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Abstract: This paper gives the definition of a coprime sequence and the concept of the 
lever function, describes the five algorithms and six characteristics of the REESSE1+ 
public-key cryptosystem based on three new hardnesses: the modular subset product 
problem, the multivariate arrangement problem, and the super logarithm problem in a 
prime field, shows the correctness of the decryption algorithm, and infers that the 
probability that a plaintext solution is not unique is nearly zeroth. The authors analyze the 
security of REESSE1+ against recovering a related plaintext from a ciphertext, extracting 
a related private key from a public key or a signature, and faking a digital signature via a 
public key or a known signature with a public key, discuss the super logarithm problem, 
and believe that the security of REESSE1+ is at least equal to the time complexity of 
O(2n) at present. At last, the paper expounds the idea of optimizing REESSE1+ through 
binary compact sequences. 
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1  Introduction 
The trapdoor functions for RSA [1] and ElGamal [2] public- key cryptosystems [3] are computationally 

one-way [4]. Along with the elevation of computer speeds, such one- wayness will be weakened. Hence, to 
enhance the one-wayness of a trapdoor function, sometimes a public-key cryptosystem is transplanted to a 
complex algebraic system from a simple one. For example, the ElGamal analogue in an elliptic curve group, 
namely the ECC cryptosystem, is more one-way or more secure than ElGamal itself [5]. However, this 
method is not suitable for all the existing cryptosystems.  

In some public-key cryptosystems, trapdoor functions can prevent a related plaintext from being 
recovered from a ciphertext, but cannot prevent a related private key from being extracted from a public 
key. For instance, in the MH knapsack cryptosystem [6], the subset sum problem which serves as a trapdoor 
function can not preclude a private key from being inferred through the Shamir method [7].  

Different from RSA, ElGamal and MH, REESSE1+ brings 3 independent variables into the general key 
transform, and is a type of multivariate or multifactor cryptosystem. Its security is not based on classical 
hardnesses: the subset sum problem, the integer factorization problem and the discrete logarithm problem, 
but on new hardnesses: the modular subset product problem, the multivariate arrangement problem, and the 
super logarithm problem. The modular subset product problem as a trapdoor function ensures the security 
of a plaintext encrypted, the multivariate arrangement problem triggered by the lever function ℓ(.) ensures 
the security of a private key, and the super logarithm problem in a prime field ensure the security of a 
digital signature.  

In this paper, unless otherwise specified, sign ‘%’ means ‘modulo’, and (a, b) represents the greatest 
common divisor of two integers. 

2  A Coprime Sequence and the Lever Function 
Definition 1 If A1, A2, …, and An are n integers which are each greater than 1, pairwise distinct and 

relatively prime, this series of integers is called a coprime sequence, namely a relatively prime sequence, 
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denoted by {A1, …, An}, and shortly {Ai}. 
Property 1 For any positive integer m ≤ n, if we select randomly m elements from {Ai} and construct a 

subset, i.e. a subsequence {Ax1, …, Axm}, the subset product G = Ax1 … Axm is uniquely determined, that is, 
the mapping from G to {Ax1, …, Axm} is one-to-one. G is also called a coprime sequence product. 

Proof: We employ apagoge.  
Because A1, …, An are pairwise relatively prime, for arbitrary Aj, Ak ∈ {A1, …, An}, there must exist 

gcd(Aj, Ak) = 1, namely there is not the same prime divisor between Aj and Ak. It manifests that the prime 
divisors of every element do not belong to any other elements. 

Presume that G is acquired from two different subsequences {Ax1, …, Axm} and {Ay1, …, Ayh}, hereby 

G = Ax1 … Axm = Ay1 … Ayh. 
Since the two subsequences are unequal, there must exist a certain element Aq which does not belong to 

the two sub- sequences at one time. 
Without loss of generality, let Aq ∈ {Ax1, …, Axm} and Aq ∉ {Ay1, …, Ayh}. 
In terms of the fundamental theorem of arithmetic [8], there must exist a prime number p which is the 

divisor of Aq. 
It is as above that the prime divisors of every element do not belong to any other elements, and thus the 

prime p must be the divisor of the product Ax1, …, Axm but not the divisor of the product Ay1, …, Ayh. It 
means that the integer G has two distinct prime factorizations, which is contrary to the fundamental 
theorem of arithmetic. 

Therefore, the mapping relation between G and {Ax1, …, Axm} is one-to-one. 

In the REESSE1+ cryptosystem, the general key transform is Ci ≡ Ai W ℓ(i) (% M), where ℓ(i) is an 
exponential. 

Definition 2 In a public key cryptosystem, the parameter ℓ(i) in the key transform is called the lever 
function, if it has the following features: 

• ℓ(.) is an injection from integers to integers, its domain is [1, n], and codomain (1, M). Let Łn represent 
the collection of all injections from the domain to the codomain, then ℓ(.) ∈ Ł n and |Ł n| ≥ A 

n 
n  = n (n – 

1) … 1. 
• The mapping between i and ℓ(i) is established randomly without an analytical formula, so every time a 

public key is generated, the function ℓ(.) is distinct. 
• There does not exist any dominant or special mapping from ℓ(.) to a public key. 
• An attacker have to consider all the arrangements of the sequence {ℓ(i) | i = 1, …, n} when extracting 

a related private key from a public key. Thus, if n is large enough, it is infeasible for the attacker to 
search the arrangements exhaustively. 

• The receiver owning a private key only needs to consider the accumulative sum of the sequence {ℓ(i)} 
when recovering a related plaintext from a ciphertext. Thus, the time complexity of decryption is 
polynomial in n, and the decryption is feasible. 

Obviously, there is the large amount of calculation on ℓ(.) at ‘a public terminal’, and the small amount of 
calculation on ℓ(.) at ‘a private terminal’. 

3  Design of the REESSE1+ Public Key Cryptosystem 

3.1 The Key Generation Algorithm 
This algorithm is employed by a third-party authority. Every user is given a pair of keys.  
Assume that S, T, Đ, đ are pairwise coprime integers, where the binary form of S only contains two ‘1’ 

bits respectively at the beginning and the end, T ≥ 2 n, Đ ≥ 2 n, and đ is a non-large integer. Let |x| denote the 
order of x % M, and ‘% –1’ denote ‘% (M – 1)’. 
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(1) Randomly generate a coprime sequence {A1, …, An}, and compute G = ∏ 

n   
i = 1 Ai . 

(2) Find a prime M > G making (S, M – 1) = 1, đ Đ T | (M – 1),  
and q | (M – 1) for any prime q ∈ [1, n + 4]. 

(3) Pick δ making (δ, M – 1) = 1, and |δ| = đ Đ T.  

(4) Compute α ← δ δ n, W ← G–1(α δ –1)1
 
/

 
S, β ← δ  

(δ +1)
 
W

 
S, and γ ← δ W 

n % M. 
(5) Produce pairwise distinct ℓ(1), …, ℓ(n) ∈ Ω = {i δ (% –1) | i = 5, …, n + 4}. 
(6) Compute {C1, …, Cn | Ci ← Ai W ℓ (i) % M, for i = 1, …, n}. 
At last, the public key is ({Ci}, α, β, γ), and the private key ({Ai}, {ℓ(i)}, W, δ, Đ, đ). S, T, and M are 

common. 
Remark: Ω = {i δ (% –1) | i = 5, …, n + 4} is not a unique selection ─ Ω = {i + δ (% –1) | i = 5, …, n + 4} 

for example. The principles for selecting Ω is that 1) ℓ(i) ≥ 5; 2) the elements in Ω are pairwise distinct; 3) 
decryption time complexity does not exceed O(n3). 

We know that in degree 5 or higher, the congruence x n ≡ c (% M) has a non-solvable Galois group. 
To seek a certain element x of order k, first do x ≡ c (M – 1) / k (% M), where c < M is an arbitrary integer, 

then test x by the algorithm 4.80 in section 4.6 of reference [3]. 

3.2 The Encryption Algorithm 
Assume that ({Ci}, α, β, γ) is the public key, and b1…bn is an n-bit plaintext block or symmetric key.  
(1) Set  ← 1, i ← 1. 
(2) If bi = 1,  ←  Ci % M. 
(3) Let i ← i + 1. If i ≤ n, go to (2), or else end. 
After the algorithm is executed, the ciphertext  is gained.  
Note that in encryption, α, β, and γ are not helpful. 

3.3 The Decryption Algorithm 
Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ) is the private key, and  is the ciphertext. 
(1) Compute  ←  (W –1)δ % M. 
(2) Set b1…bn ← 0, G ← , i ← 1. 
(3) If Ai | G, set bi ← 1 and G ← G / Ai. 
(4) Let i ← i + 1. If i ≤ n and G ≠ 1, go to (3). 
(5) If G ≠ 1, go to (1), or else end. 
At last, the b1…bn is the original plaintext block or symmetric key.  
This algorithm can always terminate normally as long as  is a true ciphertext 
Note that in decryption, {ℓ(i)}, Đ, and đ are not helpful. 

3.4 The Digital Signature Algorithm 
Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ) is the private key, F is a file or message which will be signed, and 

hash is a one-way compression function. 
(1) Let H ← hash(F), whose binary form is b1…bn. 

(2) Set k1 ← ∑ 

n 
i=1 bi ℓ(i), G0 ← ∏ 

n 
i=1 Ai

¬ bi . 

(3) Pick Q making Đ | (δ Q – W), đ ł ((δ Q)n – W n) (% –1). 
Compute R such that Q ≡ (R G0) 

S Hδ (%M). 
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(4) Compute U ← (R W k 1 – 1δ δ (δ +1)) 
Q

 
T % M.  

If đ ł ((δ +1)S U + ∑ 

n -1 
i=0 (δQ)n – 1 – i

 W i) (% –1), go to (3). 
At last, the signature (Q, U) on the file F is obtained, and sent to a receiver with F. 
Note that Q must not be generated repeatedly. 
In terms of the double congruence theorem (see sect. 3.6), we do not need V ≡ (R–1WG1)QUδ λ (% M) in 

the signature, where G1 = ∏ 

n 
i=1 Ai bi, and λ satisfies λ S ≡ ((δ +1) SU + ∑ 

n -1 
i=0 (δQ)n –1– i W i)(δQ – W) (% –1). It 

indicates đ Đ | λ. 
Clearly the probability of finding out suitable U is 1 / đ. Since đ is a non-large number, U can be found 

out at a good pace. 
Due to (S, M –1) = 1, computing R by Q ≡ (R G0) 

S
 Hδ (% M) may resort to the following theorem 1. 

Theorem 1 For the congruence x k ≡ c (% p) with p is prime, if (k, p – 1) = 1, every c has just one k-th 
root modulo p. Especially, let µ be the multiplicative inverse of k modulo (p – 1), then c µ % p is one k-th 
root. 

Further, we have theorem 2. 
Theorem 2 For the congruence x k ≡ c (% p), if k | (p – 1) and (k, (p – 1) / k) = 1, then when c is one k-th 

power residue modulo p, c 
µ % p is one k-th root, where µ is the multiplicative inverse of k modulo (p – 1) / 

k. 
The proofs of theorem 1 and 2 are referred to reference [9]. 
The solution obtained by theorem 1 and theorem 2 is called the trivial solution to the congruence x k ≡ c 

(% p), namely that solution which may be written as c to a certain power modulo p. 

3.5 The Identity Verification Algorithm 
Assume that ({Ci}, α, β, γ) is the public key, F is the file, and (Q, U) is a signature on it. 
(1) Let H ← hash(F), whose binary form is b1…bn. 

(2) Compute  ← ∏ 

n 
i=1 Ci

bi % M. 

(3) Compute X ← (α H Q –1) Q 
U Tα Q 

n
 
T % M, Y ← ( Q

 
T

 U –1)U S β U Tγ T % M. 
(4) If X ≡ Y, the identity is valid and F intact,  

otherwise the identity is invalid or F already modified. 
By running this algorithm, a verifier can judge whether the signature is genuine or fake, prevent the 

signatory from denying the signature, and do an attacker from modifying the file. 
The discriminant X ≡ Y (% M) at (4) is explained as follows: 

It is known from sect. 3.1 that α ≡ δ δ n ≡ δ (WG0G1) 
S (% M), β ≡ δ  

(δ +1)W
 
S (% M), and γ ≡ δ W n (% M). 

Let V ≡ (R –1W G1) QUδ λ (% M). Becauseλ meets λ S ≡ ((δ +1) S U + ∑ 

n -1 
i=0  (δQ)n – 1 – i

 W i)(δQ – W) (% –1), 
may let λ = k đ Đ, where k is a certain integer, and then 

Q QU
 V S ≡ (R G 0) S QU

 H QU
 δ QU

 (R –1W G1) Q U S δ λ S 
                               ≡ (W G0G1) QU S δ QU

 H QU δ λ S 

                               ≡ α QU
 H QU

 δ ((δ +1)
 
S

 
U + Σ

 

(δ Q) n – 1 – iW i) (δ Q – W) 

                               ≡ (α H) QU
 δ – 

(δ +1)W
 
S U δ δ (δ +1) Q

 
U S δ (δ 

Q)
 
n – W n 

                               ≡ (α H) QU
 β –U

 δ δ (δ +1) Q
 
U S α Q 

n
 γ –1 (% M). 

Transposition yields V S ≡ (α H Q –1) QUα Q 
n

 β –U
 γ –1

 δ δ (δ +1) QU
 
S (% M). Therefore, we have 

V ST ≡ (α H Q –1)QU
 
Tα Q 

n
 
T

 β –U
 
T

 γ –T
 δ δ (δ +1) QU S 

T 
                             ≡ X β –U

 
T

 γ –T
 δ δ (δ +1) QU S 

T (% M). 



The REESSE1+ Public-key Cryptosystem 

 5

In addition,  
U U V T ≡ (R W k 1 – 1

 δ δ (δ +1)) QU T (R –1W G1) QU T δ λ T 
                              ≡ (W k 1G1) QU T δ δ (δ +1) QU T δ λ T 

                              ≡  QU T δ δ (δ +1) QU T δ k đ Đ 
T 

                              ≡  QU T δ δ (δ +1) QU T (% M). 
Transposition yields V T ≡ (  

QT
 U –1)U δ δ (δ +1) QU

 
T (% M). Hence 

V S T ≡ ( Q TU –1) 
U S δ δ (δ +1) QU

 
S

 
T (% M). 

By the double congruence theorem, there is 
V S T ≡ X β –U

 
T

 γ –T
 δ δ (δ +1) Q

 
U S 

T ≡ ( Q TU –1) U S δ δ (δ +1) QU
 
S

 
T. 

Making transposition and counteraction gives X ≡ ( Q TU –1) 
U S β 

U T γ T (% M). 
Namely, X ≡ Y (% M). 

3.6 The Double Congruence Theorem 
Theorem 3 (The Double Congruence Theorem) Assume that p is a prime, and that s, t satisfying (s, t) = 

1 are two constants, then simultaneous equations 
x s ≡ a (% p) 
x t ≡ b (% p) 

have the unique solution if and only if a 
t ≡ b 

s (% p). 
What follows is the proof of theorem 3.  
Necessity: Assume that the simultaneous equations x s ≡ a (% p) and x t ≡ b (% p) have solutions. 
Let x0 be a solution to the two equations, then x0

s ≡ a (% p) and x0
t ≡ b (% p). 

Further, x0
s

 
t ≡ a 

t (% p) and x0
t s ≡ b 

s (% p) can be obtained. 
Therefore, x0

s t ≡ a 
t ≡ b 

s (% p). 
Sufficiency: Assume that a 

t ≡ b 
s (% p). 

According to the greatest common divisor theorem [8], there exists a pair of integers u and v making u s + 
v t = 1. Thus, 

x u s ≡ a 
u (% p), 

x v t ≡ b 
v (% p). 

The above two equations multiplying yields 
x u s + v t ≡ x ≡ a 

u  b 
v (% p). 

Furthermore, we have 
(a 

u  b 
v) s ≡ a 

u s b 
v s ≡ a 

u s a 
v t ≡ a 

u s + v t ≡ a, 
(a 

u  b 
v) t ≡ a 

u t b 
v t ≡ b 

u s b 
v t ≡ b 

u s + v t ≡ b. 
Accordingly, a 

u  b 
v is a solution to the original simultaneous equations. 

Uniqueness: Let x0 ≡ a 
u  b 

v (% p). 
Assume that another value x1 meets the equations x s ≡ a (% p) and x t ≡ b (% p) at one time.  
Then, it holds that 

x1
s ≡ a (% p), and x1

t ≡ b (% p). 
By comparison, we have x1

s ≡ x0
s and x1

t ≡ x0
t (% p). Transposing gives  

(x0 x1
–1) s ≡ 1 and (x0 x1

–1) t ≡ 1 (% p). 
If at least one of s and t is relatively prime to p – 1, by theorem 1, there must be x0 x1

–1 ≡ 1 (% p), namely 
x0 ≡ x1 (% p). 
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If neither s nor t is relatively prime to p – 1, let k = (s, p – 1), l = (t, p – 1). Then (s / k, p – 1) = 1 and (t / l, 
p – 1) = 1. Thus, there are (x0 x1

–1) k ≡ 1 and (x0 x1
–1) l ≡ 1. It is known from (s, t) = 1 that (k, l) = 1. In terms 

of the group theory [10], when (k, l) = 1, only the element ‘1’ belongs to two different sub-group at same 
time. Therefore, x0 x1

–1 ≡ 1, namely x1 = x0, and x0 bears uniqueness. 
To sum up, we prove theorem 3. 

3.7 Characteristics of REESSE1+ 
REESSE1+ owes the following characteristics compared with classical MH, RSA and ElGamal 

cryptosystems. 
• The key transform Ci ≡ Ai W ℓ(i)

 (% M) is a compound function, and contains three independent 
variables. Further, C1, C2, …, and Cn contain 2n + 1 unknown variables. Hence, REESSE1+ is a type 
of multivariate cryptosystem. 

• If any of Ai, W and ℓ(i) is determined, the relation between the two remainders is still nonlinear ─ thus 
there is very complicated nonlinear relations among Ai, W and ℓ(i). 

• There is indeterminacy of ℓ(i). On condition that Ci and W are determined, Ai and ℓ(i) can not be 
determined, and even have no one-to-one relation when W is a non-generator. On condition that Ci and 
Ai are determined, W and ℓ(i) can not be determined, and also have no one-to-one relation for (ℓ(i), M 
– 1) > 1. This is the radical reason that the continued fraction analysis method is ineffectual (see IV). 

• There is insufficiency of the key mapping. A private key in REESSE1+ includes {Ai}, {ℓ(i)}, W and δ 
four main parts, but there is only a dominant mapping from {Ai} to {Ci}. Thereby, the reversibility of 
the function is not obvious, and inferring a private key is intractable through mathematical methods. 

• The security of REESSE1+ is not based on a single hardness, but on multiple hardnesses: the modular 
subset product problem, multivariate arrangement problem, and super logarithm problem. 

• Since the length and the elements of the set Ω are not fixed, REESSE1+ is a sort of flexible public key 
cryptosystem. 

3.8 Correctness of the Decryption Algorithm 
Because ( * 

M , ·) is an Abelian, namely exchangeable group, ∀k ∈ [1, M), there is 
W k (W –1) k ≡ W k W – k ≡ 1 (% M). 

Let b1…bn be an n-bit plaintext, and k = (∑ 

n 
i=1 ℓ(i)bi)δ –1 % –1. 

Note that due to (δ, M – 1) = 1, there exists δ –1 % –1. 
We need to prove that  (W –δ ) k ≡ G (% M). 

According to sect. 3.2,  ≡ ∏ 

n 
i=1 Ci

b
 i (% M), where Ci ≡ Ai W ℓ(i) (% M), hence 

 (W –δ ) k ≡ ∏ 

n 
i=1 Ci

bi (W –δ ) 

k ≡ ∏ 

n 
i=1 (Ai W ℓ(i))bi (W –δ ) 

k 

                              ≡ ∏ 

n 
i=1 Ai

bi (W ∑ (ℓ(i)
 
bi) )(W –δ ) 

k  

                              ≡ ∏ 

n 
i=1 Ai

bi (W δ ) k (W –δ ) 

k  

                              ≡ ∏ 

n 
i=1 Ai

bi  

                              ≡ G (% M). 
The above process gives out a method for seeking G. 
Note that in practice, the plaintext b1…bn is unknowable in advance, so we have no way to directly 

compute k. However, because the range of k ∈ [5, δ –1∑ 

n 
i=1 ℓ(i)] is very narrow, we may search k 

heuristically by multiplying (W 
–1) 

δ % M, and verify whether G is equal to 1 after it is divided exactly by 
some items of {Ai}. It is known from sect. 3.3 that the original plaintext b1…bn is acquired at the same time 
the condition G = 1 is satisfied. 
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3.9 Uniqueness of a Plaintext Solution to a Ciphertext 
Because {Ci} is one non-coprime sequence, the mapping from the subsequence {Cx1, …, Cxm} to the 

product  is theoretically many-to-one. It might possibly result in the nonuniqueness of the plaintext 
solution b1…bn when  is being unveiled. 

Suppose that the ciphertext  can be obtained from two different subsequence products, that is, 
 ≡ Cx1 … Cxm ≡ Cy1 … Cyh (% M). 

Then, 
(Ax1 … Axm)W k 1 ≡ (Ay1 … Ayh)W k 2 (% M), 

where k1 = ℓ(x1) + … + ℓ(xm), and k2 = ℓ(y1) + … + ℓ(yh). 

Without loss of generality, let k1 ≥ k2 . Because ( * 
M , ·) is an Abelian group, there is 

W 
k

 1 – k
 2 ≡ (Ay1 … Ayh)( Ax1 … Axm)–1 (% M), 

which is written shortly as W k 1 – k
 2 ≡ ∏ 

h 
i=1 Ayi ∏ 

m 
j=1 Axj

–1 (% M). 

Let θ ≡ W k 1 – k
 2 ≡ (W δ ) (k 1 – k

 2) δ –1 (% M). 

This formula means when the plaintext b1…bn is not unique, the value of W δ must be relevant to θ. The 
contrapositive assertion equivalent to it is that if the value of W δ is irrelevant to θ, b1…bn will be unique. 
Thus, we need to consider the probability that W δ takes a value relevant to θ. 

If an adversary tries to attack an 80-bit symmetric key through the exhaustive search, and a computer can 
verify trillion values per second, it will take 38334 years for the adversary to verify up all the potential 
values. Hence, currently 80 bits are quite enough for the security of a symmetric key. 

When the length n of a key sequence is equal to 80, the number of the values containing the repeated in 
the form ∏ 

h 
i=1 Ayi ∏ 

m 
j=1 Axj

–1 is at most 380 ≈ 21.585 × 80 = 2127. Because A1
–1… An

–1 are not necessarily coprime, 
the value of ∏ 

h 
i=1 Ayi ∏ 

m 
j=1 Axj

–1 may possibly occur repeatedly. 
On the other hand, the first 80 primes may constitute a coprime sequence with a minimum sequence 

product, which makes it possible that the modulus M is roughly equal to 2552 or M roughly equal to 2384 
with binary compact sequence optimization. Therefore, when n ≥ 80, the probability that W 

δ takes values 
relevant to θ is less than (2132127) / 2384 = 1 / 2244, where 213 is greater than or roughly equal to (k1 – k2)δ –1, 
namely the number of W 

δ meeting (W δ) (k 1 – k
 2)δ –1 ≡ ∏ 

h 
i=1 Ayi ∏ 

m 
j=1 Axj

–1 (% M) is at most 213. Clearly, it is 
almost zero. This probability will further decrease when W δ is prime. 

The above analysis shows that the probability that the plaintext solution b1…bn is not unique is almost 
zero; thus the decryption algorithm can always recover the original plaintext from the ciphertext , which 
is also verified by the program in C language. 

4  Securities of Encryption and Decryption 

4.1 Extracting a Private Key from a Public Key Being the Multivariate Arrangement Hardness 
A public key may be regarded as the special cipher of a related private key. Since a ciphertext is the 

effect of a public key and a plaintext, the ciphertext has no direct help to inferring the private key. 
In the REESSE1+ system, the key transform is Ci ≡ Ai W ℓ (i) (% M), and ℓ(i) ∈ {i δ (% –1) | i = 5, …, n + 

4}. 
For a specific Ci, assume that the corresponding Ai and W are revealed under some extreme condition. 

Due to ℓ(i) ∈ (1, M), obviously, by W ℓ
 
(i) ≡ Ci Ai

–1 (% M) seeking ℓ(i) is the DLP. Thus, under normal 
situations, inferring a related private key from a public key is harder than the DLP. 

In what follows, we discuss the case the n items of {Ci} are considered all together.  
If an attacker tries to extract a related private key from a public key, it is equivalent to solve the 

simultaneous equations 



The REESSE1+ Public-key Cryptosystem 

 8

C1 ≡ A1 W ℓ
 
(1) (% M) 

C2 ≡ A2 W ℓ
 
(2) (% M) 

…… 
Cn ≡ An W ℓ

 
(n) (% M). 

The above equation system contains n known variables, and 2n + 1 unknown variables. 
Assume that the Þ > n is the largest prime constant in the REESSE1+ cryptosystem, then each Ai ∈ Γ = 

{2, …, Þ}, where Γ contains at least n primes. Let Ñ be the number of the potential coprime sequences in 
the interval [2, Þ], then Ñ > A 

n 
n  = n!. 

If let ℓ(1)δ –1 = … = ℓ(n)δ –1 = 5, and each Ai traverse Γ, then can obtain theoretically 5nÞ values where 
exists the true value of W 

δ. Therefore, the number of potential values of W 
δ will decrease to 5nÞ. Note that 

in fact computing all five W 
δ from (W 

δ) 
5 = Ci Ai

–1 (% M) is intractable when 5 | (M – 1) and (M – 1) / 5 > 
280 (see sect. 5.1).  

Suppose that the attacker guesses the sequences {Ai} and {ℓ(i)δ –1}, then figures out the n values of W 
δ in 

O(TW) time. If these values are all identical, the guessing is thought right. Notice that for i-th equation, Ai is 
allowed to take any element of Γ as long as it is pairwise coprime to A1, …, Ai – 1, and ℓ(i)δ –1 is allowed to 
take any element of {5, …, n + 4} as long as it is pairwise different from ℓ(1), …, ℓ(i – 1), which means 
that guessing {Ai} or {ℓ(i)δ–1} is an arrangement problem. Thereby, the time complexity of this attack is 
O(Ñ (n!)TW) > O(2 n). 

Suppose that the attacker guesses W 
δ and the sequences {ℓ(i)δ –1}, then compute the sequence {Ai} in 

O(TA) time. If {Ai} is a coprime sequence, the guessing is thought successful. Because guessing {ℓ(i)δ –1} is 
also an arrangement problem, the time complexity of this attack is at least O(5nÞ (n!)TA) > O(2 n). 

Suppose that the attacker guesses W 
δ and the sequences {Ai}, then find out the sequence {ℓ(i)δ –1} in 

O(Tℓ) time. If every ℓ(i)δ –1 ∈ {5, …, n + 4} and is pairwise distinct, the guessing is thought successful. 
Because guessing {Ai} is likewise an arrangement problem, the time complexity of this attack is at least 
O(5nÞ Ñ Tℓ) > O(5nÞ (n!)Tℓ) > O(2n). 

Since W, δ and (G0G1) are all unknown, it is impossible to infer W, δ or (G0G1) from α ≡ δ (WG0G1) S (% 
M). 

The expressions α ≡ δ δ n, β ≡ δ (δ +1)W 
S and γ ≡ δ W 

n (% M) only contain two unknown variables, but the 
time complexity of finding δ and W will be at least O(2n) (see sect. 5.2.3). 

Further, we can argue that the time complexity of the continued fraction attack is O(n!) > O(2 n). 
In summary, the time complexity of inferring a related private key from a public key is at least O(2n). 

4.2 Recovering a Plaintext from a Ciphertext and a Public Key Being the Modular Subset 
Product Hardness 

In terms of sect. 3.2, the ciphertext is  ≡ ∏ 

n   
i = 1 Ci

b i (% M), where b1…bn is a plaintext block or a 
symmetric key, and {C1, …, Cn} is a public key. 

Observe an extreme case. Assume that C1 = … = Cn = C, then  ≡ ∏ 

n   
i = 1C 

b i (% M). It can be written as 

 ≡ C ∑ b i (% M), 

where i is from 1 to n. 

Because we need not only to figure out the value of ∑ 

n   
i = 1 bi but also to find out the position of every bi = 

1, we express equi- valently the sum ∑ 

n   
i = 1 bi as ∑ 

n   
i = 1 bi 2 i – 1, and let x = ∑ 

n   
i = 1 bi 2 i – 1. Correspondingly, 

 ≡ C 
x (% M). 

The above manifests that seeking the exponent x of C is the DLP. 
The above process is reversible. It shows that if the plaintext recovery problem can be solved, the DLP 

can be solved. Therefore, when C1 ≠ … ≠ Cn, attempting to recover a related plaintext from a known 
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ciphertext and public key is more intractable than the DLP, which is essentially different from the subset 
sum problem or the knapsack problem. 

On the other hand, there exists the exhaustive search attack on b1…bn, and clearly, the time complexity 
of this attack is O(2n). 

Notice that when  is converted into the coprime sequence product G, computing the plaintext b1…bn is 
tractable. Namely there is a trapdoor for . Hence, the plaintext security of REESSE1+ is built on a 
trapdoor function such that computing a subset product from subset elements is tractable while seeking the 
involved elements from the subset product is intractable. 

4.3 Avoiding the Adaptive-chosen-ciphertext Attack 
Absolute most of public key cryptographies will probably be faced by the adaptive-chosen-ciphertext 

attack apart from ElGamal, ECC and so on, although this attack method still stays on a concept level, and is 
not implemented in the concrete applications. 

It is lucky that REESSE1+ can avoid the adaptive-chosen- ciphertext attack. In the REESSE1+ 
cryptosystem, a public key is a sequence, and the number of its potential arrangements is n!, and thus a 
secret time function may be chosen. Every time encryption is done, a different arrangement of the public 
key according to the time is employed to encrypt a plaintext. In this way, even if the plaintexts encrypted 
are the same, due to different encrypting times, the related ciphertexts are likely unequal. Of course, should 
let those Ci to which values of the plaintext bits corresponding are all 1 permute as much as possible. So 
and so only can the multiple ciphertexts of the identical plaintext be different from one another. 

Another approach to avoiding the above attack is to append a stochastic fixed-length binary sequence to 
the terminal of every plaintext block when it is encrypted.  

5  Securities of Digital Signature and Identity Verification 

5.1 Extracting a Related Private Key from a Signature Being a Hardness 
Assume that p is a prime, and k | (p – 1). In terms of the probabilistic algorithm in section 1.6 of 

reference [11], the time complexity of finding out a random solution to x 
k ≡ c (% p) is max(O(2 k – 1), O(p / 

k)). Thus, when k > 80 or p / k > 2 80, this algorithm is ineffectual currently.  
However, when (k, (p – 1) / k) = 1 with k | (p – 1) or  (k, p – 1) = 1, the trivial solution to x 

k ≡ c (% p) 
can be acquired in terms of theorem 1 and 2.  

It is known from the digital signature algorithm that 
Q ≡ (R G0) 

S
 Hδ (% M), and U ≡ (R W k 1 

–
 
1δ δ (δ +1)) Q 

T (% M).  
When an attacker wants to seek R G0, or R W k 1 

–
 
1δ δ (δ +1), it is equivalent to solving the congruences 

x S ≡ QH –1δ –1 (% M), and x QT ≡ U (% M). 
For the first equation, because δ is unknown, and the right of the equation is not a constant, it is 

impossible to solve the equation for R G0. If δ is guessed, the probability of hitting δ is 1 / |δ| < 1 / 2 n.  
For the second equation, due to T | (M – 1), there is (Q T, M – 1) ≥ T. If there exists the trivial solution to 

the equation, the probability that it is just the specific solution (R W k 1 
–

 
1δ δ (δ +1)) is equal to or less than 1 / T 

≤ 1/2n. Even though (R W k 1 
–

 
1δ δ (δ +1)) is found out, due to the randomicity of R ∈ (1,M –1), neither of W k 1 

–
 
1 

and δ δ (δ +1) can be determined. 
Therefore, the time complexity of extracting a related private key from a signature is at least O(2n). 

5.2 Faking a Digital Signature only through a Public Key Being a Hardness 
Assume H is the hash value of F, (Q, U) is a signature on F, then the condition discriminant 

(α H Q –1) Q 
U Tα Q 

n
 
T ≡ ( Q

 
T

 U –1)U S β U Tγ T (% M) 
holds. Due to an equation with the two variables, the value of a variable may be supposed by an attacker. 
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However, supposing a value and seeking the other is the super logarithm problem. 

5.2.1 The Super Logarithm Problem 

Assume that g ∈ * 
p  is a generator, where p is prime, then {y | y ≡ g x (% p), x = 1, …, p – 1} = * 

p
 [10]. 

Assume that n satisfying (k, p – 1) = 1 is an integer, then also {y | y ≡ x k (% p), x = 1, …, p – 1} = * 
p

 [9]. 
Namely, ∀x ∈ [1, p –1], y ≡ g x (% p) or y ≡ x k (% p) with (k, p –1) = 1 is a self-isomorph of the group * 

p . 
However, for the x 

x operation, {y | y ≡ x x (% p), x = 1, …, p – 1} = * 
p  does not hold, that is, 

{y | y ≡ x x (% p)，x = 1, …, p – 1} ≠ * 
p . 

For example, when p = 11, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 3, 4, 5, 6}, where 33 ≡ 66 ≡ 88 ≡ 5 (% 
11). 

When p = 13, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 3, 4, 5, 6, 9, 12}, where 77 ≡ 1111 ≡ 6 (% 13), and 
11 ≡ 33 ≡ 88 ≡ 99 ≡ 1212 ≡ 1 (% 13). 

When p = 17, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 2, 4, 8, 9, 10, 12, 13, 14}, where 22 ≡ 1212 ≡ 4 (% 
17), 66 ≡ 1515 ≡ 2 (% 17), and 1010 ≡ 1414 ≡ 2 (% 17). 

The above examples illustrate that {y ≡ x x (% p) | x = 1, …, p – 1} cannot construct a complete set for a 
group. Furthermore, mapping from x to y is one-to-one sometimes, and many-to-one sometimes. That is, 
inferring x from y is indeterminate, x is non-unique, and even inexistent. Thus, x 

x has extremely strong 
irregularity, and is essentially distinct from g x and x k. 

We consider two functions over the real set : y = f(x) = g x, and y = ϕ (x) = x x. 
Their inverse functions, the derivations of which are omitted, are respectively 

x = f – 1(y) = logg y,  
and x = ϕ – 1(y) = y logg y / ((y’ – y) logg e), 

where y’ = x 
x
 (1 + logg x / logg e) denotes a derivative, and the constant e = 2.7182818…. 

Further, ϕ –1(y) = y f –1(y) / ((y’ – y) logg e). 
Assume that we already know y0 satisfying y0 = x0

x
 0 and y0 = g 

x
 0'’. Apparently, if ϕ –1(y0), namely x0 can 

be found out, f –1(y0), namely x0’ can be figured out. This means that the time complexity of computing f – 1(y) 
is less than or equal to that of computing ϕ – 1(y). 

Contrariwise, if f –1(y0), namely x0’ can be found out, ϕ –1(y0), namely x0 can not be figured out since y0’ is 
the function of x0, and has no solution in polynomial time. This means that the time complexity of 
computing f–1(y) is not equal to that of computing ϕ –1(y). 

To sum up, the time complexity of seeking ϕ –1(y) is greater than that of seeking f–1(y). 
Similarly, this fact should hold in the finite field (p), because the discreteness of a finite field does not 

weaken the computational complexity of the identical problem over a continuous interval. For instance, 
computing x = f –1(y) = logg y is easy in a continuous interval while hard in a finite field. 

In summary, we think that the x x ≡ c (% p) problem is harder than the g x ≡ c (% p) problem. Hence, the 
former is called the super logarithm hardness. It is emphasized that the super logarithm hardness is more 
suitable for doing signature since it owns non-uniqueness. 

Note that to attempt to solve the super logarithm problem in light of the Chinese Remainder Theorem is 
specious. 

At present there is no better method for seeking a super logarithm than the exhaustive search, and thus 
the time complexity of the solution to x x ≡ c (% p) may be expected to be O(p) > O(2n), where n is the 
length of a message digest. 

5.2.2 Faking a Signature by the Verification Algorithm Being the Super Logarithm Problem   
Assume that F is an arbitrary file, and H is its hash output. In terms of the discriminant 
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(α H Q –1) Q 
U Tα Q 

n
 
T ≡ ( Q

 
T

 U –1)U S β U Tγ T (% M), 
an attacker may suppose the value of a variable. 

If suppose the value of Q, no matter whether U exists or not, seeking U is the super logarithm hardness.  
Similarly, if suppose the value of U, seeking Q is the super logarithm hardness. 
If the attacker hits the small đ, and raises either side of the discriminant to the power of đ, then when Đ | 

(δ Q – W), there is 
(α H Q –1) 

đ
 
QU T ≡ ( Q

 
T

 U –1) 
đ

 
U S β đ 

U T (% M). 
Further, (α H Q –1) 

đ
 
Q T ≡ ( Q

 
T

 U –1) 
đ S β đ T (% M).  

Hereat, if suppose the value of Q which is not repeated and known, U may possibly be worked out in 
polynomial time. However, Q and U must satisfy both the discriminant and Đ | (δ Q – W), which is 
impossible since δ and W are unknown. 

5.2.3 Faking a Signature by the Signature Algorithm Being the Exponential Time Problem 

Due to Q ≡ (R G0) 
SHδ, U ≡ (R W k 1 

–
 
1δ δ (δ +1)) Q 

T and V ≡ (R –1W G1) 
QUδ 

λ (% M), an attacker may attempt 
the following attack method. 

Let a c ≡ (αδ –1) 
1 / S, and b c ≡  (% M). When δ is sought, with supposing the value of a, c and b may be 

figured out. 

Let Q ≡ a 
SHδ, U ≡ b Q 

Tδ δ (δ +1)
 
Q

 
T, and V ≡ c Q 

Uδ λ (% M), where λ meets λ S ≡ ((δ +1) S U + ∑ 

n -1 
i=0  (δQ)n – 1 – i

 

W i)(δQ – W) (% –1), and Q,U make Đ | (δQ – W) and đ | ((δ +1) S U + ∑ 

n -1 
i=0  (δQ)n – 1 – i

 W i) (% –1). If the 
attacker seeks δ and W such taht 
                                     α ≡ δ δ n (% M)   

β ≡ δ (δ +1)W 
S  (% M)                              (*1) 

                                     γ ≡ δ W 
n (% M), 

then the attack is successful. 
Can δ and W be sought? If δ exists, there is 

                                  α W 
n ≡ γ δ n (% M) 

β W 
n ≡ γ (δ +1)W 

S  (% M). 
Note that because possibly (W n, δ n) > 1, (*2) is not a sufficient condition for (*1) to have solutions. 
Let g be a generator of ( * 

M , ·), by means of Index-calculus method for discrete logarithms [3], figure out  
q, u, and v such that g 

q ≡ α, g 
u ≡ β, and g 

v ≡ γ (% M), obtain 
                                 g 

qW 
n ≡ g 

v
 δ n (% M) 

g 
u

 W 
n ≡ g 

v (δ +1)W 
S  (% M). 

Accordingly,  
                                 qW n ≡ vδ n (% –1) 

uW n ≡ v (δ +1)W S (% –1). 
If (q, M – 1) | v, and the trivial solution to x 

n ≡ c (% – 1) exists, then W ≡ (q–1 v)1
 
/ n

 δ (% – 1). Further, if 
W –1 % –1 exists, there is  

u(q–1v) 
n –1

 
/

 
n

 δ n –1 ≡ v (δ +1) S (% –1). 
Transparently, the above equation is a true polynomial of degree n – 1, which can not be solved via 

discrete logarithms. If Euler phi function ϕ(M –1) is worked out, the attacker may seem to resort to the 
probabilistic algorithm in section 1.6 of reference [11]. However, the running time of this algorithm is 
max(O(2 n – 2), O(ϕ(M –1) / (n –1))). When n > 80 or ϕ(M –1) / (n –1) > 2 

80, seeking δ is infeasible at 
present. Furthermore, when (u(q–1v) 

n –1
 
/

 
n, M –1) ł v, doing division of polynomials is infeasible.  

(*2)
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5.3 Faking Another Signature through a Known Signature with a Public Key Being a Hardness 
Given the file F and a signature (Q, U) on it, and assume that there exists another file F’ with 

corresponding H’ and ’. Then, if an arbitrary (Q’, U’) satisfies 

(α H’ Q’ –1) Q’
 
U

 
’

 
Tα Q’

 
n

 
T ≡ (’ Q’

 
T

 U’ –1)U
 
’ S β U 

’
 
Tγ T (% M), 

it is a signature fraud on F’. 
According to the stipulation in the signature algorithm, Q can not be generated repeatedly, but the value 

of U is allowed to be utilized repeatedly.  
If let U’ = U, no matter whether the preceding equation has solutions or not, seeking Q’ is the super 

logarithm hardness. 
If several of the pair (Q, U) are known, because R involved in U is random, and there is not functional or 

statistical relation among different U, they are not helpful to solving the super logarithm problem. 
Therefore, forging another signature via a known signature with a public key is the super logarithm 

hardness. 

5.4 Faking a Signature through a Chosen-plaintext Being a Hardness 

Due to H = b1…bn,  ≡ ∏ 

n 
i=1 Ci

bi (% M), there is not a linear expression relation between H and . 

It is understood from the discriminant (α H Q –1) QU
 
Tα Q 

n
 
T ≡ ( Q

 
T

 U –1)U S β U 
Tγ T (% M) that  

H QU T ≡ ( Q
 
T

 U –1)U S β U 
Tγ T (α –1 Q) QU Tα –Q

 
n

 
T (% M). 

Assume that Q and U are known. Since  is unknown, it is impossible to seek H by the above 
congruence. 

It is also understood from the discriminant  

 QU ST ≡ U U S β –U T γ –T (α H Q –1) Q 
U

 
Tα Q 

n
 
T (% M). 

Assume that H is a constant irrelevant to , and then the trivial solution for  may be possibly found out. 
However, it is harder than the DLP to infer H from  (see sect. 4.2). 

6  Conclusions 
The REESSE1+ cryptosystem may be applied to data encryption and digital signature. If it is only 

applied to digital signature, the constraint M > G at step 2 in the key generation algorithm may be removed. 
If the constraint M > G can not be removed, then when n ≥ 80, the modulus M will be comparatively 

large. It will cause both increase in key lengths and, worse than all, decrease in algorithmic speeds. For 
example, log2 M ≥ 553 (to select the first 80 primes as a coprime sequence make the sign ‘=’ hold) when n 
= 80, log2 M ≥ 694 when n = 96, log2 M ≥ 840 when n = 112, and log2 M ≥ 990 when n = 128. Thus, the 
theoretical algorithms of REESSE1+ must be optimized. 

The basic idea of optimization is to make use of binary compact sequences. That is, the mapping is not 
regarded as one to one but as three items to two bits between a non-coprime sequence and a symmetric key. 
(or a plaintext block). The n-bit symmetric key is partitioned evenly into n / 2 units in order, and every unit 
has 2 bits and 4 combinations, namely 00, 01, 10, and 11. Let 00 map to 1, and the others do respectively to 
the three consecutive items of {Ci}. After optimized, the bit-length of M will decrease to 384 when n = 80, 
and 544 when n = 112. 

Through the optimization based on the binary compact sequence, the decryption time complexity of the 
REESSE1+ cryptosystem is reduced to O(n2) from O(n3). Through the integration of a coprime sequence 
and the lever function ℓ(.), we exchange the very slight cost of operations for the great security of the 
REESSE1+ cryptosystem. 
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