Preimage Attack on Parallel FFT-Hashing

Donghoon Chang
Center for Information Security Technologies(CIST),
Korea University, Korea
dhchang@cist.korea.ac.kr

Abstract

Parallel FFT-Hashing was suggested by C. P. Schnorr and S. Vaudenay in 1993 [4]. That is a simple and light hash algorithm. Its basic component is a multi-permutation. We show a preimage attack on Parallel FFT-Hashing with complexity 2^{113} which is less than the complexity 2^{128}. This shows that the structure of Parallel FFT-Hashing has some weaknesses.

Keywords : Hash Function, Preimage Attack.

1 Introduction.

Nowadays, the novel construction of hash function is required because MD4-style hash functions were broken. In second NIST Hash Workshop in Aug. 2006, several new hash functions were sugested. Lyubashevsky et al. suggested 'Provably Secure FFT Hashing' which is a hash function family and one hash function can be randomly chosen from the family. Security of Provably Secure FFT Hashing is based on a solving certain lattice problems in the worst case. Bertoni et al. suggested a hash function 'RadioGatún' which is a belt-and-mill hash function. Their idea of design makes the size of inner state bigger than output size and uses only bitwise operations and rotations in order to implement easily and fastly in any flatform rather than using multiplication and addition operations. Gligoroski et al. suggested 'Edon- \mathcal{R} ' which is an infinite family of hash functions based on the concept of shapeless quasigroup. Charles et al. suggested hash functions from expander graphs. Bentahar et al. suggested 'LASH'.

By the way, all above hash functions except LASH and hash function based on expander graph (we have not checked these two cases) require big memory sizes. For example, RadioGatún's word size is 64 bit by default. So its internal state is $64^{*} 58$ bits. In case of Edon- \mathcal{R}, it uses shapeless quasigroup where the operation should be defined. As described, $256^{*} 256^{*} 8$ bits are required when the order of the group is 2^{8}. In case of Provably Secure FFT Hashing, we need the memory to store the key whose size is about 4600 bits in case of 513 bit hash output.

Even well-known hash functions such as Tiger and Whirlpool have big memory sizes because they use S-box.

This paper concern about Parallel FFT-Hashing suggested by C. P. Schnorr and S. Vaudenay in 1993 [4] improved from previous results [2, 3, 1, 6, 5]. Parallel

FFT-Hashing uses a simple component 'multipermutation' repeatedly. Therefore, its algorithm can be implemented in low memory device environment such as RFID and the sensor network. But, this paper shows that we can find a premiage with complexity 2^{113} less than exhaustive search complexity 2^{128}.

2 Parallel FFT-Hashing

In this section, we describe Parallel FFT-Hashing [4]. Here + is the addition modulo 2^{16} on $E \cong\left\{0,1, \cdots, 2^{16}-1\right\},{ }^{*}$ is the multiplication in $E \cong \mathbb{Z}_{2^{16}+1}^{*}$. L is the one-bit circular left shift on $\{0,1\}^{4}$ (such that $L(i)=2 i$ for $i \leqslant 7$ and $L(i)=1+2(i-8)$ for $i>7)$ and R is the one-bit circular right shift on E. And $c=0^{8} 1^{8}$ and $s=5$. In our attack, we can find a premiage for any s (even for $\operatorname{big} s) .\left(c_{0}, c_{1}, c_{2}, c_{3}\right):=\left(\right.$ oxef01, ox2345, ox6789, oxabcd) $,\left(c_{4}, c_{5}, c_{6}, c_{7}\right):=($ oxdcba, ox9876, ox5432, ox10fe), $c_{8+i}:=\overline{c_{i}}$ for $i=0, \ldots, 7$ where c_{i} is the bitwise logical negation of c_{i}.

```
\(\operatorname{PaFFTHashing}(M)=o_{1}\left\|o_{2}\right\| \cdots \| o_{7}\)
\(\bar{M}\) is the padded message for which \(M=m_{0}\left\|m_{1}\right\| \cdots \| m_{n-1} \in E^{n}\)
1. For \(i=0, \ldots, 15\) Do \(e_{i}:=c_{i}\left(c_{0}\|\cdots\| c_{15}\right.\) is the initial value.)
2. For \(j=0, \ldots,\lceil n / 3\rceil+\mathrm{s}-2\) Do (: Step \(j\) )
    2.1 For \(i=0, \ldots, 11 \mathbf{D o}\)
            \(e_{L(i)}:=e_{L(i)}+m_{3 j+(i \bmod 3)}\) for even \(i\).
            \(e_{L(i)}:=e_{L(i)} * m_{3 j+(i \bmod 3)}\) for odd \(i\).
    2.2 For \(i=0, \ldots, 7\) Do in parallel
            \(e_{2 i}:=e_{L(2 i)} \oplus e_{L(2 i+1)}, e_{2 i+1}:=e_{L(2 i)} \oplus\left(e_{L(2 i+1)} \wedge c\right) \oplus R^{2 i+1}\left(e_{L(2 i+1)}\right)\)
    2.3 For \(i=0, \ldots, 15\) Do \(e_{i}:=e_{i} * c_{i}\)
3. Output \(h_{4}(M):=o_{1}\left\|o_{2}\right\| \cdots \| o_{7}\) for which \(o_{i}=e_{L(2 i)} * e_{L(2 i+1)}\).
```

Fig. 1. Parallel FFT-hashing.

Fig. 2. Step j of Parallel FFT-Hashing.

3 Preimage Attack on Parallel FFT-Hashing

In this section, we show how to get a preimage for a givn hash output $o_{0}\left\|o_{1}\right\| \cdots \| o_{7}$. The padded preimage is $m_{0}\left\|m_{1}\right\| \cdots \| m_{32}$ for which each m_{i} is 16 bits. Last four words $w_{29} \sim w_{32}$ indicate the message length. We let $m_{28}{ }^{\prime} 10^{15}$. Therefore, $m_{0} \sim m_{27}$ is a real message. Our attack idea is a meet-in-the-middle attack in location of output of Step 2. See Fig. 3 and Fig. 4.

First, Fig. 3 : At first, we choose $w_{0} \sim_{w_{7}}$. Then our goal is to find (m_{0}, \cdots, m_{8}) satisfying $w_{0} \sim w_{7}$. Since w_{6} and w_{7} depend only on $m_{0} \sim m_{5}$, we can know that there are about $2^{64}\left(m_{0}, \cdots, m_{5}\right)$ satisfying w_{6} and w_{7}. And also it is easy to get such a (m_{0}, \cdots, m_{5}). Therefore, it is enough to check $w_{0} \sim w_{5}$ with complexity 2^{96} in order to get one (m_{0}, \cdots, m_{8}) satisfying $w_{0} \sim w_{7}$. So, we can find $2^{16}\left(m_{0}, \cdots, m_{8}\right)$ satisfying $w_{0} \sim w_{7}$ with complexity 2^{112}. We store such 2^{16} $\left(m_{0}, \cdots, m_{8}, d_{0}, \cdots, d_{7}\right)$.

Fig. 3. First Part : Three Steps.

Second, Fig. 4 : Given a hash output $o_{0}\left\|o_{1}\right\| \cdots \| o_{7}$, since the multipermutation is an invertable permutation, we can invert $o_{0}\left\|o_{1}\right\| \cdots \| o_{7}$ upto the output of Step 6 by giving arbitrary random value to $m_{21} \sim m_{27}$. Then Since $w_{0} \sim w_{7}$ is already fixed, (8) (14) also are determined. And also through inverting process, (15) is also fixed. Here we give a value to m_{19} such that (14) and (15) are satified. Then we give arbitrary random values to m_{18} and m_{20}. Now we have the ouput of Step 5 . Then we give a value to m_{16} such that (13) is satisfied. Then we give arbitrary random values to m_{15} and m_{17}. Then we give values to m_{12} and m_{13} such that (8) and (10) are satisfied. Then automatically, (4), (6) and (7) are determined. So, m_{11} and m_{9} are also determined. Then (5) is automatically
determined because m_{9} is fixed and each box is a multipermutation. A permutaton $B: E^{2} \rightarrow E^{2}, B(a, b)=\left(B_{1}(a, b), B_{2}(a, b)\right)$, is a multipermutation if for every $a, b \in E$ the mappings $B_{i}(a, *), B_{i}(*, b)$ for $i=1,2$ are permutation on E. Then m_{10} is also automatically determined. Therefore, we can get $m_{9} \sim m_{32}$ satisfying $w_{0} \sim w_{7}$ with complexity 1 . We know that since eleven words are free, there are $2^{176} m_{9} \sim m_{32}$.

Third, for each $m_{9} \sim m_{32}$ satisfying $w_{0} \sim w_{7}$, we get $b_{0} \sim b_{7}$ and then check if $b_{i}=d_{i}$ for all i. According to birthday attack, it is enough to check for $2^{112} m_{9} \sim$ m_{32} because we have $2^{16}\left(m_{0}, \cdots, m_{8}, d_{0}, \cdots, d_{7}\right)$ satisfying $w_{0} \sim w_{7}$. Therefore, given a hash output $o_{0}\left\|o_{1}\right\| \cdots \| o_{7}$, we can find a premiage $m_{0}\left\|m_{1}\right\| \cdots \| m_{27}$ before padding with the total complexity $2^{113}\left(=2^{112}+2^{112}\right)$ and the bit memory size 2^{24} which is from $2^{16}\left(m_{0}, \cdots, m_{8}, d_{0}, \cdots, d_{7}\right)$ in the first part.

4 Conclusion

In this paper, we described a premiage attack on Parallel FFT-Hashing. Our attack did not depend on the value of s, which means that the security analysis of collision resistance of Parallel FFT-Hashing [4,5] can not guarantee the security against the preimage attack. And also our attack can be used in case of any word size (in this paper, we only consider 16 -bit word size) in the same way.

References

1. T. Baritaud, H. Gilbert and M. Girault, FFT Hashing is not Collision-free, Eurocrypt'92, LNCS 658, Springer-Verlag, pp. 35-44, 1992.
2. C.P. Schnorr, FFT-Hashing : An Efficient Cryptographic Hash Function, Presented at the rump session of the Crypto'91.
3. C.P. Schnorr, FFT-Hash II, efficient hashing, Eurocrypt'92, LNCS 658, SpringerVerlag, pp. 45-54, 1992.
4. C.P. Schnorr and S. Vaudenay, Parallel FFT-Hashing, FSE'93, LNCS 809, SpringerVerlag, pp. 149-156, 1994.
5. C.P. Schnorr and S. Vaudenay, Black Box Cryptanalysis of Hash Networks based on Mulitipermutations, Eurocrypt'94, LNCS 950, Springer-Verlag, pp. 47-57, 1995.
6. S. Vaudenay, FFT-Hash II is not yet Collision-free, Crypto'92, LNCS 740, SpringerVerlag, pp. 587-593, 1993.

Fig. 4. Second Part.

