, pp. 47-57, 1995.

6. S. Vaudenay, FFT-Hash II is not yet Collision-free, Crypto’92, LNCS 740, Springer-
Verlag, pp. 587-593, 1993.



… … … … … … … … …

Fig. 4. Second Part.


