
Preimage Attack on Parallel FFT-Hashing

Donghoon Chang

Center for Information Security Technologies(CIST),
Korea University, Korea

dhchang@cist.korea.ac.kr

Abstract. Parallel FFT-Hashing was suggested by C. P. Schnorr and
S. Vaudenay in 1993 [4]. That is a simple and light weight hash al-
gorithm. Its basic component is a multi-permutation which helps to
prove it’s collision resistance. We show a preimage attack on Parallel
FFT-Hashing with complexity 2t+64 + 2128−t and memory 2t which is
less than the generic complexity 2128. Our method can be described as
“disseminative-meet-in-the-middle-attack”; we actually use the proper-
ties of multi-permutation to our advantage in the attack. Overall, this
shows that the structure of Parallel FFT-Hashing has some weaknesses
when the preimage attack is considered. To the best of our knowledge,
this is the first attack on Parallel FFT-Hashing.

Keywords : Hash Function, Preimage Attack.

1 Introduction.

Nowadays, the novel construction of hash function is required because MD4-style
hash functions were broken. In second NIST Hash Workshop in Aug. 2006, sev-
eral new hash functions were sugested. Lyubashevsky et al. suggested ‘Provably
Secure FFT Hashing’ which is a hash function family and one hash function can
be randomly chosen from the family. Security of Provably Secure FFT Hashing
is based on a solving certain lattice problems in the worst case. Bertoni et al.
suggested a hash function ‘RadioGatún’ which is a belt-and-mill hash function.
Their idea of design makes the size of inner state bigger than output size and uses
only bitwise operations and rotations in order to implement easily and fastly in
any flatform rather than using multiplication and addition operations. Gligoroski
et al. suggested ‘Edon-R’ which is an infinite family of hash functions based on
the concept of shapeless quasigroup. Charles et al. suggested hash functions from
expander graphs. Bentahar et al. suggested ‘LASH’.

By the way, all above hash functions except LASH and hash function based
on expander graph (we have not checked these two cases) require big memory
sizes. For example, RadioGatún’s word size is 64 bit by default. So its internal
state is 64*58 bits. In case of Edon-R, it uses shapeless quasigroup where the
operation should be defined. As described, 256*256*8 bits are required when the
order of the group is 28. In case of Provably Secure FFT Hashing, we need the

memory to store the key whose size is about 4600 bits in case of 513 bit hash
output.

Even well-known hash functions such as Tiger and Whirlpool have big mem-
ory sizes because they use S-box.

This paper concern about Parallel FFT-Hashing suggested by C. P. Schnorr
and S. Vaudenay in 1993 [4] improved from previous results [2, 3, 1, 6, 5]. Parallel
FFT-Hashing uses a simple component ‘multipermutation’ repeatedly. There-
fore, its algorithm can be implemented in low memory device environment such
as RFID and the sensor network. But, this paper shows that we can find a pre-
miage with complexity 2t+64 +2128−t and memory 2t less than exhaustive search
complexity 2128.

2 Parallel FFT-Hashing

In this section, we describe Parallel FFT-Hashing [4]. Here + is the addition
modulo 216 on E ∼= {0, 1, · · · , 216 − 1}, * is the multiplication in E ∼= Z

∗

216+1
.

L is the one-bit circular left shift on {0, 1}4 (such that L(i) = 2i for i 6 7 and
L(i) = 1 + 2(i− 8) for i > 7) and R is the one-bit circular right shift on E. And
c = 0818 and s = 5. In our attack, we can find a premiage for any s (even for
big s). (c0, c1, c2, c3):=(oxef01, ox2345, ox6789, oxabcd), (c4, c5, c6, c7):=(oxdcba,
ox9876, ox5432, ox10fe), c8+i:=ci for i=0,...,7 where ci is the bitwise logical
negation of ci.

PaFFTHashing(M) = o1||o2|| · · · ||o7

M is the padded message for which M = m0||m1|| · · · ||mn−1 ∈ En

1. For i = 0, ... ,15 Do ei := ci (c0|| · · · ||c15 is the initial value.)
2. For j = 0, ... ,⌈n/3⌉+s-2 Do (: Step j)

2.1 For i = 0, ... ,11 Do

eL(i) := eL(i) + m3j+(imod3) for even i.
eL(i) := eL(i) ∗ m3j+(imod3) for odd i.

2.2 For i = 0, ... ,7 Do in parallel
e2i := eL(2i) ⊕ eL(2i+1), e2i+1 := eL(2i) ⊕ (eL(2i+1) ∧ c)⊕R2i+1(eL(2i+1))

2.3 For i = 0, ... ,15 Do ei := ei ∗ ci

3. Output h4(M) := o1||o2|| · · · ||o7 for which oi = eL(2i) ∗ eL(2i+1).

Fig. 1. Parallel FFT-hashing.
.

Fig. 2. Step j of Parallel FFT-Hashing.

3 Attack Strategy

4 Preimage Attack on Parallel FFT-Hashing

In this section, we show how to get a preimage for a given hash output o0||o1|| · · · ||o7.
The padded preimage is m0||m1|| · · · ||m47 for which each mi is 16 bits. Last
four words w44 ∼ w47 indicate the message length. We let m43 ‘1015’. Therefore,
m0 ∼ m42 is a real message. Our attack idea is a meet-in-the-middle attack in
location of output of Step 2. See Fig. 3 and Fig. 4.

First : (0) ∼ (3) are already fixed values because they are initial values. We give
(4) ∼ (19) to fixed values. Then the values of (20) ∼ (35) are determined. And
then we give w0 ∼ w3 to fixed values. So w0 ∼ w7 are determined. Then we give
m3i+1 to random value for 0 6 i 6 7. (There are 2128 cases.) Then for randomly
chosen m3i+1’s, m0 ∼ m35 satisfying the values of (4) ∼ (19) are automatically
determined by the property of multi-permutation. A permutaton B : E2 → E2,
B(a, b) = (B1(a, b), B2(a, b)), is a multipermutation if for every a, b ∈ E the
mappings Bi(a, ∗), Bi(∗, b) for i = 1, 2 are permutation on E. Therefore, we can
get m0 ∼ m35 satisfying w4 ∼ w7 with complexity 1.

Second : we repeat the first part of attack 264 times. Then we can get a m0 ∼ m35

satisfying w0 ∼ w7 with complexity 264.

Third : we repeat the second part of attack 2t times. Then we can get 2t m0 ∼
m35 satisfying w0 ∼ w7 with complexity 2t+64. We store such 2t (m0, · · · , m35, d0, · · · , d7).

Forth : Given a hash output o0||o1|| · · · ||o7, since the multipermutation is an
invertable permutation, we can invert o0||o1|| · · · ||o7 upto the output of Step 11
by giving arbitrary random value to m36 ∼ m42. Then Since w0 ∼ w7 is already
fixed, (40)∼(45) also are determined. And also through inverting process, (46)
is also fixed. Here we give a value to m34 such that (45) and (46) are satisfied.
Then we give arbitrary random values to m33 and m35. Now we have the output
of Step 5. Then we give a value to m31 such that (44) is satisfied. Then we give
arbitrary random values to m30 and m32. Then we give values to m27 and m28

such that (40) and (42) are satisfied. Then automatically, (36), (38) and (39) are
determined. So, m26 and m24 are also determined. Then with using the property

Fig. 3. First Part : Eight Steps.

… … … … … … … … …

Fig. 4. Second Part.

of multi-permutation we give a value to m25 such that (36) is satisfied. Then
(37) is automatically determined and then m29 is also determined. Therefore, we
can get m24 ∼ m42 satisfying w0 ∼ w7 with complexity 1. We know that since
eleven words are free, there are 2176 m24 ∼ m47.

Fifth : For each m24 ∼ m47 satisfying w0 ∼ w7, we get b0 ∼ b7 and then check
if bi = di for all i in the table stored at the third part of attack. we repeat the
forth part of attack 2128−t times.

Sixth : According to birthday attack, with high probability we can find (m0, · · · , m23,
d0, · · · , d7) and (m24, · · · , m47, b0, · · · , b7) such that bi = di for all i. Therefore,
given a hash output o0||o1|| · · · ||o7, we can find a padded preimage m0 ∼ m47

with complexity 2t+64 + 2128−t and memory 2t.

5 Conclusion

In this paper, we described a premiage attack on Parallel FFT-Hashing. Our
attack does not depend on the value of s, which means that the security anal-
ysis of collision resistance of Parallel FFT-Hashing [4, 5] can not guarantee the
security against the preimage attack. And also our attack can be used in case of
any word size (in this paper, we only consider 16-bit word size) in the same way.

Acknowledgement

We thank prof. Moti Yung for his valuable discussions.

References

1. T. Baritaud, H. Gilbert and M. Girault, FFT Hashing is not Collision-free, Euro-
crypt’92, LNCS 658, Springer-Verlag, pp. 35-44, 1992.

2. C.P. Schnorr, FFT-Hashing : An Efficient Cryptographic Hash Function, Presented
at the rump session of the Crypto’91.

3. C.P. Schnorr, FFT-Hash II, efficient hashing, Eurocrypt’92, LNCS 658, Springer-
Verlag, pp. 45-54, 1992.

4. C.P. Schnorr and S. Vaudenay, Parallel FFT-Hashing, FSE’93, LNCS 809, Springer-
Verlag, pp. 149-156, 1994.

5. C.P. Schnorr and S. Vaudenay, Black Box Cryptanalysis of Hash Networks based on

Mulitipermutations, Eurocrypt’94, LNCS 950, Springer-Verlag, pp. 47-57, 1995.

6. S. Vaudenay, FFT-Hash II is not yet Collision-free, Crypto’92, LNCS 740, Springer-
Verlag, pp. 587-593, 1993.

