
The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

The REESSE1+ Public-key Cryptosystem
 A Multiproblem Public-key Cryptosystem

Shenghui Su 1, 2, and Shuwang Lü 3
1 College of Computer Science, Beijing University of Technology, Beijing 100022, P.R.China

2 School of Info Engi, University of Science & Technology Beijing, Beijing 100083, P.R China
sheenway@126.com

3 School of Graduate, Chinese Academy of Sciences, Beijing 100039, P.R.China
swlu@ustc.edu.cn

Last Updated September 30, 2007

Abstract: This paper gives the definition of a coprime sequence and the concept of the
lever function, describes the five algorithms and six characteristics of the REESSE1+
public-key cryptosystem based on three new hardnesses: the modular subset product
problem, the multivariate arrangement problem, and the super logarithm problem in a
prime field, shows the correctness of the decryption and verification algorithms, and
infers that the probability that a plaintext solution is not unique is nearly zeroth. The
authors discuss the relation between the lever function and a random oracle, and analyze
the security of REESSE1+ against recovering a plaintext from a ciphertext, extracting a
private key from a public key or a signature, and faking a digital signature via a public
key or via known signatures with a public key. On the basis of analysis, believe that the
security of REESSE1+ is at least equal to the time complexity of O(2n) at present. At last,
expound the idea of optimizing REESSE1+ through binary compact sequences.
Keywords: Multiproblem public-key cryptosystem, Coprime sequence, Security, Lever
function, Super logarithm problem, Double congruence theorem.

1 Introduction
The trapdoor functions for RSA [1] and ElGamal [2] public-key cryptosystems [3] are computationally

one-way [4][5], which guarantees that, for a sufficiently large setting of a security parameter such as a
modular length or a sequence length, “breaking” the cryptosystem will take much more effort than using
the cryptosystem. This is referred to as asymptotic security in which the advantage of any computationally
bounded adversary is negligible [6]. Asymptotic security is distinguished from concrete security or exact
security which is practice-oriented and aims to give more precise estimates of the computational
complexities of attack tasks [7].

Along with the elevation of computer speeds, the security parameter will become larger and larger.
Therefore, to decrease the bit-length of a security parameter and to enhance the one-wayness of a trapdoor
function, sometimes a public-key cryptosystem is transplanted to a complex algebraic system from a simple
one. For example, the ElGamal analogue in an elliptic curve group, namely the ECC cryptosystem, is more
efficient and more one-way than ElGamal itself. By now, an algorithm for ECC discrete logarithms of

complexity sub-exponential in the bit- length of a modulus has not been discovered yet [8]. However, this
method is not suitable for all the existing cryptosystems.

In some public-key cryptosystems, trapdoor functions can prevent a related plaintext from being
recovered from a ciphertext, but cannot prevent a related private key from being extracted from a public
key. For instance, in the MH knapsack cryptosystem [9], the subset sum problem which serves as a trapdoor
function can not preclude a private key from being inferred through the Shamir method [10]. It is should be
noticed that when the knapsack density D < 1, the subset sum problem will degenerate to a polynomial time
problem from a NPC problem thanks to the L3 base-reduced algorithm [11][12] which is employed for finding
the shortest vector or a approximately shortest vector of a lattice base [13].

Different from MH, RSA, and ElGamal, REESSE1+ brings 3 independent variables into the general key
transform. Its security is not based on the classical or arisen hardnesses: the subset sum problem, the integer
factorization problem, the discrete logarithm problem and the shortest vector problem, but on three new

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

computational hardnesses: the modular subset product problem, the multivariate arrangement problem, and
the super logarithm problem. The modular subset product problem as a trapdoor function ensures the
security of a plaintext encrypted, the multivariate arrangement problem triggered by the lever function ℓ(.)
ensures the security of a private key, and the super logarithm problem in a prime field ensures the security
of a digital signature.

It is not difficult to understand that if the security of a public-key cryptosystem is based on not less than
three hardnesses each of which can not be solved in polynomial time, this cryptosystem may be called a
multiproblem cryptosystem. Clearly, The security of a multiproblem cryptosystem is equivalent to that
hardness whose time complexity is smallest in all the involved hardnesses.

Accordingly, REESSE1+ is a type of multiproblem cryptosystem. A multiproblem cryptosystem must be a
multivariate one or multiparameter one because only multiple variables can bring in multiple hardnesses.
Correspondingly, REESSE1+ may be also regarded as a type of multivariate system in a broad sense.

The essence of the multivariate cryptosystem does not lie in what its key transform is a set of quadratic
polynomials but what its general key transform contains at least three independent variables.

In this paper, unless otherwise specified, sign ‘%’ means ‘modulo’, and 〈a, b〉 represents the greatest
common divisor of two integers. Let ‘|x|’ denote the order of x % M, and ‘% –1’ denote ‘% (M – 1)’.

2 A Coprime Sequence and the Lever Function
Definition 1 If A1, A2, …, and An are n integers which are each greater than 1, pairwise distinct and

relatively prime, this series of integers is called a coprime sequence, namely a relatively prime sequence,
denoted by {A1, …, An}, and shortly {Ai}.

Property 1 For any positive integer m ≤ n, if we select randomly m elements from {Ai} and construct a
subset, i.e. a subsequence {Ax1, …, Axm}, the subset product G = Ax1 … Axm is uniquely determined, that is,
the mapping from G to {Ax1, …, Axm} is one-to-one. G is also called a coprime sequence product.

Proof: By reduction to absurdity.
Because A1, …, An are pairwise relatively prime, for arbitrary Aj, Ak ∈ {A1, …, An}, there must exist 〈Aj,

Ak〉 = 1, namely there is not the same prime divisor between Aj and Ak. It manifests that the prime divisors
of every element do not belong to any other elements.

Presume that G is acquired from two different subsequences {Ax1, …, Axm} and {Ay1, …, Ayh}, hereby

G = Ax1 … Axm = Ay1 … Ayh.
Since the two subsequences are unequal, there must exist a certain element Aq which does not belong to

the two subsequences at one time.
Without loss of generality, let Aq ∈ {Ax1, …, Axm} and Aq ∉ {Ay1, …, Ayh}.
In terms of the fundamental theorem of arithmetic [14], there must exist a prime number p which is the

divisor of Aq.
It is as above that the prime divisors of every element do not belong to any other elements, and thus the

prime p must be the divisor of the product Ax1, …, Axm but not the divisor of the product Ay1, …, Ayh. It
means that the integer G has two distinct prime factorizations, which is contrary to the fundamental
theorem of arithmetic.

Therefore, the mapping relation between G and {Ax1, …, Axm} is one-to-one.

In the REESSE1+ cryptosystem, the general key transform is Ci ≡ Ai W ℓ(i) (% M), where ℓ(i) is an
exponential.

Definition 2 In a public key cryptosystem, the parameter ℓ(i) in the key transform is called the lever
function, if it has the following features:

• ℓ(.) is an injection from integers to integers, its domain is [1, n], and codomain (1, M). Let Łn represent
the collection of all injections from the domain to the codomain, then ℓ(.) ∈ Ł n and |Ł n| ≥ A

n
n .

• The mapping between i and ℓ(i) is established randomly without an analytical formula, so every time a

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

public key is generated, the function ℓ(.) is distinct.
• There does not exist any dominant or special mapping from ℓ(.) to a public key.
• An attacker have to consider all the arrangements of the sequence {ℓ(i) | i = 1, …, n} when extracting

a related private key from a public key. Thus, if n is large enough, it is infeasible for the attacker to
search the arrangements exhaustively.

• A receiver owning a private key only needs to consider the accumulative sum of the sequence {ℓ(i)}
when recovering a related plaintext from a ciphertext. Thus, the time complexity of decryption is
polynomial in n, and the decryption is feasible.

Obviously, there is the large amount of calculation on ℓ(.) at ‘a public terminal’, and the small amount of
calculation on ℓ(.) at ‘a private terminal’.

3 Design of the REESSE1+ Public Key Cryptosystem
3.1 The Key Generation Algorithm

This algorithm is employed by a third-party authority. Every user is given a pair of keys.
Assume that S, T, Đ, đ are pairwise coprime integers, where the binary form of S only contains two ‘1’

bits respectively at the beginning and the end, T ≥ 2 n, Đ ≥ 2 n, and đ ≥ 5 is non-large.
We denote by Ħ the sub-group of order đ of *

M .

(1) Randomly generate a coprime sequence {A1, …, An}, and compute G = ∏

n
i = 1 Ai .

(2) Find a prime M > G making đ Đ T | (M – 1), q | (M – 1) for any prime q ∈ [1, n + 4], and
1 ĝ 1, …, đ ĝ đ % đ pairwise distinct ∃ ĝ ∈ Ħ.

(3) Pick S making 〈S, M – 1〉 = 1, S –1 % –1 small, and δ making 〈δ, M – 1〉 = 1, |δ | = đ Đ T, đ | δ + Đ % –1.
(4) Compute α ← δ δ n % M, W ← G

–1(α δ –1)1

/

S % M, β ← δ

(δ +

Đ)

W

S % M, and γ ← δ W n % M.

(5) Randomly produce pairwise distinct ℓ(1), …, ℓ(n) ∈ Ω = {i δ (% –1) | i = 5, …, n + 4}.
(6) Compute {C1, …, Cn | Ci ← Ai W ℓ (i) % M, for i = 1, …, n}.
At last, ({Ci}, α, β, γ) is a public key, ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ĝ) a private key. S, T, M are in common.
Remark: Seeking a S-th root of x

S ≡ c (% M) is referred to theorem 1 in section 3.4.
The set Ω = {i δ (% –1) | i = 5, …, n + 4} is not unique ─ Ω = {i + δ (% –1) | i = 5, …, n + 4} for example,

and moreover the evaluations of i may not be successive. In practice, the principles for selecting Ω are that
1) ℓ(i) ≥ 5; 2) the elements of Ω are pairwise distinct; 3) decryption time complexity does not exceed O(n3).

We know that in degree 5 or higher, the congruence x n ≡ c (% M) has a non-solvable Galois group.
To seek a certain element x of order k, first do x ≡ c (M – 1) / k (% M), where c < M is an arbitrary integer,

then test x by the algorithm 4.80 in section 4.6 of reference [15].

3.2 The Encryption Algorithm
Assume that ({Ci}, α, β, γ) is the public key, and b1…bn is an n-bit plaintext block or symmetric key.
(1) Set ← 1, i ← 1.
(2) If bi = 1, ← Ci % M.
(3) Let i ← i + 1. If i ≤ n, go to (2), or else end.
After the algorithm is executed, the ciphertext is gained.
Note that in encryption, α, β, and γ are not helpful.

3.3 The Decryption Algorithm
Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ĝ) is the private key, and is the ciphertext.
(1) Compute ← (W –1)δ % M.
(2) Set b1…bn ← 0, G ← , i ← 1.
(3) If Ai | G, set bi ← 1 and G ← G / Ai.

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

(4) Let i ← i + 1. If i ≤ n and G ≠ 1, go to (3).
(5) If G ≠ 1, go to (1), or else end.
At last, the b1…bn is the original plaintext block or symmetric key.
This algorithm can always terminate normally as long as is a true ciphertext
It should be noted that in decryption, {ℓ(i)}, Đ, đ and ĝ are unhelpful.

3.4 The Digital Signature Algorithm
Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ĝ) is the private key, F is a file or message which will be signed,

and hash is a one-way compression function.
(1) Let H ← hash(F), whose binary form is b1…bn.
(2) Set k1 ← ∑

n
i=1 bi ℓ(i) % –1, G0 ← ∏

n
i=1 Ai

¬ bi .
(3) Randomly pick ĸ with đ ł ĸ making δ (δ

Q

–

W

H)T ≡ ĝ (% M), đ ł (δ Q)n – (WH)n % –1, and đ ł Ū % –1, where
Q meets ĸ Đ ≡ δ Q – WH (% –1), R meets Q ≡ (R G0)

S
 δ (%M), and Ū ≡ (R W k 1 – 1δ δ (δ +

Đ))

QT (% M).
(4) ∀ r ∈ [1, đ], compute U ←Ū ĝ r % M. If đ ł (δ + Đ + r)US + ∑

n -1
i=0 (δ Q)n –

1

– i (HW)i % –1, go to (4).

At last, the signature (Q, U) on the file F is obtained, and sent to a receiver with F.
In terms of the double congruence theorem (see section 3.6), in the signature algorithm we do not need V

≡ (R
–1W G1)QU

 δ λ (% M), where G1 = ∏

n
i=1 Ai bi, and λ satisfies

λ S ≡ ((δ + Đ + r)US + ∑

n -1
i=0 (δ Q)n –1– i (HW)i)(δ Q – HW) (% –1),

which indicates đ Đ | λ.
Due to Ū = (R W k 1 – 1δ δ (δ +

Đ))

QT % M and ĝ = δ (δ

Q

–

W

H)T % M, we see

U ≡ Ū ĝ r ≡ (R W k 1 – 1)Q

T
 δ (δ

Q

(δ +

Đ

+

r)

–

W

H r)

T (% M).

Let e1 = ĝ r1 % M, e2 = ĝ r2 % M, and ∆ ≡ (δ + Đ + r1) S Ū e1 – (δ + Đ + r2) S Ū e2 (% –1)(% đ) ≡ ((e1 – e2)(δ +
Đ) + (r1 e1 – r2 e2)) S Ū (% –1)(% đ).

Considering đ | M – 1 and đ | δ + Đ % –1, then, ∆ ≡ (r1 e1 – r2 e2) S Ū (% đ).
In terms of the key generation algorithm, (r1 e1 – r2 e2) ≠ 0 (% đ).
In addition, 〈S, đ〉 = 1 and đ ł Ū % –1, and thus ∆ ≠ 0 (% đ). Namely (δ + Đ + r)U S (% đ) for r = 1, …, đ –

1 are pairwise distinct, which implies that the probability of finding out suitable U is ((M – 1) / đ) / (M – 1) =
1 / đ. Since đ is a non-large number, U can be found out at a good pace.

Due to 〈S, M –1〉 = 1, computing R by Q ≡ (R G0)
S

 δ (% M) may resort to the following theorem 1.
Theorem 1 For the congruence x k ≡ c (% p) with p prime, if 〈k, p – 1〉 = 1, every c has just one k-th root

modulo p. Especially, let µ be the multiplicative inverse of k modulo (p – 1), then c µ % p is one k-th root.
Further, we have theorem 2.
Theorem 2 For the congruence x k ≡ c (% p), if k | (p – 1) and 〈k, (p – 1) / k〉 = 1, then when c is one k-th

power residue modulo p, c
µ % p is one k-th root, where µ is the multiplicative inverse of k modulo (p – 1) / k.

The proofs of theorem 1 and 2 are referred to bibliography [16].
In this paper, the solution which is obtained by theorem 1 and theorem 2, and may be written as c to a

certain power modulo p is called the trivial solution to the congruence x k ≡ c (% p).

3.5 The Identity Verification Algorithm
Assume that ({Ci}, α, β, γ) is the public key, F is the file, and (Q, U) is a signature on it.
(1) Let H ← hash(F), whose binary form is b1…bn.
(2) Compute ← ∏

n
i=1 Ci

bi % M.
(3) Compute X ← (α Q –1) Q

U T α Q
n

T % M, Y ← (

Q

T

 U –1)U S β
UH

T

 γ H n

T % M.
(4) If X ≡ Y, the identity is valid and F intact, otherwise the identity is invalid or F already modified.

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

By running this algorithm, a verifier can judge whether the signature is genuine or fake, prevent the
signatory from denying the signature, and do an attacker from modifying the file.

The discriminant X ≡ Y (% M) at (4) is explained as follows:

It is known from section 3.1 that α ≡ δ δ n ≡ δ (WG0G1)
S (% M), β ≡ δ

(δ +

Đ)W

S (% M), and γ ≡ δ W n (% M).

Let V ≡ (R –1W G1) QUδ λ (% M). Becauseλ meets λ S ≡ ((δ + Đ + r)US + ∑

n -1
i=0 (δ Q)n –1– i (HW)i)(δ Q – WH) (%

–1), may let λ = k đ Đ, where k is a certain integer, and then
Q QU

 V S ≡ (R G0) S QU
 δ QU

 (R
–1W G1) QU S δ λ

S

 ≡ (W G0G1) QU S δ QU δ λ

S

 ≡ α QU
 δ ((δ +

Đ

+

r)U

S + Σ

n -1

i=0

(δ
Q) n –

1

– i (WH)

i) (δ
Q –

WH)
 ≡ α QU

 δ –
(δ +

Đ)WHUS
 δ (δ

Q(δ

+

Đ

+

r)

–

rWH)US
 δ (δ

Q)

n
 –

(WH)

n

 ≡ α QU
 β –UH

 δ (δ

Q(δ +

Đ

+

r)

–

rWH)US
 α Q

n
 γ –H n (% M).

Transposition yields V S ≡ (α Q –1) QU
 α Q

n
 β –UH

 γ –H n
 δ (δ

Q(δ +

Đ

+

r)

–WH r)US (% M). Therefore, we have

V ST ≡ (α Q –1)QU

T

 α Q
n

T

 β –U

H

T

 γ –

H n

T

 δ (δ

Q(δ +

Đ

+

r)

–WH r)UST
 ≡ X β –UH

T

 γ –

H n

T

 δ (δ

Q(δ +

Đ

+

r)

–

WH r)UST (% M).
In addition,

U U V T ≡ (R W k 1 – 1)QU

T

 δ (δ
Q

(δ +

Đ

+

r)

–

W

H r)U

T

 (R –1W G1)QU

T

 δ λ
T

 ≡ (W k 1G1)QU

T
 δ (δ

Q

(δ +

Đ

+

r)

–

W

H r)U

T

 δ λ
T

 ≡ QU

T
 δ (δ

Q

(δ +

Đ

+

r)

–

W

H r)U

T

 δ k đ Đ
T

 ≡ QU

T
 δ (δ

Q

(δ +

Đ

+

r)

–

W

H r)U

T (% M).

Transposition yields V T ≡ (Q

T U –1)U
 δ (δ

Q

(δ +

Đ

+

r)

–

W

H r)U

T (% M). Hence

V S T ≡ (Q

T U –1)US
 δ (δ

Q

(δ +

Đ

+

r)

–

W

H r)U

S

T (% M).

By the double congruence theorem, there is

V S T ≡ X β –UH

T

 γ –

H n

T
 δ (δ

Q(δ +

Đ

+

r)

–

WH r)UST ≡ (Q

T
 U –1)U

S
 δ (δ

Q

(δ +

Đ

+

r)

–

W

H r)U

S

T (% M).

Making transposition and counteraction gives X ≡ (Q TU –1)U S β
UH

T

 γ H n

T ≡ Y (% M).
Namely, X ≡ Y (% M).

3.6 The Double Congruence Theorem
Theorem 3 (The Double Congruence Theorem) Assume that p is a prime, and that s, t satisfying 〈s, t〉 =

1 are two constants, then simultaneous equations
x s ≡ a (% p)
x t ≡ b (% p)

have the unique solution if and only if a
t ≡ b

s (% p).
What follows is the proof of theorem 3.
Necessity: Assume that the simultaneous equations x s ≡ a (% p) and x t ≡ b (% p) have solutions.
Let x0 be a solution to the two equations, then x0

s ≡ a (% p) and x0
t ≡ b (% p).

Further, x0
s

t ≡ a

t (% p) and x0
t s ≡ b

s (% p) can be obtained.
Therefore, x0

s t ≡ a
t ≡ b

s (% p).
Sufficiency: Assume that a

t ≡ b
s (% p).

According to the greatest common divisor theorem [14], there exists a pair of integers u and v making u s +
v t = 1. Thus,

x u s ≡ a
u (% p),

x v t ≡ b
v (% p).

The above two equations multiplying yields

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

x u s + v t ≡ x ≡ a
u b

v (% p).
Furthermore, we have

(a
u b

v) s ≡ a
u s b

v s ≡ a
u s a

v t ≡ a
u s + v t ≡ a,

(a
u b

v) t ≡ a
u t b

v t ≡ b
u s b

v t ≡ b
u s + v t ≡ b.

Accordingly, a
u b

v is a solution to the original simultaneous equations.
Uniqueness: Let x0 ≡ a

u b
v (% p).

Assume that another value x1 meets the equations x s ≡ a (% p) and x t ≡ b (% p) at one time.
Then, it holds that

x1
s ≡ a (% p), and x1

t ≡ b (% p).
By comparison, we have x1

s ≡ x0
s and x1

t ≡ x0
t (% p). Transposing gives

(x0 x1
–1) s ≡ 1 and (x0 x1

–1) t ≡ 1 (% p).
If at least one between s and t is relatively prime to p – 1, by theorem 1, there must be x0 x1

–1 ≡ 1 (% p),
namely x0 ≡ x1 (% p).

If neither s nor t is relatively prime to p – 1, let k = 〈s, p – 1〉, l = 〈t, p – 1〉. Then we see 〈s / k, p – 1〉 = 1
and 〈t / l, p – 1〉 = 1. Thus, there are (x0 x1

–1) k ≡ 1 and (x0 x1
–1) l ≡ 1. It is known from 〈s, t〉 = 1 that 〈k, l〉 = 1.

In terms of the group theory [17], when 〈k, l〉 = 1, only the element ‘1’ belongs to two different sub-group at
same time. Therefore, x0 x1

–1 ≡ 1, namely x1 = x0, and x0 bears uniqueness.
To sum up, we prove theorem 3.

3.7 Characteristics of REESSE1+
REESSE1+ owes the following characteristics compared with classical MH, RSA and ElGamal.
• The security of REESSE1+ is not based on a single hardness, but on multiple hardnesses: the modular

subset product problem, multivariate arrangement problem, and super logarithm problem. Thus, it is a
multiproblem public-key cryptosystem.

• The key transform Ci ≡ Ai W ℓ(i)
 (% M) is a compound function, and contains three independent

variables, that is, n equations contain 2n + 1 unknown variables. Hence, REESSE1+ is also a
multivariate cryptosystem.

• If any of Ai, W and ℓ(i) is determined, the relation between the two remainders is still nonlinear ─ thus
there is very complicated nonlinear relations among Ai, W and ℓ(i).

• There is indeterminacy of ℓ(i). On condition that Ci and W are determined, Ai and ℓ(i) can not be
determined, and even have no one-to-one relation when W is a non-generator. On condition that Ci and
Ai are determined, W and ℓ(i) can not be determined, and also have no one-to-one relation for (ℓ(i), M
– 1) > 1. This is the radical reason that the continued fraction analysis method is ineffectual.

• There is insufficiency of the key mapping. A private key in REESSE1+ includes {Ai}, {ℓ(i)}, W and δ
four main parts, but there is only a dominant mapping from {Ai} to {Ci}. Thereby, the reversibility of
the function is not obvious, and inferring a private key is intractable through mathematical methods.

• Since the length and the elements of the set Ω are not fixed, and different combinations among
variables may bring in different hardnesses, REESSE1+ is a sort of flexible public key cryptosystem.

3.8 Correctness of the Decryption Algorithm
Because (*

M , ·) is an Abelian, namely commutative group, ∀k ∈ [1, M), there is
W k (W –1) k ≡ W k W – k ≡ 1 (% M).

Let b1…bn be an n-bit plaintext, and k = (∑

n
i=1 ℓ(i)bi)δ –1 % –1.

Note that due to 〈δ, M – 1〉 = 1, there exists δ –1 % –1.
We need to prove that (W –δ) k ≡ G (% M).

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

According to section 3.2, ≡ ∏

n
i=1 Ci

b
 i (% M), where Ci ≡ Ai W ℓ(i) (% M), hence

 (W –δ) k ≡ ∏

n
i=1 Ci

bi (W –δ)

k ≡ ∏

n
i=1 (Ai W ℓ(i))bi (W –δ)

k
 ≡ ∏

n
i=1 Ai

bi (W ∑ (ℓ(i)

bi))(W –δ)

k
 ≡ ∏

n
i=1 Ai

bi (W δ) k (W –δ)

k
 ≡ ∏

n
i=1 Ai

bi ≡ G (% M).

The above process gives out a method for seeking G.
Note that in practice, the plaintext b1…bn is unknowable in advance, so we have no way to directly

compute k. However, because the range of k ∈ [5, δ
–1∑

n
i=1 ℓ(i)] is very narrow, we may search k

heuristically by multiplying (W
–1)

δ % M, and verify whether G is equal to 1 after it is divided exactly by
some items of {Ai}. It is known from sect. 3.3 that the original plaintext b1…bn is acquired at the same time
the condition G = 1 is satisfied.

3.9 Uniqueness of a Plaintext Solution to a Ciphertext
Because {Ci} is one non-coprime sequence, the mapping from the subsequence {Cx1, …, Cxm} to the

product is theoretically many-to-one. It might possibly result in the nonuniqueness of the plaintext
solution b1…bn when is being unveiled.

Suppose that the ciphertext can be obtained from two different subsequence products, that is,
 ≡ Cx1 … Cxm ≡ Cy1 … Cyh (% M).

Then,
(Ax1 … Axm)W k 1 ≡ (Ay1 … Ayh)W k 2 (% M),

where k1 = ℓ(x1) + … + ℓ(xm), and k2 = ℓ(y1) + … + ℓ(yh).

Without loss of generality, let k1 ≥ k2 . Because (*
M , ·) is an Abelian group, there is

W
k

 1 – k
 2 ≡ (Ay1 … Ayh)(Ax1 … Axm)–1 (% M),

which is written shortly as W k 1 – k
 2 ≡ ∏

h
i=1 Ayi ∏

m
j=1 Axj

–1 (% M).

Let θ ≡ W k 1 – k
 2 ≡ (W δ) (k 1 – k

 2) δ –1 (% M).

This formula means when the plaintext b1…bn is not unique, the value of W δ must be relevant to θ. The
contrapositive assertion equivalent to it is that if the value of W δ is irrelevant to θ, b1…bn will be unique.
Thus, we need to consider the probability that W δ takes a value relevant to θ.

If an adversary tries to attack an 80-bit symmetric key through the exhaustive search, and a computer can
verify trillion values per second, it will take 38334 years for the adversary to verify up all the potential
values. Hence, currently 80 bits are quite enough for the security of a symmetric key.

When the length n of a key sequence is equal to 80, the number of the values containing the repeated in
the form ∏

h
i=1 Ayi ∏

m
j=1 Axj

–1 is at most 380 ≈ 21.585 × 80 = 2127. Because A1
–1… An

–1 are not necessarily coprime,
the value of ∏

h
i=1 Ayi ∏

m
j=1 Axj

–1 may possibly occur repeatedly.
On the other hand, the first 80 primes may constitute a coprime sequence with a minimum sequence

product, which makes it possible that the modulus M is roughly equal to 2552 or M roughly equal to 2384
with binary compact sequence optimization. Therefore, when n ≥ 80, the probability that W

δ takes values
relevant to θ is less than (2132127) / 2384 = 1 / 2244, where 213 is greater than or roughly equal to (k1 – k2)δ –1,
namely the number of W

δ meeting (W δ) (k 1 – k
 2)δ –1 ≡ ∏

h
i=1 Ayi ∏

m
j=1 Axj

–1 (% M) is at most 213. Clearly, it is
almost zero. This probability will further decrease when W δ is prime.

The above analysis shows that the probability that the plaintext solution b1…bn is not unique is almost
zero; thus the decryption algorithm can always recover the original plaintext from the ciphertext , which
is also verified by the program in C language.

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

4 Securities of Encryption and Decryption
4.1 Relation between the Lever Function ℓ(.) and a Random Oracle

An oracle is a mathematical abstraction, a theoretical black box, or a subroutine the running time of
which may not be considered [15][18]. In particular, in cryptography, an oracle may be treated as a
subcomponent of an adversary, and lives its own life independent of the adversary. Usually, the adversary
interacts with the oracle but cannot control its behavior.

A random oracle is an oracle which answers to every query with a completely random and unpredictable
value chosen uniformly from its output domain, except that for any specific query, it outputs the same value
every time it receives that query if it is supposed to simulate a deterministic function [19].

Random oracles are utilized in cryptographic proofs for relpacing any irrealizable function so far which
can provide the mathematical properties required by the proof. A cryprosystem or a protocol that is
proven secure using such a proof is described as being secure in the random oracle model, as opposed to
being secure in the standard model where the integer factorization problem, the discrete logarithm problem
etc. are assumed to be hard. When a random oracle is used within a security proof, it is made available to
all participants, including adversaries. In practice, random oracles producing a bit-string of infinite length
which can be truncated to the length desired are typically used to model cryptographic hash functions in
schemes where strong randomness assumptions are needed of a hash function's output.

In fact, it draws attention that certain artificial signature and encryption schemes are proven secure in the
random oracle model, but are trivially insecure when any real function such as the hash function MD5 or
SHA-1 is substituted for the random oracle [20]. Nevertheless, for any more natural protocol, a proof of
security in the random oracle model gives very strong evidence that an attacker have to discover some
unknown and undesirable property of the hash function used in the protocol.

A function or algorithm is randomized if its output depends not only on the input but also on some
random ingredient, namely if its output is not uniquely determined by the input. Hence, to a function or
algorithm, the randomness is almost equivalent to the indeterminacy.

It is known from section 3.7 that the randomness of ℓ(.) does exist. For example, with respect to h = 1, m
= 2 and δ = 1, ∀ x1, x2, y1 ∈ [5, n + 4], when ℓ (x1) + ℓ (x2) ≠ ℓ (y1), there exist

Cx1 ≡ A′x1W ′ ℓ′ (x 1
), Cx2 ≡ A′x2W ′ ℓ′ (x 2

), Cy1 ≡ A′y1W ′ ℓ′ (y 1
) (% M)

such that ℓ′(x1) + ℓ′(x2) = ℓ′(y1).
Suppose that Οd is an oracle for a discrete logarithm.
Suppose that R ℓ is an oracle for the lever function {ℓ(i)}.
The structure of R ℓ is as follows:
Input: {C1, …, Cn}. Output: {ℓ(1), …, ℓ(n)}.
(1) Randomly pick a coprime sequence {A1, …, An} and W,

where every Ai ≤ Þu, and W ∈ *
M is a generator.

(Letting W be a generator does not affect our discussion)
(2) Compute ℓ(i) in Ci ≡ Ai W ℓ (i) (mod M) by calling Οd for i = 1, …, n.
(3) If there are at least x1, x2, y1 such that ℓ(x1) + ℓ(x2) = ℓ(y1), return {ℓ(1), …, ℓ(n)}; or else go to (1).
Of course, {Ai} and W as side results may be outputted.
It should be noted that if the time complexity of Οd is not considered, the above algorithm can be

executed in polynomial time.
The above algorithm illustrates that the output {ℓ(i)} depends not only on {Ci} but also on random W and

{Ai}. Namely for the same input {Ci}, the output {ℓ(i)} is nonunique or randomized. Therefore, R ℓ is
exactly a random oracle, and it is impossible that through R ℓ the adversary obtains the specific {ℓ(i)} and
other private part generated by the key algorithm.

Notice that in the above algorithm, for the adversary, may every ℓ(i) be outside of [5, n + 4] and
inconsecutive, only if there are at least x1, x2, y1 making ℓ(x1) + ℓ(x2) = ℓ(y1) hold. We should still remember

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

that in definition 2, the codomain of ℓ(.) is [1, M – 1], and the continuity of ℓ(.) is not be required.
It is easily understood that in classical cryptosystems the R ℓ of a resemblant property is inexistent.
Further, we can argue that the time complexity of the continued fraction attack is O(n!) > O(2 n), for

which we have a curt explanation as follows:
Theorem 4 If α is an irrational number and if r / s is a rational number in lowest terms, where r and s are

integers with s > 0 such that abs(α − r / s) < 1 / (2 s2), then r / s is a convergent of the simple continued
fraction expansion of α [21].

Reference [21] does not offer a similar theorem with α being a rational number side by side. Therefore,
when α is a rational number, theorem 4 should not hold.

The foregoing discussion expounds soundly once more why the indeterministic reasoning based on the
continued fraction method is ineffectual.

4.2 Extracting a Private Key from a Public Key Being the Multivariate Arrangement Hardness
A public key may be regarded as the special cipher of a related private key. Since a ciphertext is the

effect of a public key and a plaintext, the ciphertext has no direct help to inferring the private key.
In the REESSE1+ system, the key transform is Ci ≡ Ai W ℓ (i) (% M), and ℓ(i) ∈ {i δ (% –1) | i = 5, …, n + 4}.
For a specific Ci, assume that the corresponding Ai and W are revealed under some extreme condition.

Due to ℓ(i) ∈ (1, M), obviously, by W ℓ

(i) ≡ Ci Ai

–1 (% M) seeking ℓ(i) is the DLP. Thus, under normal
situations, inferring a related private key from a public key is harder than the DLP.

In what follows, we discuss the case the n items of {Ci} are considered all together.
If an attacker tries to extract a related private key {Ai} from a public key, it is equivalent to solve the

simultaneous equations
C1 ≡ A1 W ℓ

(1) (% M)

C2 ≡ A2 W ℓ

(2) (% M)

……
Cn ≡ An W ℓ

(n) (% M).

The above equation system contains n known variables, and 2n + 1 unknown variables.
Assume that the Þ > n is the largest prime constant in the REESSE1+ cryptosystem, then each Ai ∈ Γ =

{2, …, Þ}, where Γ contains at least n primes. Let Ñ be the number of the potential coprime sequences in
the interval [2, Þ], then Ñ > A

n
n = n!.

If let ℓ(1)δ –1 = … = ℓ(n)δ –1 = 5, and each Ai traverse Γ, then can obtain theoretically 5nÞ values where
exists the true value of W

δ. Therefore, the number of potential values of W
δ will decrease to 5nÞ. Note that

in fact computing all five W
δ from (W

δ)
5 = Ci Ai

–1 (% M) is intractable when 5 | (M – 1) and (M – 1) / 5 >
280 (see section 5.1).

Suppose that the attacker guesses the sequences {Ai} and {ℓ(i)δ –1}, then figures out the n values of W
δ in

O(TW) time. If these values are all identical, the guessing is thought right. Notice that for i-th equation, Ai is
allowed to take any element of Γ as long as it is pairwise coprime to A1, …, Ai – 1, and ℓ(i)δ –1 is allowed to
take any element of {5, …, n + 4} as long as it is pairwise different from ℓ(1), …, ℓ(i – 1), which means
that guessing {Ai} or {ℓ(i)δ–1} is an arrangement problem. Thereby, the time complexity of this attack is
O(Ñ (n!)TW) > O(2 n).

Suppose that the attacker guesses W
δ and the sequences {ℓ(i)δ –1}, then compute the sequence {Ai} in

O(TA) time. If {Ai} is a coprime sequence, the guessing is thought successful. Because guessing {ℓ(i)δ –1} is
also an arrangement problem, the time complexity of this attack is at least O(5nÞ (n!)TA) > O(2 n).

Suppose that the attacker guesses W
δ and the sequences {Ai}, then find out the sequence {ℓ(i)δ –1} in

O(Tℓ) time. If every ℓ(i)δ –1 ∈ {5, …, n + 4} and is pairwise distinct, the guessing is thought successful.
Because guessing {Ai} is likewise an arrangement problem, the time complexity of this attack is at least
O(5nÞ Ñ Tℓ) > O(5nÞ (n!)Tℓ) > O(2n).

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

Since W, δ and G0G1 are all unknown, it is impossible to infer W, δ or G0G1 from α ≡ δ (WG0G1)

S (% M).

The expressions α ≡ δ δ n, β ≡ δ (δ +Đ)W
S and γ ≡ δ W

n (% M) only contain two unknown variables, but the
time complexity of finding δ and W will be at least O(2n) (see section 5.2.3).

In summary, the time complexity of inferring a related private key from a public key is at least O(2n).

4.3 Recovering a Plaintext from a Ciphertext and a Public Key Being the Modular Subset
Product Hardness

In terms of section 3.2, the ciphertext is a modular subset product, namely ≡ ∏

n
i = 1 Ci

b i (% M), where
b1…bn is a plaintext block or a symmetric key, and {C1, …, Cn} is a public key.

Obviously, ∏

n
i = 1 Ci

b
 i = LM + . Due to L ∈ [1, M – 1], deriving ∏

n
i = 1 Ci

b
 i from is infeasible, which

indicates inferring b1…bn from is not a factorization problem.

Observe an extreme case. Assume that C1 = … = Cn = C, then ≡ ∏

n
i = 1C

b i (% M). It can be written as
 ≡ C ∑

n

 i = 1

b
 i (% M), where i is from 1 to n.

Because we need not only to figure out the value of ∑

n
i = 1 bi but also to find out the position of every bi =

1, we express equivalently the sum ∑

n
i = 1 bi as ∑

n
i = 1 bi 2 i – 1, and let x = ∑

n
i = 1 bi 2 i – 1. Correspondingly,

 ≡ C
x (% M).

The above manifests that seeking the exponent x of C is the DLP.
The above process is reversible. It shows that if the plaintext recovery problem can be solved, the DLP

can be solved. Therefore, when C1 ≠ … ≠ Cn, attempting to recover a related plaintext from a known
ciphertext and public key is more intractable than the DLP, which is essentially different from the subset
sum problem or the knapsack problem.

On the other hand, there exists the exhaustive search attack on b1…bn, and clearly, the time complexity
of this attack is O(2n).

Notice that when is converted into the coprime sequence product G, computing the plaintext b1…bn is
tractable. Namely there is a trapdoor for . Hence, the plaintext security of REESSE1+ is built on a
trapdoor function such that computing a subset product from subset elements is tractable while seeking the
involved elements from the subset product is intractable.

4.4 Avoiding the Adaptive-chosen-ciphertext Attack
Theoretically, absolute most of public key cryptographies may probably be faced by the

adaptive-chosen-ciphertext attack.
During the late 1990s, Daniel Bleichenbacher demonstrated a practical adaptive-chosen-ciphertext attack

on SSL servers using a form of RSA encryption [22]. Almost at the same time, The Cramer-Shoup
asymmetric encryption algorithm was proposed [23]. It is the first efficient scheme proven to be secure
against adaptive-chosen-ciphertext attack using standard cryptographic assumptions, which indicates that
not all uses of cryptographic hash functions require random oracles some require only the property of
collision resistance, and an extension of the Elgamal algorithm which is extremely malleable.

It is lucky that REESSE1+ can avoid the adaptive-chosen- ciphertext attack. In the REESSE1+
cryptosystem, a public key is a sequence, and the number of its potential arrangements is n!, and thus a
secret time function may be chosen. Every time encryption is done, a different arrangement of the public
key according to the time is employed to encrypt a plaintext. Hence, even if the plaintexts encrypted are the
same, due to different encrypting times, the related ciphertexts are likely unequal. Of course, should let
those Ci to which values of the plaintext bits corresponding are all 1 permute as much as possible. So and
so only can the multiple ciphertexts of the identical plaintext be different from one another.

Another approach to avoiding the adaptive-chosen-ciphertext attack is to append a stochastic fixed-length
binary sequence to the terminal of every plaintext bock when it is encrypted. For example, a concrete
implementation is referred to the OAEP+ scheme [24].

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

5 Securities of Digital Signature and Identity Verification
5.1 Extracting a Related Private Key from a Signature Being a Hardness

Assume that p is a prime, and k | (p –1). In terms of the probabilistic algorithm in section 1.6 of reference
[25], the time complexity of finding out a random solution to x

k ≡ c (% p) is at least max(O(2 k – 1), O(p / k)).
Thus, when k > 80 or p / k > 2 80, this algorithm is ineffectual currently.

However, when 〈k, p – 1〉 = 1 or 〈k, (p – 1) / k〉 = 1 with k | (p – 1), the trivial solution to x
k ≡ c (% p) can

be acquired in terms of theorem 1 and 2.
It is known from the digital signature algorithm that

Q ≡ (R G0)
S

 δ (% M), and U ≡ (R W k 1
–

1δ δ (δ +Đ))QT

 δ (δ

Q

–

W

H)T r (% M).
When an attacker wants to seek R G0, or R W k 1

–

1δ δ (δ +

Đ), it is equivalent to solving the two congruences

x S ≡ Q δ –1 (% M), and x QT ≡ U δ –

(δ

Q

–

W

H)T r (% M).
For the first congruence, because δ is unknown, and the right of the equation is not a constant, it is

impossible to solve the equation for R G0. If δ is guessed, the probability of hitting δ is 1 / |δ | < 1 / 2 n.
For the second congruence, there is |δ –

(δ

Q

–

W

H)T r
 | = đ with đ ≥ 5 being small. Assume đ is guessed, and a

solution to x
đ ≡ 1 (% M) without the trivial one can be found in sub-exponential time. Then δ –

(δ

Q

–

W

H)T r may
be possibly hit. Notice that thanks to usually M / đ > 2 80, the probabilistic polynomial algorithm in [28] for
a high degree congruence is ineffectual.

On the basis of δ –

(δ

Q

–

W

H)T r known, if 〈Q, M – 1〉 =1 and 〈T, (M – 1) / T〉 = 1 with T | (M – 1), there exists the
trivial solution to the second congruence. However, the probability that it is just the specific R W k 1

–

1δ δ (δ +

Đ)
is equal to or less than 1 / T ≤ 1 / 2n.

Additionally, substituting G0
–1(Q δ –1)

S –1
 % M deriving from Q ≡ (R G0)

S
 δ (% M) for R in the U expression

gives
U ≡ (G0

–1(Qδ –1)

S –1W k 1
–

1δ δ (δ +Đ))QT

 δ (δ

Q

–

W

H)T r (% M).
Thus,

((GW)

–1δ δ (δ +Đ) – S –1)QT ≡ U(Q

S –1)–QT
 δ –

(δ

Q

–

W

H)T r (% M).
Likewise, if 〈Q, M – 1〉 = 1, 〈T, (M – 1) / T〉 = 1, and the element δ –

(δ

Q

–

W

H)T r with a small order is hit in
sub-exponential time, then the trivial solution to xQT

 ≡ U(Q

S –1)–QTδ –

(δ

Q

–

W

H)T r
 (% M) can be found.

However, the probability that it matches to (GW)

–1δ δ (δ +Đ) – S –1
 is equal to or less than 1 / T ≤ 1 / 2n. Moreover,

neither (GW)

–1 nor δ
δ (δ +Đ) – S –1 can be determined respectively.

Therefore, the time complexity of extracting a related private key from a signature is at least O(2n).

5.2 Faking a Digital Signature only through a Public Key Being a Hardness
Assume H is the hash value of F, (Q, U) is a signature on F, then the condition discriminant

(α Q –1) QU Tα Q
n

T ≡ (
Q

T

 U –1)U S β
UH

T

 γ H n

T (% M)
holds.

Due to an equation with the two variables, the value of a variable may be supposed by an attacker.
However, supposing a value and seeking the other is the super logarithm problem.

5.2.1 The Super Logarithm Problem

Assume that g ∈ *
p is a generator, where p is prime, then {y | y ≡ g x (% p), x = 1, …, p – 1} = *

p
 [17].

Assume that k satisfying (k, p – 1) = 1 is an integer, then also {y | y ≡ x k (% p), x = 1, …, p – 1} = *
p

 [16].
Namely, ∀x ∈ [1, p –1], y ≡ g x (% p) or y ≡ x k (% p) with (k, p –1) = 1 is a self-isomorph of the group *

p .
However, for the x

x operation, {y | y ≡ x x (% p), x = 1, …, p – 1} = *
p does not hold, that is,

{y | y ≡ x x (% p)，x = 1, …, p – 1} ≠ *
p .

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

For example, as p = 11, {y | y ≡ x x (% p), x =1, …, p –1} = {1, 3, 4, 5, 6}, where 33 ≡ 66 ≡ 88 ≡ 5 (% 11).
When p = 13, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 3, 4, 5, 6, 9, 12}, where 77 ≡ 1111 ≡ 6 (% 13), and

11 ≡ 33 ≡ 88 ≡ 99 ≡ 1212 ≡ 1 (% 13).
When p = 17, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 2, 4, 8, 9, 10, 12, 13, 14}, where 22 ≡ 1212 ≡ 4 (%

17), 66 ≡ 1515 ≡ 2 (% 17), and 1010 ≡ 1414 ≡ 2 (% 17).
The above examples illustrate that {y ≡ x x (% p) | x = 1, …, p – 1} cannot construct a complete set for a

group. Furthermore, mapping from x to y is one-to-one sometimes, and many-to-one sometimes. That is,
inferring x from y is indeterminate, x is non-unique, and even inexistent. Thus, x

x has extremely strong
irregularity, and is essentially distinct from g x and x k.

We consider two functions over the real set : y = f(x) = g x, and y = ϕ (x) = x x, where x > 0.
Their inverse functions, the derivations of which are omitted, are respectively

x = f – 1(y) = logg y, and
x = ϕ – 1(y) = y logg y / ((y’ – y) logg e),

where y’ = x
x
 (1 + logg x / logg e) denotes a derivative, and the constant e = 2.7182818….

Further, ϕ –1(y) = y f –1(y) / ((y’ – y) logg e).
Assume that we already know y0 satisfying y0 = x0

x
 0 and y0 = g

x
 0'. Apparently, if ϕ –1(y0), namely x0 can

be found out, f –1(y0), namely x0’ can be figured out. This means that the time complexity of computing f – 1(y)
is less than or equal to that of computing ϕ – 1(y).

Contrariwise, if f –1(y0), namely x0’ can be found out, ϕ –1(y0), namely x0 can not be figured out since y0’ is
the function of x0, and has no solution in polynomial time. This means that the time complexity of
computing f–1(y) is not equal to that of computing ϕ –1(y).

To sum up, the time complexity of seeking ϕ –1(y) is greater than that of seeking f –1(y).
Similarly, this fact should hold in the finite field (p), because the discreteness of a finite field does not

weaken the computational complexity of the identical problem over a continuous interval. For instance,
computing x = f –1(y) = logg y is easy in a continuous interval while hard in a finite field.

In summary, we think that the x x ≡ c (% p) problem is harder than the g x ≡ c (% p) problem. Hence, the
former is called the super logarithm hardness. It is emphasized that the super logarithm hardness is more
suitable for doing signature since it owns non-uniqueness.

Note that to attempt to solve the super logarithm problem in light of the Chinese Remainder Theorem is
specious.

At present there is no better method for seeking a super logarithm than the exhaustive search, and thus
the time complexity of the solution to x x ≡ c (% p) may be expected to be O(p) > O(2n), where n is the
length of a message digest.

5.2.2 Faking a Signature by the Verification Algorithm Being the Super Logarithm Problem
Assume that F is an arbitrary file, and H is its hash output. In terms of the discriminant

(α Q –1) Q
U Tα Q

n

T ≡ (

Q

T

 U –1)U S β
UH

T

 γ H n

T (% M),
an attacker may suppose the value of a variable.

If suppose the value of Q, no matter whether U exists or not, seeking U is the super logarithm hardness.
Similarly, if suppose the value of U, seeking Q is the super logarithm hardness.
If the attacker hits the small đ, obtains Đ by factorizing M – 1, and raises either side of the discriminant

to the power of đ, then when Đ | (δ Q – WH), there is
(α Q –1)

đ

QU T ≡ (Q

T

 U –1)
đ

U S β đ

UH

T (% M).

Further,
(α Q –1)

đ

Q T ≡ (Q

T

 U –1)
đ S β đH

T (% M).

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

Hereat, if suppose the value of Q which is unknown, U may possibly be worked out in polynomial time.
However, Q and U must satisfy both the discriminant and the condition Đ | (δ Q – WH), which is impossible
since both δ and W are unknown.

5.2.3 Faking a Signature by the Signature Algorithm Being the Exponential Time Problem

Due to Q ≡ (R G0)

S
 δ, U ≡ (R W k 1 – 1)

QT
 δ (δ

Q

(δ +

Đ +
r)

–

W

H r)

T and V ≡ (R –1W G1)
QUδ λ (% M), an attacker may

attempt the following attack method.
Let Q ≡ a

S
 δ (% M), U ≡ b

Q

T
 δ (δ

Q

(δ +

Đ +
r) –

W

H r)

T (% M), and V ≡ c Q

U
 δ λ (% M), where λ meets

λ S ≡ ((δ + Đ + r)US + ∑

n -1
i=0 (δQ)

n –
1

–

i

 (HW)

i)(δQ – WH) (% –1).

Besides, let a c ≡ (αδ –1)
1 / S, and b c ≡ (% M).

When δ is found, if suppose a value of a, the c, b can be figured out. Further, when W, Đ are found, and r
guessed, the attacker may compute the values of Q and U which make

Đ | δQ – WH, and đ | (δ + Đ + r)US + ∑

n -1
i=0 (δQ)

n –
1

–

i

 (HW)

i (% –1).

Clearly, to seek δ, W and Đ, the attacker has to try to solve

α ≡ δ δ n (% M)
β ≡ δ (δ +

Đ)W

S (% M) (1*)
γ ≡ δ W n (% M).

Can δ, W and Đ be found from the above equation system? If δ exists, there is

α W n ≡ γ δ n (% M)
β W n ≡ γ (δ +

Đ)W
S (% M).

Notice that because possibly 〈W n, δ n〉 > 1, (2*) is not a sufficient condition for (1*) to have solutions.
Let g be a generator of (*

M , ·), by means of Index-calculus method for discrete logarithms [15], calculate
q, u, and v such that g

q ≡ α, g
u ≡ β, and g

v ≡ γ (% M), obtain

g
qW

n
 ≡ g

v
 δ n (% M)

g
u

 W
n
 ≡ g

v (δ + Đ)W
S (% M).

Accordingly,
qW n ≡ vδ n (% –1)
uW n ≡ v (δ + Đ)W S (% –1).

If 〈q, M – 1〉 | v, and the trivial solution to x
n ≡ (q–1 v) δ n (% –1) exists, then W ≡ (q–1

 v)
n

–1δ (% – 1), where
the computation of n–1 is referred to theorem 1, theorem 2 and bibliography [16]. Further, due to W = 0 is
not a solution to the equations, there is

u(q–1v)
(n –

1) n

–1δ n –

1 ≡ v (δ + Đ) S (% –1).

Transparently, the above equation is a true polynomial of degree n – 1 with two variables, which can not
be solved via discrete logarithms even though Đ as a factor of (M –1) is found in sub-exponential time. Of
course, to enhance intractability, a user may substitute the Đ involved in β with a new variable in the key
generation algorithm.

If the Euler phi function φ (M –1) is worked out, the attacker may seem to resort to the probabilistic
algorithm in reference [25]. However, the running time of this algorithm is at least max(O(2

n – 2), O(φ (M – 1)
/ (n – 1))). When n > 80 or φ (M – 1) / (n –1) > 2

80, seeking δ is infeasible at present. Furthermore, when
〈u(q–1v)

(n –

1) n

–1, M –1〉 ł v, doing division of polynomials is infeasible.

5.3 Faking a Signature through Known Signatures with a Public Key Being a Hardness
Given the file F and a signature (Q, U) on it, and assume that there exists another file F′ with

corresponding H′ and ′. Then, if an arbitrary (Q′, U′) satisfies

(2*)

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

(α Q′ –1)Q′

U

′

Tα Q′

n

T ≡ (′ Q′ T U′ –1)U

′

S β U

′H

′

T γ H

′

n

T (% M),

it is a signature fraud on F′.
Clearly, an adversary is allowed to utilize the known values of Q and U separately.
If let Q′ = Q, Q′ does not necessarily satisfy Đ | (δ Q′ – WH′), and computing U′ is intractable.
If let U′ = U, no matter whether the preceding equation has solutions or not, seeking Q′ is the super

logarithm hardness.
If the two signatures (Q1, U1) and (Q2, U2) on the files F1 and F2 are obtained, due to Đ | (δ Q1 – WH1)

and Đ | (δ Q2 – WH2), we see that Đ | (δ (Q1 + Q2) – W(H1 + H2)). Let Q′ = Q1 + Q2, H′ = H1 + H2, then Đ |
(δ Q′ – WH′). However, inferring F′ from H′ is intractable in terms of the properties of hash functions.

If several of the pair (Q, U) are known, because Q and R involved in U are random, interrelated
exponentially, and the value of U changes intensely between 1 and M, there is no polynomial function or
statistic regularity among different U, which means that they are not helpful to solving the super logarithm
problem.

Therefore, forging another signature via known signatures with a public key is the super logarithm
hardness.

5.4 Adaptive-chosen-message Attack Being Intractable
Conforming to section 3.4, Q satisfies Đ | δ Q – WH, namely Q ≡ (ĸ Đ – WH)δ –1 (% –1), where ĸ is a

stochastic integer and đ ł ĸ.
The randomness of ĸ leads Q and U to be stochastic, where Q ≡ (R G0)

S
 δ (% M), and U ≡ (R W k 1 – 1)

QT
 δ (δ

Q

(δ +

Đ +
r)

–

W

H r)T (% M).
Hence, for an identical file F, there are different signatures on F, that is, (Q, U) has indistinguishability,

which is equivalent to the fact that H = hash(F) is a random oracle even if hash is substituted with a concrete
one-way function.

 In terms of reference [19], the signature (Q, U) on F is secure against adaptive-chosen-message attack.

5.5 Chosen-signature Attack Being Intractable

It is well understood from the discriminant (α Q –1)QU

T

 α Q
n

T ≡ (Q

T
 U

–1)U S β UH

T

 γ H n

T (% M) that

 QU ST
 β UH

T γ H n

T ≡ (α Q

–1)QU

T

 α Q
n

T U

U S (% M).
Assume that the values of Q and U are chosen. If let = f (H), the above congruence is an equation in H.

Evidently, it is harder than the DLP to seek H from the congruence. If let H = f
 –1(), similarly, it is harder

than the DLP to infer from the above congruence.

In fact, due to H = b1…bn, ≡ ∏

n
i=1 Ci

bi (% M), there is no linear or polynomial relation between H and
. That is, a linear or polynomial function f is not existent (see section 4.3), and neither is a linear or
polynomial inverse f

 –1.

6 Conclusions
The REESSE1+ cryptosystem may be applied to data encryption and digital signature. If it is only

applied to digital signature, the constraint M > G at step 2 in the key generation algorithm may be removed.
If the constraint M > G can not be removed, then when n ≥ 80, the modulus M will be comparatively

large. It will cause both increase in key lengths and, worse than all, decrease in algorithmic speeds. For
example, log2 M ≥ 553 (to select the first 80 primes as a coprime sequence make the sign ‘=’ hold) when n
= 80, log2 M ≥ 694 when n = 96, log2 M ≥ 840 when n = 112, and log2 M ≥ 990 when n = 128. Thus, the
theoretical algorithms of REESSE1+ must be optimized.

The basic idea of optimization is to make use of binary compact sequences. That is, the mapping is not
regarded as one to one but as three items to two bits between a non-coprime sequence and a symmetric key.
(or a plaintext block). The n-bit symmetric key is partitioned evenly into n / 2 units in order, and every unit

The REESSE1+ Public-key Cryptosystem http://eprint.iacr.org/2006/420.pdf

has 2 bits and 4 combinations, namely 00, 01, 10, and 11. Let 00 map to 1, and the others do respectively to
the three consecutive items of {Ci}. After optimized, the bit-length of M will decrease to 384 when n = 80,
and 544 when n = 112.

Through the optimization based on the binary compact sequence, the decryption time complexity of the
REESSE1+ cryptosystem is reduced to O(n2) from O(n3). Through the integration of a coprime sequence
and the lever function ℓ(.), we exchange the very slight cost of operations for the great security of the
REESSE1+ cryptosystem.

Acknowledgment
The authors would like to thank Academician Jiren Cai, the chair of the academic committee of SKLOIS,

and Academician Changxiang Shen, the director of Trusted Computing Laboratory, Beijing University of
Technology for their important guidance, suggestions and helps.

The authors would like to thank the Professors Mulan Liu, Huanguo Zhang, Dingyi Pei, Xuejia Lai,
Dengguo Feng, Lequan Min, Bingru Yang, Zhiying Wang, Xiulin Zheng and Maozhi Xu for their
important advice, suggestions and corrections.

References
[1] R. L. Rivest, A. Shamir and L. M. Adleman, “A Method for Obtaining Digital Signatures and Public-key Cryptosystems,”

Communications of the ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.
[2] T. ElGamal, “A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” IEEE Transactions on

Information Theory, vol. 31, no. 4, pp. 469–472, Jul. 1985.
[3] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Information Theory, vol. 22, no. 6, pp.

644–654, Nov. 1976.
[4] Oded Goldreich, Foundations of Cryptography: Basic Tools. Cambridge, UK: Cambridge University Press, 2001, pp. 31–35.
[5] A. C. Yao, “Theory and Applications of Trapdoor Functions,” in Proc. the 23rd Annual Symposium on the Foundations of

Computer Science, IEEE, 1982, pp. 80–91.
[6] Salil Vadhan. (2004, Jul.). Computational Complexity. [Online]. Avail- able: http://eecs.harvard.edu/~salil/papers/encyc.pdf.
[7] M. Bellare and P. Rogaway, “The Exact Security of Digital Signatures — How to Sign with RSA and Rabin,” in Proc. Advance

in Cryptology: Eurocrypt ’96, Springer-Verlag, 1996, pp. 399–416.
[8] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography. Cambridge, UK: Cambridge University Press, 1999,

ch. 1, 6.
[9] R. C. Merkle and M. E. Hellman, “Hiding information and Signatures in Trapdoor Knapsacks,” IEEE Transactions on

Information Theory, vol. 24, no. 5, pp. 525–530, Sep. 1978.
[10] A. Shamir, “A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem,” in Proc. the 23th IEEE

Symposium on the Foundations of Computer Science, 1982, pp. 145–152.
[11] E. F. Brickell, “Solving Low Density Knapsacks,” in Proc. Advance in Cryptology: CRYPTO ’83, Plenum Press, 1984, pp.

25–37.
[12] M. J. Coster, A. Joux and B. A. LaMacchia etc., “Improved Low-Density Subset Sum Algorithms,” Computational Complexity,

vol. 2, issue 2, pp. 111–128, Dec. 1992.
[13] C. P. Schnorr and M. Euchner, “Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems,”

Mathematical Programming: Series A and B, vol. 66, issue 2, pp. 181–199, Sep. 1994.
[14] Song Y. Yan, Number Theory for Computing. (2nd ed.) New York: Springer-Verlag, 2002, ch. 1.
[15] A. J. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. London: CRC Press, 1997, ch. 2, 3, 8.
[16] Paul Garrett, Making, Breaking Codes: An Introduction to Cryptology. New Jersey: Prentice-Hall, 2001, ch. 12.
[17] Thomas W. Hungerford, Algebra. New York: Springer-Verlag, 1998, ch. 1–3.
[18] D. Z. Du and K. Ko, Theory of Computational Complexity. New York: John Wiley & Sons, 2000, ch.3-4.
[19] M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm for Designing Efficient Protocols,” in Proc. the 1st

ACM Conference on Computer and Communications Security, New York: ACM Press, 1993, pp. 62–73.
[20] Ran Canetti, Oded Goldreich and Shai Halevi, “The Random Oracle Methodology Revisited, ” in Proc. the 30 th Annual ACM

Symposium on Theory of Computing, New York: ACM Press, 1998, pp. 209–218.
[21] Kenneth H. Rosen, Elementary Number Theory and Its Applications. (5th ed.) Boston: Addison-Wesley, 2005, ch. 12.
[22] Daniel Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1,” in

Proc. Advance in Cryptology: Crypto ’98, Springer-Verlag, 1998, pp. 1–12.
[23] Ronald Cramer and Victor Shoup, “A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext

Attack,” in Proc. Advance in Cryptology: Crypto ’98, Springer-Verlag, 1998, pp. 13–25.
[24] Victor Shoup, “OAEP Reconsidered,” in Proc. Advance in Cryptology: Crypto ’01, Springer-Verlag, 2001, pp. 239–259.
[25] Henri Cohen, A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, 2000, ch. 1, 3.

