
> http://eprint.iacr.org/2006/420.pdf <

 1

The REESSE1+ Public Key Cryptosystem Version 2.2
*

Shenghui Su 1, and Shuwang Lü 2
1 College of Computer Science, Beijing University of Technology, Beijing 100124, P.R.China

2 School of Graduate, Chinese Academy of Sciences, Beijing 100039, P.R.China

Abstract: The authors give the definitions of a coprime sequence and a lever function, and

describe five algorithms and six characteristics of a prototypal cryptosystem called REESSE1+,
used for encryption and signature, and based on the three new hardnesses: multivariate

permutation problem (MPP) Ci ≡ (Ai W ℓ

(i))δ (% M), anomalous subset product problem (ASPP) Ḡ ≡

∏

n
i=1 Ci

ḇ
 i (% M), and transcendental logarithm problem (TLP) y ≡ x

x (% M). Some evidences show
that MPP, ASPP, TLP are harder than DLP in the same prime field, namely they can not be
solved in DLP subexponential time. Prove correctness of the decryption and verification, deduce
the probability of a plaintext solution being nonunique is nearly zero, discuss necessity and
sufficiency of the lever function for resisting continued fraction attacks, expound a relation
between the lever function and a random oracle, analyze exact securities of REESSE1+ against
recovering a plaintext from a ciphertext, extracting a private key from a public key or a signature,
and forging a signature from known signatures, public keys, and messages on the assumption
that IFP, DLP, SSP can be solved, and find that running times of effectual attack tasks are greater
than or close to O(2n) when n = 80, 96, 112, or 128 with log2 M ≈ 696, 864, 1030, or 1216. As
viewed from utility, it should be researched further how to decrease the length of the modulus and
to increase the speed of the decryption.

Keywords: Public key cryptosystem, Coprime sequence, Lever function, Digital signature,
Double congruence theorem, Transcendental logarithm problem, Polynomial time reduction

1 Introduction

The trapdoor functions for RSA [1] and ElGamal [2] public key cryptosystems [3] are computationally
one-way [4][5], which indicates that there always exists one sufficiently large setting of the security
dominant parameter that makes utilizing a cryptosystem feasible and breaking the cryptosystem
infeasible in polynomial time [6]. Instancing RSA based on the integer factorization problem (IFP),
when the bit-length of its modulus reaches 1024, the decomposition is infeasible but the encryption and
decryption are feasible in polynomial time. Such a security is referred to as asymptotic security, which is
distinguished from exact security or concrete security. The exact security is practice-oriented, and aims
at giving more precise estimates of the time complexities of attack tasks [7].

In some public key cryptosystems, trapdoor functions can prevent a related plaintext from being
recovered from a ciphertext, but can not prevent a related private key from being extracted from a public
key. For instance, in the MH knapsack system [8], the subset sum problem (SSP) which contains
trapdoor information can not prevent a related private key from being extracted from ci ≡ ai W (% M)
through the accumulation points of minima [9], and moreover, when the knapsack density is less than 1,
SSP will degenerate to a polynomial time problem from a NPC problem owing to the L3 lattice base
reduction algorithm [10][11] which is employed for finding the shortest vector or an approximately
shortest vector in a lattice [12].

Along with elevation of computer CPU speeds, the security dominant parameter of a system becomes
larger and larger. As an example, the bit-length of the modulus of the ElGamal system based on the
discrete logarithm problem (DLP) is already up to 1024. Currently, there are four manners of decreasing
the bit-length of the security dominant parameter and increasing the one-wayness of the trapdoor
function.

The first manner is to transplant known cryptosystems to a complex algebraic system from a simple
one ─ the elliptic curve analogue of ElGamal referable to elliptic curve cryptography (ECC) for example.
By now, any effectual algorithm which can find out elliptic curve discrete logarithms in subexponential

* Manuscript first received Nov. 15, 2006 (version 1.0), revised Mar. 15, 2007, and last revised Oct. 30, 2010, the essence of
which is final, nevertheless other rational analyses of ver. 2.2 are expected. For pragmatizing, refer to the successor of REESSE1+.

E-mail of the authors: sheenway@126.com (Shenghui Su); swlu@ustc.edu.cn (Shuwang Lü).
This research is supported by MOST with project 2007CB311100 and 2009AA01Z441.

> http://eprint.iacr.org/2006/420.pdf <

 2

time in the bit-length of a modulus has not been discovered yet [13].
Theoretically, almost every existing cryptosystem may have an elliptic curve analogue. However, not

every analogue can bring the same effect as the analogue of ElGamal ─ the analogue of RSA of which
the security still relies on the two large prime factors [14] for example.

The second manner is to design cryptosystems over polynomial rings ─ the NTRU system for example.
The shortest vector problem (SVP) is the security bedrock of NTRU since it is impossible to seek a
NTRU secret polynomial or a NTRU plaintext polynomial through the L3 base reduction on condition
that two special parameters ch and cm are fitly selected [15].

The third manner is to construct cryptosystems based on the tame automorphism of multivariate
quadratic polynomials over a small field ─ the TTM scheme [16] and the TTS scheme [17] ordinarily
referred to as the multivariate cryptosystems for example.

The fourth manner is to devise cryptosystems over small prime fields through finding or constructing
novel computational problems which should be harder than IFP, DLP, or SSP with low density according
to evidences. Some threads of this manner are given by the authors.

In the paper, the authors bring forward the three new computational problems: multivariate
permutation problem (MPP) Ci ≡ (Ai W ℓ

(

i

))δ (% M), anomalous (modular) subset product problem (ASPP)

Ḡ = ∏

n
i=1Ci

ḇ
 i (% M), and transcendental logarithm problem (TLP) y ≡ xx (% M), where M is a prime, and

find some evidences which show that they are separately harder than DLP in the same prime field;
over a prime field, design and analyze a prototypal public key cryptosystem called REESSE1+, including
five algorithms for keys, encryption, and signature; give the definition and properties of a coprime
sequence and a lever function; discuss the ineffectualness of the continued fraction attack; propose
and prove the double congruence theorem.

MPP which owns the indeterminacy assures the security of a private key, ASPP as a trapdoor function
which can resist L3 lattice base reduction assures the security of a ciphertext, and TLP which concerts
with the root finding problem of a true polynomial a x

n
 + b x

n – 1 + c x + d ≡ 0 (%), and can withstand
attacks by solving discrete logarithms assures the security of a signature. Provable security by reduction
is appreciable, but not sufficient, and thus the exact security of REESSE1+ is analyzed.

It is not difficult to understand that REESSE1+ is essentially a multiproblem cryptosystem. The
security of the multiproblem cryptosystem is equivalent to the complexity of what is easiest solved in all
the problems. Additionally, MPP contains the four variables almost independent, and therefore, in a
broad sense, REESSE1+ may be regarded as a multivariate cryptosystem. A multiproblem cryptosystem
must be a multivariate cryptosystem because only multiple variables can bring multiple problems.

REESSE1+ is different from REESSE1 which is based on the subset product problem Ḡ = ∏

n
i=1Ci

b
 i (%

M), and does not have a robust signature scheme [18][19], and will make sense in untouched areas. We
know that on a quantum computational model, IFP and DLP are already solved in polynomial time [20],
and naturally, whether MPP, ASPP, and TLP can be solved in polynomial time on quantum computer is
interesting. Besides, TLP as a primitive problem can not be converted into a discrete logarithm problem,
which indicates that one can design other signature schemes over a small prime field by using TLP or its
variant y ≡ (g x)x (% M).

Throughout the paper, unless otherwise specified, n ≥ 80 is the bit-length of a plaintext block, or length
of a sequence, the sign % means “modulo”, does “M – 1”, log does a logarithm to the base 2, ¬ does the
radix-minus-one complement of a bit, Þ does the maximal prime allowed in REESSE1+, |x| denotes the
size of a set x, x denotes the order of x % M, and gcd(a, b) represents the greatest common divisor of two
integers. Without ambiguity, “% M ” is usually omitted in expressions.

2 A Coprime Sequence and a Lever Function

Definition 1: If A1, …, An > 1 are n pairwise distinct positive integers such that ∀ Ai, Aj with Ai ≠ Aj,
either gcd(Ai, Aj) = 1, or gcd(Ai, Aj) = H ≠ 1 with (Ai / H) ł Ak and (Aj / H) ł Ak ∀ k ≠ i, j ∈ [1, n], the
integers are called a coprime (relatively prime) sequence, denoted by {A1, …, An}, and shortly {Ai}.

Property 1: If we randomly select m ∈ [1, n] elements from {A1, …, An} and construct a subsequence
{Ax1, …, Axm} (a subset as unordered), a subset product G = ∏

m
i=1 Axi = Ax1…Axm is uniquely determined,

namely the mapping from G to {Ax1, …, Axm} is one-to-one.
G is also called a coprime sequence product.
Proof: By contradiction.

> http://eprint.iacr.org/2006/420.pdf <

 3

Firstly, assume that ∀ Ai, Aj ∈ {A1, …, An}, gcd(Ai, Aj) = 1.
Because A1, …, An are pairwise relatively prime, for arbitrary Aj, Ak ∈ {A1, …, An}, there must exist

gcd(Aj, Ak) = 1, namely there is not the same prime divisor between Aj and Ak . It manifests that the prime
divisors of every element do not belong to any other elements.

Presuppose that G is acquired from two different subsequences {Ax1, …, Axm} and {Ay1, …, Ayh}, namely
G = ∏

m
i=1 Axi = Ax1…Axm = ∏

h
j=1 Ayj = Ay1…Ayh.

Since the two subsequences are unequal, there must exist a certain element Az which does not belong to
the two subsequences at one time.

Without loss of generality, let Az ∈ {Ax1, …, Axm} and Az ∉ {Ay1, …, Ayh}.
In terms of the fundamental theorem of arithmetic [14], there must exist a prime number p which is the

divisor of Az.
It is as above that the prime divisors of every element do not belong to any other elements, and thus the

prime p must be the divisor of the product Ax1…Axm but not the divisor of the product Ay1…Ayh. It means
that the integer G has two distinct prime factorizations, which is in direct contradiction to the
fundamental theorem of arithmetic.

Secondly, assume that ∃ Ai, Aj ∈ {A1, …, An} with gcd(Ai, Aj) ≠ 1.
According to definition 1, ∀ Ak ∈ {A1, …, An} with k ≠ i, j, there are (Ai / gcd(Ai, Aj)) ł Ak and (Aj / gcd(Ai,

Aj)) ł Ak, which means at least one divisor of Ai and of Aj are not contained in any other elements.
Assume that z = i or j, Az ∈ {Ax1, …, Axm}, Az ∉ {Ay1, …, Ayh}, p | Az, and p ł Ak ∀ k ≠ z ∈ [1, n], where

p is a prime.
If G = Ax1…Axm = Ay1…Ayh, then p | (Ax1…Axm), and p ł (Ay1…Ayh), which is in direct contradiction.
Therefore, the mapping relation between G and {Ax1, …, Axm} is one-to-one.
Property 2: Let {A1, …, An} be a coprime sequence, and b1…bn ≠ 0 be a bit string. Then the mapping

from G = ∏

n
i = 1 Ai

ḇi to b1…bn is one-to-one, where ḇ i = 0 if bi = 0, 1 plus the number of successive 0-bits
before bi if bi = 1, or 1 plus the number of successive 0-bits before and after bi if bi is the rightmost 1.

G is called an anomalous coprime sequence product.
Notice that there is an important fact: ∑

n
i = 1 ḇ n = n.

Proof:
The proof is similar to that of property 1.
Additionally, in the REESSE1+ system, the key transform is Ci ≡ (Ai W ℓ

(i))δ (% M), where the exponent

ℓ(i) is conceptualized.
Definition 2: In a public key cryptosystem, ℓ(.) relevant to the key transform is called a lever function,

if it has the following features:
• ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {1, …, }. Let Ł n represent the

collection of all injections from [1, n] to [1,], then |Ł n| ≥ A

n
n = n ×…× 1.

• The mapping between i and ℓ(i) is established randomly without an analytical formula, so every time a
public key is generated, ℓ(.) is distinct from one another, and there does not exist any dominant
mapping from ℓ(.) to a public key.

• An attacker has to consider all the arrangements of elements in Ω when extracting a related private key
from a public key. Thus, if n is large enough, it is infeasible for the attacker to search the arrangements
exhaustively.

• The owner of a private key only considers the accumulative sum of elements in Ω when recovering a
related plaintext from a ciphertext. Thus, the time complexity of decryption is polynomial in n, and the
decryption is feasible.
Obviously, there is the large amount of calculation on ℓ(.) at “a public terminal”, and the small amount

of calculation on ℓ(.) at “a private terminal”.

3 Design of the REESSE1+ Public key Cryptosystem

In essence, REESSE1+ is a prototypal cryptosystem which is used for expounding some foundational
definitions, concepts, ideas, thought, and methods. For its pragmatization, refer to the successor of
REESSE1+.

> http://eprint.iacr.org/2006/420.pdf <

 4

3.1 The Key Generation Algorithm

This algorithm is employed by the owner of a key pair.
Let ṕ 1, …, ṕ n be the first n primes in the set , Λ = {2, 3, …, 1201}, and Ω = {1, 3, …, 2n – 1}, where

Ω be an odd set.
Assume that đ, Đ, T, S are four pairwise coprime integers, where đ ∈ [5, 216], and Đ, T ≥ 2

n.
S1: Randomly generate coprime A1, …, An with Ai ∈ Λ.
S2: Find prime M > (max

1≤i≤n Ai)n making đ Đ T |, gcd(S,) = 1,

and ∏

k
i=1 ṕi

ē

i | , where k meets ∏

k
i=1 ēi ≥ 210 and ṕk ≈ 2n.

S3: Pick W, δ ∈ (1,) making gcd(δ,) = 1, δ = đ Đ T, and W ≥ 2n – 20.
S4: Compute α ← δ (δ n

+δ

W

n – 1)T, β ← δ W
n

T, ħ ← (W ∏

n
i = 1 Ai)–δ

S

 (α δ –1) % M.
S5: Randomly produce pairwise distinct ℓ(1), …, ℓ(n) with ℓ(i) ∈ Ω.
S6: Compute Ci ← (Ai W ℓ (i))δ % M for i = 1, …, n.
At last, ({Ci}, α, β) is a public key, ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) is a private key, and S, T, M are in

common.
Notice that the set Ω is not unique ─ Ω = {δ + 1, δ + 2, …, δ + n} for example, and the primary

principle for selecting Ω is that a ciphertext is decrypted as quickly as possible.
At S3, to seek δ, first let δ ≡ g /

(đ

Đ

T)
 (% M), where g is a generator by algorithm 4.80 in section 4.6 of

[21], then test δ.
At S4, seeking a S-th root to x

S ≡ c (% M) is referred to theorem 1 in section 3.4.

3.2 The Encryption Algorithm

Assume that ({Ci}, α, β) is a public key, and b1…bn ≠ 0 is a bit plaintext block or a symmetric key.
S1: Set Ḡ ← 1, k ← 0, i ← 1.
S2: If bi = 0, let k ← k + 1, ḇ i ← 0;

else let ḇ i ← k + 1, k ← 0, Ḡ ← Ḡ Ci

ḇi % M.
S3: Let i ← i + 1.

If i ≤ n, go to S2.
S4: If bn = 0, let ḇ n – k ← ḇ n – k + k, Ḡ ← Ḡ Cn – k

k % M.
At last, the ciphertext Ḡ ≡ ∏

n
i =1 Ci

ḇ
 i (% M) called an anomalous subset product is obtained.

Notice that α and β are unuseful for the encryption.

3.3 The Decryption Algorithm

Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) is a related private key, and Ḡ is a ciphertext.
Notice that because ∑

n
i=1 ḇ i = n is even, ∑

n
i=1 ḇ i ℓ(i) must be even.

S1: Compute Ḡ ← Ḡ
δ −1 % M.

S2: Compute Ḡ ← Ḡ W
–2 % M.

S3: Set b1…bn ← 0, G ← Ḡ, i ← 1, k ← 0.
S4: If Ai

k +
1

 | G, let G ← G / Ai
k +

1, bi ← 1, k ← 0;
else let k ← k + 1.

S5: Let i ← i + 1.
If i ≤ n and G ≠ 1, go to S4.

S6: If k ≠ 0 and (An – k)k | G, let G ← G / (An – k)k.
S7: If G ≠ 1, go to S2; else end.
At last, the original plaintext block or symmetric key b1…bn is recovered.
This algorithm can always terminate normally as long as Ḡ is a true ciphertext. In decryption, Đ and đ

are unhelpful.

3.4 The Digital Signature Algorithm

Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) is the private key, F is a file or message which will be signed,
and hash is a one-way compression function.

S1: Let H ← hash(F), whose binary form is b1…bn.
S2: Set ḵ ← δ ∑

n
i=1 bi ℓ(i) %, G0 ← (∏

n
i=1 Ai

¬bi)δ % M.

> http://eprint.iacr.org/2006/420.pdf <

 5

S3: ∀ ā ∈ (1,) making đ T ł ā, đ ł WQ % , where Q ≡ (ā Đ + WH)δ –1 % .
S4: Compute R ← (Q(δ ħ)–1)1

/

S

 G0
–1, Ū ← (R W

ḵ –

δ)Q,

ĝ ← δ ā

Đ % M, ξ ← ∑

n -1
i=0 (δ Q)n –

1

– i (HW)i % .

S5: ∀ r ∈ [1, đ 216] making đ ł (r U S + ξ) % , where U ≡ Ū ĝ
r (% M).

S6: If đ ł ((WQ)

n

– 1 + ξ + r U S) %, go to S5.

At last, the signature (Q, U) on the file F is obtained, and sent to a receiver together with F.
It is known from S3, S4 that Q, R meet ā Đ ≡ δ Q – WH (%) and Q ≡ (R G0)Sδ ħ (% M).
It should be noted that owing to đ ł ā, gcd(Đ, đ) = 1, and đ | , there must exist đ ł (δ Q – WH).
According to the double congruence theorem (see section 3.6), in the signature algorithm we do not

need V ≡ (R
–1Wδ

 G1)QU
 δ λ (% M), where G1 = (∏

n
i=1 Ai

bi)δ % M, and λ satisfies
λ S ≡ ((WQ)

n

– 1 + ξ + r U S)(δ Q – HW) (%),

which indicates đ Đ | λ.
At S5, the probability of finding a fit U is roughly 1 / đ. Since đ is a small number, which does not

influence the security of REESSE1+ (see section 6.2), U can be found out at a good pace.
Let ∆ ≡ (WQ)

n

– 1 + ξ + r U S (%).

Due to đ |, if ((WQ)

n

– 1 + ξ + r U S) contains the factor đ, it must be contained in ∆ %.

Besides, due to đ ł S and đ ł (WQ)

n

– 1 (by đ ł WQ), if we want to make đ | ∆, there must be đ ł (r U S + ξ)

% .
Therefore, as long as every value of r makes r US different, đ | ∆ will holds after about đ attempts of r.

The algorithm can also terminate normally because after r traverses the interval [1, đ 216], the probability
of đ ł ∆ is (1 – 1 / đ)đ 216, and almost zero.

At S4, we derive ξ from ξ(δ Q – WH) ≡ (δ Q)n – (WH)n (%). Computing R by Q ≡ (R G0)S
 δ ħ (% M)

may resort to theorem 1, where S meets gcd(S,) = 1.
Theorem 1: For the congruence x

n ≡ c (% M) with M being prime, if gcd(n,) = 1, every c has just
one n-th root modulo . Especially, let µ satisfy µ n ≡ 1 (%), then c

µ % M is the n-th root.
Further, we have theorem 2 and 3.
Theorem 2: For the congruence x

n ≡ c (% M) with M being prime, if n | and gcd(n, / n) = 1, then
when c is an n-th power residue modulo M, and µ satisfies µ n ≡ 1 (% / n), c

µ % M is an n-th root.
Theorem 3: For the congruence x

n ≡ c (% M) with M being prime, if n ł , let k = gcd(n,), and µ
satisfy µ (n / k) ≡ 1 (% / k), then x

n ≡ c (% M) is equivalent to
x

k ≡ c
µ (% M),

that is, the two congruences have the same set of solutions.
The proofs of theorem 1 and 2 are referred to [22], and the proof of theorem 3 is referred to [23]. The

solution which is obtained by theorem 1 and theorem 2, and may be written as a certain power of c
modulo p is called the trivial solution to the congruence x

n ≡ c (% M) [23].

3.5 The Identity Verification Algorithm

Assume that ({Ci}, α, β) is the public key, F is the file or message, and (Q, U) is a signature on it.
S1: Let H ← hash(F), whose binary form is b1…bn.
S2: Compute Ḡ ← ∏

n
i=1 Ci

bi % M.
S3: Compute X ← (α Q

–1)QU

T
 α

Q
n
 % M,

Y ← (Ḡ
Q

 U

–1)US

T
 β H

Q
n – 1 + H n % M.

S4: If X ≡ Y, the identity is valid and F intact;
else the identity is invalid or F modified.

Via running this algorithm, a verifier can judge whether a signature is genuine or fake, prevent the
signatory from denying the signature, and do an adversary from modifying the file.

The discriminant X ≡ Y (% M) at S4 is argued as follows:
It is known from section 3.1 that α ≡ δ (δ

n

+δ

W

n – 1)T ≡ δ ħ(Wδ G0G1)S
 (% M) and β ≡ δ W n

T (% M).

Let V ≡ (R –1Wδ
 G1)

QU
 δ λ (% M).

Considering λ meeting λ S ≡ ((WQ)

n

– 1 + ξ + r U S)(δ Q – HW) (%), let λ = k đ Đ, where k is a integer,

and then
Q

QU
 V

S ≡ (R G0)

S

QU

 (δ ħ)QU
 (R

–1
 Wδ

 G1)Q

U S δ λ S
≡ (W

δ G0G1) QU S (δ ħ)QU
 δ λ

S

> http://eprint.iacr.org/2006/420.pdf <

 6

≡ α QU
 δ ((W

Q)

n – 1 + Σ

n -1

i=0

(δ
Q) n –

1
– i (WH)

i
 + rU

S

) (δ
Q –

WH)
≡ α QU

 δ
δ

W n – 1Q

n

–

W

nH

Q

n

– 1

+

(δ

Q)n
 – (WH)n

 +
(δ

Q

–WH)

rU

S
≡ α QUδ (δ n

+

δ

W

n – 1)Q

n
δ –W

n(H

Q

n

–

 1

+

H

n)
 δ ā

Đ

rUS
 (% M).

Transposition yields
V

S ≡ (α Q

–1)QUδ (δ n

+

δ

W

n – 1)Q

n
δ –W

n(H

Q

n

– 1

+

H

n)
 δ ā

Đ

rUS
 (% M).

Therefore, we have
V

ST ≡ (α Q

–1)QUTδ (δ n

+

δ

W

n – 1)TQ

n
δ –TW

n(H

Q

n

–

 1

+

H
n)δ ā

Đ

rUST
≡ (α Q

–1)QU

T
 α Q

n
 β –

(H

Q

n

–

 1

+

H
n)

 δ ā
Đ

rUST
≡ X β –

(H

Q

n

–

 1

+

H
n)

 δ ā
Đ

rU

ST (% M).
In addition,

U

U

T

 V
T ≡ (RW

ḵ – δ
)QUT(δ

ā

Đ

r)U

T(R

–1Wδ
 G1)QU

Tδ λ

T
≡ (W

ḵ
 G1)QU

T
 δ ā

Đ

rU

T
 δ λ

T
≡ Ḡ QU

T
 δ ā

Đ

rU

T
 δ k đ Đ

T
≡ Ḡ QU

T
 δ ā

Đ

rU

T (% M).
Transposition yields

V T ≡ (Ḡ Q U –1)U

T
 δ ā

Đ

rU

T (% M).
Hence

V S T ≡ (Ḡ Q U –1)U

S

T
 δ ā

Đ

rU

S

T (% M).
By the double congruence theorem (theorem 4), there is

V S T ≡ X β – (H

Q

n

–

 1

+

H
n)

 δ ā
Đ

rU

ST
≡ (Ḡ

Q
 U

–1)US

T
 δ ā

Đ

rU

S

T (% M).
Namely, X ≡ (Ḡ

Q
 U

–1)U

S

T
 β

H

Q

n – 1

+

H
n
 ≡ Y (% M).

3.6 The Double Congruence Theorem

Theorem 4 (The Double Congruence Theorem): Assume that M is a prime, and that s and t satisfying
gcd(s, t) = 1 are two constants, then simultaneous equations

x s ≡ a (% M)
x t ≡ b (% M)

have the unique solution if and only if a
t ≡ b

s (% M).
Proof: Necessity:
Assume that the simultaneous equations x s ≡ a (% M) and x t ≡ b (% M) have solutions.
Let x0 be a solution to the two equations, then x0

s ≡ a (% M) and x0
t ≡ b (% M).

Further, x0
s

t ≡ a

t (% M) and x0
t s ≡ b

s (% M) can be obtained.
Therefore, x0

s t ≡ a
t ≡ b

s (% M).
Sufficiency:
Assume that a

t ≡ b
s (% M).

In terms of the greatest common divisor theorem [14], there exists a pair of integers u and v making u

s + v t = 1. Thus,
x u s ≡ a

u (% M),
x v t ≡ b

v (% M).
The above two equations multiplying yields

x u s + v t ≡ x ≡ a
u b

v (% M).
Furthermore, we have

(a
u b

v) s ≡ a
u s b

v s ≡ a
u s a

v t ≡ a
u s + v t ≡ a (% M),

(a
u b

v) t ≡ a
u t b

v t ≡ b
u s b

v t ≡ b
u s + v t ≡ b (% M).

Accordingly, a
u b

v is a solution to the original simultaneous equations.
Uniqueness:
Let x0 ≡ a

u b
v (% M).

Assume that another value x1 meets the equations x s ≡ a (% M) and x t ≡ b (% M) at one time.
Then, it holds that

x1
s ≡ a (% M) and x1

t ≡ b (% M).
By comparison, we have x1

s ≡ x0
s and x1

t ≡ x0
t (% M). Transposing gives

(x0 x1
–1) s ≡ 1 and (x0 x1

–1) t ≡ 1 (% M).
If at least one between s and t is relatively prime to , by theorem 1, there must be x0 x1

–1 ≡ 1 (% M),

> http://eprint.iacr.org/2006/420.pdf <

 7

namely x0 ≡ x1 (% M).
If neither s nor t is coprime to , may let k = gcd(s,), h = gcd(t,). Then we see gcd(s / k,) = 1 and

gcd(t / h,) = 1.
Thus, there are (x0 x1

–1) k ≡ 1 and (x0 x1
–1) h ≡ 1 (% M). By theorem 3 and gcd(s, t) = 1, we know gcd(k,

h) = 1. In terms of the group theory [24], when gcd(k, h) = 1, only the element ‘1’ belongs to two different
subgroup at the same time. Therefore, x0 x1

–1 ≡ 1, namely x1 = x0, and x0 bears uniqueness.
To sum up, we prove theorem 4.

3.7 Characteristics of REESSE1+

REESSE1+ holds the following characteristics compared with classical MH, RSA, and ElGamal
cryptosystems.
• The security of REESSE1+ is not based on a single hardness, but on three hardnesses: MPP, ASPP,

and TLP. Hence, it is a multiproblem public key cryptosystem.
• The key transform Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n contain 2n + 2 unknown variables, and each

equation contains four almost independent variables. Hence, REESSE1+ is multivariate.
• If any of Ai, W, and ℓ(i) is determined, the relation between the two remainders is still nonlinear ─ thus

there is very complicated nonlinear relations among Ai, W, and ℓ(i).
• The indeterminacy of ℓ(.) as δ = 1. If Ci and W are determined, Ai and ℓ(i) can not be determined, and

even have no one-to-one relation when W is a non-generator. If Ci and Ai are determined, W and ℓ(i) can
not be determined, and also have no one-to-one relation for gcd(ℓ(i),) > 1.

• The insufficiency of the mapping. A private key includes {Ai}, {ℓ(i)}, W, δ etc, but there is only a
dominant mapping from {Ai} to {Ci}. Thus, the reversibility of the function is poor.

• Because combinations among multiple variables may bring different hardnesses, REESSE1+ is a
self-improvable system while its main architecture need not be changed.

3.8 Correctness of the Decryption Algorithm

Since (*
M , ·) is an Abelian, namely commutative group, ∀ḵ ∈ [1,], there is

W

ḵ (W –1)ḵ ≡ W

ḵ W

–ḵ ≡ 1 (% M).
Let b1…bn be an n-bit plaintext.
It is known from section 3.2 that Ḡ ≡ ∏

n
i=1 Ci

ḇi (% M), where ḇ i means what the algorithm shows, and Ci
≡ (Ai W ℓ (i))δ % M.

Let G ≡ ∏
n
i=1 Ai

ḇi (% M), and ḵ = ∑

n
i=1 ℓ(i) ḇ i.

Then, we need to prove that Ḡ
δ −1

 (W
–1)ḵ ≡ G (% M).

Proof:
According to the key generator and encryption algorithm, there is

Ḡ ≡ ∏

n
i =1 Ci

ḇ
 i ≡ ∏

n / 2
i=1 ((Ai W ℓ

(i))δ)ḇi

≡ W (∑

n

i=1

ḇi ℓ

(i))δ ∏

n
i=1 (Ai)δ

ḇi
≡ W

ḵ

δ (∏

n
i=1 Ai

ḇi)δ (% M).
Further, raising either side of the above equation to the δ −1-th yields

Ḡ δ
 −1 ≡ (W

ḵ

δ (∏

n
i=1 Ai

ḇi)δ)δ
 −1

≡ W ḵ ∏

n
i=1 Ai

ḇi (% M).
Multiplying either side of the just above equation by (W

–1)ḵ yields
Ḡ

δ −1
 (W –1)ḵ ≡ W

ḵ
 ∏

n
i=1 Ai

ḇi (W
–1)ḵ

≡ W ḵ ∏

n
i=1 Ai

ḇi (W
ḵ

)–1
≡ ∏

n
i=1 Ai

ḇi ≡ G (% M).
Clearly, the above process also gives a method of seeking G meantime.
Notice that in practice, b1…bn is unknowable in advance, so we have no way to directly compute ḵ.

However, because the range of ḵ ∈ (n, n(2n – 1)) is very narrow, we may search ḵ heuristically by
multiplying W

–2, and verify whether G = 1 after it is divided exactly by some Ai
ḇi. It is known from

section 3.3 that the original b1…bn is acquired at the same time the condition G = 1 is satisfied.

> http://eprint.iacr.org/2006/420.pdf <

 8

3.9 Uniqueness of a Plaintext Solution to a Ciphertext

Because {C1, …, Cn} is a non-coprime sequence, the mapping from ∏

n
i =1 Ci

ḇ
 i % M to Ḡ (see section 3.2)

is theoretically many-to-one. It might possibly result in the nonuniqueness of a plaintext solution b1…bn
when Ḡ is being unveiled.

Suppose that the ciphertext Ḡ can be obtained from two different anomalous subset products
corresponding to b1…bn and b′1…b′n respectively. Then,

Ḡ ≡ ∏

n
i =1 Ci

ḇi ≡ ∏

n
i =1 Ci

ḇ

′i (% M).
That is,

∏

n
i=1 (Ai W ℓ

(i))δ

ḇi ≡ ∏

n
i=1 (Ai W ℓ

(i))δ ḇ

′i (% M).
Further, there is

W
ḵ

δ

 ∏

n
i=1(Ai)δ

ḇi ≡ W ḵ
′

δ

 ∏

n
i=1(Ai)δ ḇ

′i (% M),
where ḵ = ∑

n
i=1 ḇ i ℓ(i), and ḵ ′ = ∑

n
i=1 ḇ ′i ℓ(i) % .

Raising either side of the above congruence to the δ −1-th power yields
W

ḵ
 ∏

n
i=1 Ai

ḇi ≡ W ḵ
′
 ∏

n
i=1 Ai

ḇ

′i (% M).
Without loss of generality, let ḵ ≥ ḵ ′. Because (*

M , ·) is an Abelian group, there is
W

ḵ – ḵ

′ ≡ ∏

n
i=1 Ai

ḇ

′i (∏

n
i=1 Ai

ḇi)–1 (% M).
Let θ ≡ ∏

n
i=1 Ai

ḇ

′i (∏

n
i=1 Ai

ḇi)–1 (% M), namely θ ≡ W
ḵ – ḵ

′ (% M).
This congruence signifies when the plaintext b1…bn is not unique, the value of W must be relevant to θ.

The contrapositive assertion equivalent to it is that if the value of W is irrelevant to θ, b1…bn will be
unique. Thus, we need to consider the probability that W takes a value relevant to θ.

If an adversary tries to attack an 80-bit symmetric key through the exhaustive search, and a computer
can verify trillion values per second, it will take 38334 years for the adversary to verify all the potential
values. Hence, currently 80 bits are quite enough for the security of a symmetric key.

b1…bn contains n bits which indicates ∏

n
i=1 Ai

ḇi has 2n potential values, and thus the number of potential
values of θ is at most 2n × 2n. Notice that because A1

–1, …, An
–1 are not necessarily coprime, some values

of θ may possibly occur repeatedly.
Because |ḵ − ḵ ′| ≤ n(2n – 1) ≤ 32640 ≈ 215 with n ≤ 128, and W has at most 215 solutions to every θ, the

probability that W takes a value relevant to θ is at most 215
 22n

 / M. When n ≥ 80, there is 215
 22n

 / M ≤ 2175

/ 2553 = 1 / 2378 which is close to zero (the product of the first 80 primes is about 2553). The probability will
further decrease when W is a prime since the solutions to θ lean to being composite integers in the
average case.

In addition, if you please, resorting to ∑

n
i=1 ḇ i = n, may exclude some unoriginal plaintext solutions.

4 Necessity and Sufficiency of the Lever Function for Resisting Continued
Fraction Attacks

To discuss the effect of the lever function ℓ(.) which is an injective, let δ = 1, and consider a special key
transform

Ci ≡ Ai W ℓ

(i) (% M) for i = 1, …, n,

where each ℓ(i) ∈ Ω is pairwise distinct, and Ω = {5, 7, …, 19, 53, 55, …} is an known odd set of 2n elements
such that ∀ e1, e2 ∈ Ω, e1 ≠ e2; ∀ e1, e2, e3 ∈ Ω, e1 + e2 ≠ e3; ∀ e1, e2, e3, e4 ∈ Ω, e1 + e2 + e3 ≠ e4. The
above transform is called a slack transform since ∑

n
i = 1 ℓ(i) is relatively large.

The production of Ω is referred to appendix A: a program in C++ with the running time of O(n2). The
maximal element in Ω is 2652, 3212, 3736, and 4260 respectively when n = 80, 96, 112, and 128.

Theorem 5: If α is an irrational number, and r / s is a rational in lowest terms such that |α − r / s| < 1 /

(2s2), where |α − r / s| is an absolute value, and r, s > 0 are two integers, then r / s is a convergent of the
simple continued fraction expansion of α [25].

The proof of theorem 5 is referred to [25].
If α is a rational number, theorem 5 also holds [25].

4.1 Necessity of the Lever Function ℓ(.)

If a private key is insecure, a plaintext must be insecure. Therefore, the security of a private key is most

> http://eprint.iacr.org/2006/420.pdf <

 9

foundational.
The necessity of the lever function ℓ(.) means that if a REESSE1+ private key is secure, ℓ(.) must exist

in the slack transform. The equivalent contrapositive assertion is that if ℓ(.) does not exist or is a constant
in the slack transform, the REESSE1+ private key will be insecure.

Assume that ℓ(.) is a unknown constant k. Then the slack transform becomes as
Ci ≡ Ai W k (% M)

which is equivalent to ℓ(.) being ineffectual or nonexistent.
Since (*

M , ·) is an Abelian group [24], of course, there is
Ci

–1 ≡ Ai
–1

 W –

k (% M).

∀x ∈ [1, n – 1], let
Gz ≡ Cx Cn

–1.
Substituting Ax W

k and An W
k respectively for Cx and Cn in Gz yields

Gz ≡ Ax W k (An W k)–1 (% M)
An Gz ≡ Ax (% M)
An Gz – L M = Ax,

where L is a positive integer.
The either side of the equation is divided by An M gives

Gz / M – L / An = Ax / (An M). (1)
Due to M > (max

1≤i≤n Ai)n > ∏

n
i = 1 Ai and Ai ≥ 2, there is

Gz / M – L / An < Ax / (An ∏

n
i = 1 Ai) = Ax / (An

2 ∏

n – 1
i = 1 Ai) ≤ 1 / (2 n – 2

 An
2),

that is,
Gz / M – L / An < 1 / (2 n – 2

 An
2). (2)

Evidently, as n > 2, there is
Gz / M – L / An < 1 / (2 An

2). (2′)
In terms of theorem 5, L / An is a convergent of the continued fraction of Gz / M.
Thus, L / An and An may be determined by (2′) in polynomial time for the length of the continued

fraction will not exceed log M. Further, W
k ≡ Cn An

–1 (% M) may be computed. Therefore, the original
coprime sequence {A1, …, An} with Ai ≤ Þ can almost be recovered.

Because W in every Ci has the same power, and the exponent of W in any Cx Cn
–1 is always zero, when

ℓ(i) is the constant k, there does not exist the indeterministic reasoning problem. Besides, when a
convergent of the continued fraction of Gz / M satisfies (2′), the subsequent some convergents also
possibly satisfies (2′). If so, it will bring about the nonuniqueness of An.

The above analysis manifests that when the lever function ℓ(.) is the constant k, a related private key
can be deduced from a public key, and further a related plaintext can be inferred from a ciphertext. Hence,
the lever function ℓ(.) is necessary to the security of a private key and a plaintext block.

4.2 Ineffectualness of the Continued Fraction Attack

When the lever function ℓ(.) exists, we have again
Ci ≡ Ai W ℓ

(i) (% M).

In this case, ℓ(.) brings attackers at least two difficulties:
• No method by which one can directly judge whether the power of W in Cx1…Cxm is counteracted by the

power of W

–1 in (Cy1…Cyh)
–1.

• No criterion by which the presumption of an indeterministic reasoning can be verified in polynomial
time.
The indeterministic reasoning based on continued fractions means that first presume that the

parameter W and its inverse W–1 counteract each other, and then judge whether the presumption holds or
not by the consequence.

According to section 4.1, first select m ∈ [1, n –1] elements and h ∈ [1, n – m] other elements from
{Ci}. Let

Gx ≡ Cx1 …Cxm (% M),
Gy ≡ Cy1 …Cyh (% M),

where Cxi ≠ Cyj for i ∈ [1, m] and j ∈ [1, h].
Let

Gz ≡ Gx Gy
–1 (% M).

Since {ℓ(1), …, ℓ(n)} is any arbitrary arrangement of n elements of Ω, it is impossible to predicate that

> http://eprint.iacr.org/2006/420.pdf <

 10

Gz does not contain the factor W or W
–1. For a further deduction, we have to presuppose that W of Gx is

exactly neutralized by W –1 of Gy
–1, and then,

Gz ≡ (Ax1…Axm)(Ay1…Ayh)

–1 (% M)
Gz (Ay1…Ayh) ≡ Ax1…Axm (% M)
Gz (Ay1…Ayh) – L M = Ax1…Axm

Gz / M – L / (Ay1…Ayh) = (Ax1…Axm) / (M Ay1…Ayh),
where L is a positive integer.

Denoting the product Ay1…Ayh by Āy yields
Gz / M – L / Āy = (Ax1…Axm) / (M Āy). (3)

Due to M > (max

1≤i≤n Ai)n > ∏

n
i = 1 Ai and Ai ≥ 2, we have

Gz / M – L / Āy < 1 / (2
n

–

m

–

hĀy

2). (4)
Obviously, when n > m + h, (4) may have a variant, namely

Gz / M – L / Āy < 1 / (2Āy
2). (4′)

When n = m + h, if M > (max

1≤i≤n Ai)n, (4′) still holds.
Especially, when n > 3, h = 1, m = 2, there exists

Gz / M – L / Ay1 < 1 / (2
n

–

3

 Ay1
2) < 1 / (2 Ay1

2). (4″)
Property 3: Let h + m ≤ n. If ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), the subset product Āy = Ay1…Ayh in (4′)

will be found.
Proof:
ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) means that a power of W in Cx1…Cxm is neutralized by a power of W

–1 in (Cy1…Cyh)
–1, and thus (4′) holds.

In terms of theorem 5, L / Āy is inevitably a convergent of the continued fraction of Gz / M, and thus Āy
= Ay1…Ayh is found.

Notice that (4′) is insufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) (see property 7), and Āy is faced
with nonuniqueness because there may possibly exist several convergents of the continued fraction of Gz

/ M which satisfy (4′).
Property 4: Let h + m ≤ n. ∀x1, …, xm, y1, …, yh ∈ [1, n], when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh),

 there always exist
Cx1 ≡ A′x1 W ′ ℓ′ (x 1

), …, Cxm ≡ A′xm W ′ ℓ′ (x
m),

Cy1 ≡ A′y1 W ′ ℓ′ (y 1
), …, Cyh ≡ A′yh W ′ ℓ′ (yh) (% M),

such that ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (%) with A′y1…A′yh ≤ Þ h;
 Cx1, …, Cxm, Cy1, …, Cyh make (4) with A′y1…A′yh ≤ Þ h hold with non-negligible probability.

Proof:
Because A′y1…A′yh need be scaled, the constraint A′y1…A′yh ≤ Þ h is demanded while because A′x1, …, A′xm

need not be scaled, A′x1 ≤ Þ, …, A′xm ≤ Þ are not demanded.
 Let Ōd be an oracle for a discrete logarithm.

Suppose that W ′ ∈ [1,] is a generator of (*
M , ·).

Let µ = ℓ′(y1) + … + ℓ′(yh). In terms of group theories, ∀A′y1, …, A′yh ∈ [2, Þ] which need not be coprime,
the equation

Cy1…Cyh ≡ A′y1…A′yh W ′ µ (% M)
for µ has a solution. µ may be obtained through Ōd.
∀ ℓ′(y1), …, ℓ′(yh – 1) ∈ [1,], and let ℓ′(yh) ≡ µ – (ℓ′(y1) + … + ℓ′(yh – 1)) (%).
Similarly, ∀ ℓ′(x1), …, ℓ′(xm – 1) ∈ [1,], and let ℓ′(xm) ≡ µ – (ℓ′(x1) + … + ℓ′(xm – 1)) (%).
Further, from Cx1 ≡ A′x1 W ′ ℓ′ (x 1

), …, Cxm ≡ A′xm W ′ ℓ′ (x
m) (% M), we can obtain a tuple 〈A′x1, …, A′xm〉, where

A′x1, …, A′xm ∈ (1, M), and ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (%).
Thus, property 4.1 is proven.

 Let Gz ≡ Cx1…Cxm (Cy1…Cyh)
–1 (% M). Then,

Cx1…Cxm (Cy1…Cyh)
–1 ≡ A′x1…A′xm W ′ ℓ′ (x 1

) +

…

+ ℓ′

(x

m)(A′y1…A′yh W ′ ℓ′ (y 1

) + … + ℓ′ (yh))–1
with ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (%).

Further, there is
A′x1…A′xm ≡ Cx1 … Cxm (Cy1…Cyh)

–1
 A′y1…A′yh.

The above equation manifests that the values of W ′ and (ℓ′(y1) + … + ℓ′(yh)) do not influence the value
of (A′x1…A′xm).

If A′y1…A′yh ∈ [2h, Þ h] changes, A′x1…A′xm also changes, where A′y1…A′yh is a composite integer. Thus, ∀

> http://eprint.iacr.org/2006/420.pdf <

 11

x1, …, xm, y1, …, yh ∈ [1, n], the number of values of A′x1…A′xm is roughly (Þ

h – 2h +1).
Let M = qÞ

m
 (A′y1…A′yh) 2n – m – h, where q is a rational number.

According to (3),
Gz / M – L / (A′y1…A′yh) = (A′x1 … A′xm) / (M A′y1 … A′yh) = A′x1…A′xm / (qÞ

m
 2n–m–h(A′y1…A′yh)

2).
When A′x1…A′xm ≤ qÞ m, there is

Gz / M – L / (A′y1…A′yh) ≤ qÞ m / (qÞ
m

 2n–m–h(A′y1…A′yh)
2) = 1 / (2n – m – h (A′y1…A′yh)

2),
which satisfies (4).

Assume that the value of A′x1…A′xm distributes uniformly on (1, M). If A′y1…A′yh is a certain value, the
probability that A′x1…A′xm makes (4) hold on a specific A′y1…A′yh is

qÞ m / M = qÞ m / qÞ
m(A′y1…A′yh)2

n – m – h = 1 / (A′y1…A′yh)2
n – m – h.

In fact, it is possible that A′y1…A′yh take every value in the interval [2h, Þ

h] when Cx1, …, Cxm, Cy1, …, Cyh
are fixed. Thus, the probability that A′x1…A′xm makes (4) hold is

P∀x1, …, xm, y1, …, yh ∈ [1, n] = (1 / (2n – m – h))(1 / 2h
 + 1 / (2h

 + 1) + … + 1 / Þ h)
> (1 / 2n – m – h)(2(Þ h – 2h

 + 1) / (Þ h + 2h))
= (Þ h – 2h

 + 1) / (2n – m – h – 1(Þ h + 2h)) ≈ 1 / 2n – m – h – 1.
It is not negligible when m + h is comparatively large.

Obviously, the larger m + h is, the larger the probability is, and the smaller n is, the larger the
probability is also.

Property 4 exhibits the indeterminacy of ℓ(.) concretely.
Property 5: Let h + m ≤ n. ∀ x1, …, xm, y1, …, yh ∈ [1, n], when ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh),

the probability that another value of Āy makes (4) hold is larger than 1 / 2n – m – h – 1.
Proof:
It is similar to the proving process of property 4.2.
Property 5 illuminates that the nonuniqueness of value of Āy, namely there may exist disturbing data of

Āy. The smaller m + h is, the less disturbing data is.
Property 6: (4) is necessary but not sufficient for W and W –1 neutralizing each other, namely ℓ(x1) + …

+ ℓ(xm) = ℓ(y1) + … + ℓ(yh), where x1, …, xm, y1, …, yh ∈ [1, n].
Proof: Necessity.
Suppose ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh).
Let {C1, …, Cn} be a public sequence, and M be a modulus, where Ci ≡ Ai W ℓ

(i) (% M).

Let Gx ≡ Cx1…Cxm (% M), and Gy ≡ Cy1…Cyh (% M).
Let Gz ≡ Gx Gy

–1
 (% M).

The rest is similar to the deduction of (4).
Insufficiency.
Suppose that (4) holds.
The contrapositive of the proposition that if (4) holds, ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) is if ℓ(x1)

+ … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), (4) does not hold.
Hence, we need to prove that when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), (4) still holds.
In terms of property 4, when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), the (4) holds in non-negligible

probability, which remind us that when {C1, …, Cn} is generated, some subsequences formed as {Cx1, …,
Cxm} and {Cy1, …, Cyh} which are validated to satisfy (4) with ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh) can
always be found beforehand in tolerable time through adjusting the values of W and some elements in {Ai}
or {ℓ(i)}.

Hence, the (4) is not sufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh).
Property 7: (4′) is necessary but not sufficient for W and W –1 neutralizing each other, namely ℓ(x1) + …

+ ℓ(xm) = ℓ(y1) + … + ℓ(yh), where x1, …, xm, y1, …, yh ∈ [1, n].
Proof: Because (4′) derives from (4), and property 6 holds, naturally property 7 holds.
Property 8: Let m = 2 and h = 1. ∀ x1, x2, y1 ∈ [1, n], when ℓ(x1) + ℓ(x2) ≠ ℓ(y1),

 there always exist
Cx1 ≡ A′x1 W ′ ℓ′ (x 1

), Cx1 ≡ A′x2 W ′ ℓ′ (x 2
), Cy1 ≡ A′y1 W ′ ℓ′ (y 1

) (% M),

such that ℓ′(x1) + ℓ′(x2) ≡ ℓ′(y1) (%) with A′y1 ≤ Þ ;
 Cx1, Cx2, Cy1 make (4″) with A′y1 ≤ Þ hold in all probability.

Proof:
 It is similar to the proving process of property 4.1.
 Let

> http://eprint.iacr.org/2006/420.pdf <

 12

Gz ≡ Cx1 Cx2 Cy1
–1

 ≡ A′x1 A′x2W ′ ℓ′ (x 1
)

+

ℓ′

(x

 2
)

 (A′y1 W ′ ℓ′ (y 1
))–1 (% M)

with ℓ′(x1) + ℓ′(x2) ≡ ℓ′(y1) (%).
Further, there is A′x1 A′x2 ≡ Cx1 Cx2 Cy1

–1
 A′y1 (% M).

It is easily seen from the above equations that the values of W′ and ℓ′(y1) do not influence the value of
(A′x1 A′x2).

If A′y1 ∈ [2, Þ] changes, A′x1 A′x2 also changes. Thus, ∀ x1, x2, y1 ∈ [1, n], the number of value of A′x1 A′x2 is
Þ – 1.

Let M = 2 q Þ 2 A′y1, where q is a rational number.
According to (3),

Gz / M – L / A′y1 = A′x1 A′x2 / (M A′y1) = A′x1 A′x2 / (2 q Þ 2 A′y1
2).

When A′x1 A′x2 ≤ q Þ 2, there is
Gz / M – L / A′y1 ≤ q Þ 2 / (2 q Þ 2 A′y1

2) = 1 / (2 A′y1
2),

which satisfies (4″).
Assume that the value of A′x1 A′x2 distributes uniformly on (1, M). Then, the probability that A′x1 A′x2

makes (4″) hold is
P∀ x1, x2, y1 ∈ [1, n] = (q Þ 2 / (2 q Þ 2))(1 / 2 + … + 1 / Þ)

≥ (1 / 2)(2(Þ – 1) / (Þ + 2))
= 1 – 3 / (Þ + 2).

Apparently, P∀ x1, x2, y1 ∈ [1, n] is very large, and especially when Þ is pretty large, it is close to 1.
According to property 8.2, for a certain Cy1 and ∀ Cx1, Cx2 ∈ {C1, …, Cn}, attack by (4″) will produce

roughly n2
 / 2 possible values of Ay1, including the repeated, while attack by (4) may filter out most of

disturbing data of Ay1. Due to in REESSE1+, every Ay1 ≤ Þ < n2
 / 2, the number of different values of Ay1

is at most Þ > 2 in terms of the pigeonhole principle, which indicates the running time of discriminating
the original coprime sequence from the values of A1, …, and An is much greater than O(2n).

4.3 Discussion of the Two Discrepant Cases

Now, we treat the cases of h = 1 and h ≠ 1 distinguishingly, and analyze the time complexity of an
attack by (4).

4.3.1 Case of h = 1

The h = 1 means that Āy = Ay1. If Āy is determined, a certain Ay1 might be exposed directly. A single Ay1
may be either prime or composite, and thus “whether Ay1 is prime” may not be regarded as the criterion of
W and W –1 counteracting each other.

If take m = 2 and h = 1, by property 4, P∀x1, x2, y1 ∈ [1, n] is larger than 1 / 2n

–

4, and the number of

expressions in the form Gz / M which lead (4) to holding is larger than n3
 / 2n

–4 when the interval [1, n] is
traversed separately by x1, x2, y1. Notice that P∀x1, x2, y1 ∈ [1, n] is with respect to (4), but not with respect to
(4′).

In fact, it is unmeaning to attack a private key by (4) with ℓ(x1) + ℓ(x2) = ℓ(y1) because we already select
an odd set Ω in the slack key transform, which avoids the occurrence of ℓ(x1) + ℓ(x2) = ℓ(y1) ∀ x1, x2, y1 ∈
[1, n], namely avoids the direct exposition of Ay1 at low attack cost.

In succession, we will validate property 6 with an example with m = 2 and h = 1.
Example 1:
Assume that the bit-length of a plaintext block is n = 6.
Let {Ai} = {11, 10, 3, 7, 17, 13}.
Let M = 510931 > 11 × 10 × 3 × 7 × 17 × 13.
Stochastically select ℓ(1) = 9, ℓ(2) = 6, ℓ(3) = 10, ℓ(4) = 5, ℓ(5) = 7, ℓ(6) = 8, and W = 17797.
From Ci ≡ Ai W ℓ(i) (% M), we obtain
{Ci} = {113101, 79182, 175066, 433093, 501150, 389033}.
Stochastically pick x1 = 2, x2 = 6, and y1 = 5.
Notice that there is ℓ(5) ≠ ℓ(2) + ℓ(6).
Compute

Gz ≡ C2 C6 C5
–1 ≡ 79182 × 389033 × 434038 ≡ 342114 (% 510931).

Presuppose that W in C2 C6 is just neutralized by W –1 in C5
–1, and then

342114 ≡ A2 A6 A5
–1 (% 510931).

According to (3),

> http://eprint.iacr.org/2006/420.pdf <

 13

342114 / 510931 – L / A5 = A2 A6 / (510931 A5).
It follows that the continued fraction expansion of

342114 / 510931 = 1 / (1 + 1 / (2 + 1 / (37 + 1 / (1 + 1 / (2 + … + 1 / 4))))).
Heuristically let

L / A5 = 1/ (1 + 1 / 2) = 2 / 3,
which indicates there is probably A5 = 3. Further,

342114 / 510931 – 2 / 3 = 0.002922769 < 1 / (23
 × 32) = 0.013888889,

which satisfies (4). Then A5 = 3 is deduced, which is in direct contradiction to factual A5 = 17, so it is
impossible that (4) may serve as a sufficient condition.

Notice that in example 1, we observe a2 = 2 and a3 = 37, and it seems that there is a sharp increase from
a2 to a3.

4.3.2 Case of h ≠ 1

The h ≠ 1 means Āy = Ay1…Ayh. It is well known that any composite Āy ≠ pk (p is a prime) can be
factorized into some prime multiplicative factors, and many coprime sequences of the same length can be
obtained from the factor set.

For instance, Āy = 210 yields coprime sequences {5, 6, 7}, {6, 5, 7}, {3, 7, 10}, {10, 3, 7}, {2, 15, 7},
{3, 2, 35}, etc.

Property 4 make it clear that due to the indeterminacy of ℓ(.), no matter whether W and W –1 neutralize
each other or not, in most cases, many values of Āy which may be written as the product of h coprime
integers, and satisfy (4) can be found out from the convergents of the continued fraction of Gz / M when
the interval [1, n] is traversed respectively by x1, …, xm, y1, …, yh. Thus, “whether Āy can be written as the
product of h coprime integers” may not be regarded as a criterion for verifying that W and W –1 neutralize
each other.

Moreover, even if the t values v1, …, vt of (Ay1 Ay2…Ayh) are obtained, where y1 is fixed, and y2, …, yh
are varied, gcd(v1, …, vt) can not be judged to be Ay1 in terms of the definition of a coprime sequence.

If take m = 2 and h = 2 (m = 3 and h = 1 is unmeaning as the set Ω is odd), by property 4 and P∀ x1, x2, y1,

y2 ∈ [1, n], the number of expressions in the form Gz / M which lead (4) to holding is larger than n4
 / 2n – 5 when

the interval [1, n] is traversed respectively by x1, x2, y1, y2.

4.3.3 Time Complexity of Continued Fraction Attack by (4) with ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)

We temporarily disregard the indeterminacy, and purely consider the continued fraction attack itself.
Since Ω is an odd set, ℓ(x1) + ℓ(x2) = ℓ(y1) can not occur in practice. The time complexity of the

continued fraction attack by (4) with ℓ(x1) + ℓ(x2) = ℓ(y1) will not be discussed. Likewise, since it is
stipulated that ∀ e1, e2, e3, e4 ∈ Ω, e1 + e2 + e3 ≠ e4, the case of ℓ(x1) + ℓ(x2) + ℓ(x3) = ℓ(y1) will not be
discussed.

Firstly, the number of all possible Gz ≡ Cx1 Cx2(Cy1 Cy2)–1 (% M) is n4. Obtaining Gz takes 3 modular
multiplications and 1 inversion. Notice that a modular multiplication or inversion needs O(2 log2M) bit
operations.

Getting the continued fraction expansion [0; a1, a2, …, at] of Gz / M takes log M divisions. Getting all
the convergents c1, c2, …, ct takes 2 log M both multiplications and additions. The bit-lengths of all related
operands may be regards as log M [25].

Hence, to find out all possible values of L / Āy by (4) and to make comparisons, an adversary will take
roughly O(2n4

 log2M (3 log M + 5)) bit operations.
Secondly, because the number of combinations of n elements from Ω is C

n
2n > 2n, determining the

codomain of ℓ(.) will take O(2n). Moreover, it is possible that for the set {ℓ(1), …, ℓ(n)}, there exist a very
few of cases where ∃ x1, x2, y1, y2 ∈ [1, n], ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) holds. Thus, it is very hard to judge ℓ(x1)

+ ℓ(x2) = ℓ(y1) + ℓ(y2) even though Ay1 Ay2 ≤ Þ
2 is found, and the indeterminacy involved in (4) is neglected.

Further, it is infeasible to determine the values of ℓ(x1), ℓ(x2), ℓ(y1), ℓ(y2), and W.
To sum up, when the lever function ℓ(.) as an injective from [1, …, n] to Ω exists, the time complexity

of the continued fraction attack is at least O(2n), namely the indeterministic reasoning by (4) is
ineffectual.

4.4 Relation between the Lever Function ℓ(.) and a Random Oracle

An oracle is a mathematical abstraction, a theoretical black box, or a subroutine of which the running

> http://eprint.iacr.org/2006/420.pdf <

 14

time may not be considered [21][26]. In particular, in cryptography, an oracle may be treated as a
subcomponent of an adversary, and lives its own life independent of the adversary. Usually, the
adversary interacts with the oracle but cannot control its behavior.

A random oracle is an oracle which answers to every query with a completely random and
unpredictable value chosen uniformly from its output domain, except that for any specific query, it
outputs the same value every time it receives that query if it is supposed to simulate a deterministic
function [27].

Random oracles are utilized in cryptographic proofs for relpacing any irrealizable function so far
which can provide the mathematical properties required by the proof. A cryprosystem or a protocol that
is proven secure using such a proof is described as being secure in the random oracle model, as opposed
to being secure in the standard model where the integer factorization problem, the discrete logarithm
problem etc are assumed to be hard. When a random oracle is used within a security proof, it is made
available to all participants, including adversaries. In practice, random oracles producing a bit-string of
infinite length which can be truncated to the length desired are typically used to model cryptographic
hash functions in schemes where strong randomness assumptions of a hash function′s output are needed.

In fact, it draws attention that certain artificial signature and encryption schemes are proven secure in
the random oracle model, but are trivially insecure when any real function such as the hash function MD5
or SHA-1 is substituted for the random oracle [28]. Nevertheless, for any more natural protocol, a proof
of security in the random oracle model gives very strong evidence that an attacker have to discover some
unknown and undesirable property of the hash function used in the protocol.

A function or algorithm is randomized if its output depends not only on the input but also on some
random ingredient, namely if its output is not uniquely determined by the input. Hence, to a function or
algorithm, the randomness is almost equivalent to indeterminacy.

Correspondingly, the indeterminacy of ℓ(.) may be expounded in terms of a random oracle.
Suppose that Ōd(y, g) is an oracle for solving y ≡ g

x (% M) for x, and Ōℓ is an oracle for solving Ci ≡ Ai

W ℓ

(i) (% M) for ℓ(i), where M is prime, and i is from 1 to n.

Let Ď be a database which stores records ({C1, …, Cn}, M, {ℓ(1), …, ℓ(n)}) computed already. If the
order of some Ci′s is changed, {C1, …, Cn} is regarded as a distinct sequence.

The structure of Ōℓ is as follows:
Input: {C1, …, Cn}, M.
Output: {ℓ(1), …, ℓ(n)}.
S1: If find ({C1, …, Cn}, M) in Ď, return related {ℓ(1), …, ℓ(n)}, and end.
S2: Randomly produce a coprime sequence A1, …, An

with each Ai ≤ Þ and (max
1≤i≤n Ai)n < M.

S3: Randomly pick a generator W ∈ *
M.

S4: Evaluate ℓ(i) by calling Ōd(Ci
 Ai

–1, W) for i = 1, …, n.
S5: Store ({C1, …, Cn}, M, {ℓ(1), …, ℓ(n)}) to Ď.
S6: Return {ℓ(1), …, ℓ(n)}, and end.
Of course, {Ai} and W as side results may be outputted.
Obviously, for the same input ({C1, …, Cn}, M), the output is the same, and for a different input, a

related output is random and unpredictable.
Since Ci

 Ai
–1 is pairwise distinct, and W is a generator, ℓ(i) in the result is pairwise distinct. In addition,

according to definition 2, every ℓ(i) ∈ [1,] may be outside of Ω. Thus, the result {ℓ(1), …, ℓ(n)} may
be regarded as a lever function though not the original lever function.

The Ōℓ is perhaps strange to some people because they have never met any analogous oracle in
classical cryptosystems.

The above discussion expounds soundly once more why the indeterministic reasoning, namely the
continued fraction attack by (4) is ineffectual.

5 Security Analysis of the Encryption

We analyze the exact security of the key generator and encryption algorithm of the prototypal
asymmetric cryptosystem REESSE1+, where Ci ≡ (Ai W ℓ (i))δ (% M) and Ḡ ≡ ∏

n
i =1 Ci

ḇ
 i (% M) with W, δ ∈ [1,

], ℓ(i) ∈ Ω = {1, 3, …, 2n − 1}, and Ai ∈ Λ = {2, 3, …, 1201}.
We know that the first n primes in the set can constitute a smallest coprime sequence, and there has

> http://eprint.iacr.org/2006/420.pdf <

 15

to be M > (max
1≤i≤n Ai)n (see section 3.1). Hence, when n = 80, 96, 112, or 128, there is log M ≈ 696, 864, 1030,

or 1216. In this case, IFP and DLP can almost be solved in tolerable time. In addition, when the density of
a knapsack is less than 1, SSP can also be solved in tolerable time [11][26].

“In tolerable time” means that the running time of an algorithm for solving a problem is able-waited
when the dominant parameter of the complexity is relatively small. For example, when n = 80, the
running time of O(2n

/

2) is tolerable, and when log M = 384, O(LM [1 / 3, 1.923]) = O(256) is also tolerable

[29].

5.1 Extracting a Private Key from a Public Key Is of MPP

A public key may be regarded as the special cipher of a related private key. Since a ciphertext is the
effect of a public key and a plaintext, averagely the ciphertext has no direct help to inferring the private
key.

In the prototypal cryptosystem, owing to δ ∈ [1,], the continued fraction attack discussed in section
4 is utterly ineffectual.

5.1.1 Interaction of the Key Transform Items

 Eliminating W through ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)
∀ x1, x2, y1, y2 ∈ [1, n], assume that there is ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).
Let Gz ≡ Cx1Cx2 (Cy1Cy2)

–1 (% M), namely
Gz ≡ (Ax1 Ax2 (Ay1 Ay2)

–1)δ (% M).
If adversaries divine Ax1, Ax2, Ay1, Ay2 < 720, and compute u, vx1, vx2, vy1, vy2 in the running time of at

least LM [1 / 3, 1.923] such that
Gz ≡ g

u, Ax1 ≡ g

vx1, Ax2 ≡ g

vx2, Ay1 ≡ g

vy1, Ay2 ≡ g

vy2 (% M),
where g is a generator of (*

M , ·), then
u ≡ (vx1 + vx2– vy1 – vy2)δ (%).

If gcd(vx1 + vx2– vy1 – vy2,) | u, the congruence for δ has solutions. Because each of Ax1, Ax2, Ay1, Ay2
may traverse the interval Λ, x1, x2, y1, y2 are unfixed, and the congruence may have n solutions, the
number of values of δ is about n5

 |Λ|4.
In succession, the most effectual approach seeking W is that for every i, divine Ai and ℓ(i), find Vi,

namely the value set of W, by Ci ≡ (Ai W ℓ

(i))δ (% M), and if there exists W1 ∈ V1, …, Wn ∈ Vn being equal

pairwise, the divination of δ, {Ai}, and {ℓ(i)} is thought right. Notice that to avoid seeking ℓ(i)-th roots,
may let W = g

µ % M.
Due to ∏

k
i=1 ṕi

ē

i | and ṕk ≈ 2n, there exists ℓ(i) | , and the size of every Vi is about n |Ω | |Λ|.

In summary, the running time of the above attack is at least
Ŧ1 = n |Λ| LM [1 / 3, 1.923] + (2 n5

 |Λ|4)2log
2M + (2 n5

 |Λ|4)(n |Ω | |Λ|)n (2log
2M).

When n = 80, there is log M ≈ 696, and Ŧ1 = 2117 > 2n.
When n = 96, there is log M ≈ 864, and Ŧ1 = 2117 > 2n.
When n = 112, there is log M ≈ 1030, and Ŧ1 = 2124 > 2n.
When n = 128, there is log M ≈ 1216, and Ŧ1 = 2124 ≈ 2n.
Therefore, Ŧ1 is roughly exponential in n.
Clearly, the running time of attack by eliminating W through ℓ(x1) + ℓ(x2) + ℓ(x3) = ℓ(y1) is the same as

attack by eliminating W through ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).

 Eliminating W through the W -th Power
Due to log M ≈ 696, 864, 1030, or 1216, can be factorized in tolerable time. Again due to ∏

k
i=1 ṕi

ē

i |

and ∏

k
i=1 ēi ≥ 210, W can be divined in the running time of about 210.

Raising either side of Ci ≡ (Ai W ℓ

(i))δ % M to the W-th power yields

Ci

W ≡ (Ai)δ W % M.
Let Ci ≡ g

u

i (% M), and Ai ≡ g

vi (% M), where g is a generator of (*
M , ·). Then

ui W ≡ vi Wδ (%)
for i = 1, …, n.

The above congruence looks to be the MH transform [8]. Actually, {v1 W, …, vn W} is not a super
increasing sequence, and there is not necessarily log (ui W) = log .

Because vi W ∈ [1,] is stochastic, the inverse δ

–1 % not need be close to the minimum / (ui W),
2 / (ui W), …, or (ui W – 1) / (ui W). Namely δ

–1 may lie at any integral position of the interval [k

> http://eprint.iacr.org/2006/420.pdf <

 16

/ (ui W), (k + 1) / (ui W)], where k = 0, 1, …, ui W – 1, which illustrates the accumulation point of
minima do not exist. Further observing, in this case, when i traverses the interval [2, n], the number of
intersections of the intervals including δ

–1 is likely max
2 ≤ i ≤ n {ui W} which is promisingly close to .

Therefore, the Shamir attack by the accumulation point of minima is fully ineffectual [9].
Even if find out δ

–1 by the Shamir attack method, because each of vi has W solutions, the number of
potential sequences {gv1, …, gvn} is up to W

n. Considering needing to verify whether {gv1, …, gvn} is a
coprime sequence for each different sequence {v1, …, vn}, the number of coprime sequences is in
proportion to W

n. Hence, the initial {A1, …, An} can not be determined in polynomial time. Further, the
value of W can not be computed, and the values of W and δ

–1 can not be verified in polynomial time,
which indicates that Ci ≡ (Ai W ℓ

(i))δ (% M) can also be resistant to the attack by the accumulation point of

minima.
Additionally, adversaries may divine value of Ai in running time of about |Λ|, where i ∈ [1, n], and

compute δ by ui W ≡ vi Wδ (%). However, because of W | , the equation will have W solutions.
Therefore, the running time of finding the original δ is at least

Ŧ2 = n |Λ| LM [1 / 3, 1.923] + 210
 |Λ| W

= n |Λ| LM [1 / 3, 1.923] + 210
 |Λ| 2n – 20

≈ n |Λ| LM [1 / 3, 1.923] + 2n > 2n.
It is at least exponential in n when 80 ≤ n ≤ 128.
Again, the equation α ≡ ħδ (W ∏

n
i = 1 Ai)–δ S (% M) contains ħ, δ, W, and ∏

n
i = 1 Ai, so it is impossible to

separate them distinctly. The equations α ≡ δ (δ n

+δ

W

n – 1)T, β ≡ δ W
n

T (% M) contain δ and W, and the time of
seeking them will be at least O(2n) (see section 6.2.3). If the three equations are considered
simultaneously, it is also impossible to determine the four variables almost independent.

In summary, the time complexity of inferring a related private key from a public key is at least O(2n).

5.1.2 Consideration of a Certain Single Ci

Assume that there is only a solitary Ci = (Ai W ℓ

(i))δ % M ― i = 1 for example, and other Ci′s (i = 2, …,

n) do not exist.
Clearly, divining A1 ∈ Λ and ℓ(1) ∈ Ω, the parameters W and δ ∈ (1,) can be computed. Thus, the

number of solution (A1, ℓ(1), W, δ) will be up to |Ω | |Λ| 2 > 2n, which manifests that the original (A1, ℓ(1),
W, δ) can not be determined in subexponential time in n [30].

Seeking original Ai, W, ℓ(i), δ from Ci ≡ (Ai W ℓ (i))δ (% M) with Ai ∈ {2, …, 1201} and ℓ(i) ∈ {1, 3, …, 2n
− 1} for i = 1, …, n is called the multivariate permutation problem (MPP).

5.2 Recovering a Plaintext from a Ciphertext and a Public Key Is of ASPP

The security of a REESSE1+ plaintext is based on the anomalous subset product problem Ḡ ≡ ∏

n
i =1 Ci

ḇ

i (% M) which we will dissect.

5.2.1 SPP Should Be Harder than DLP

Let {C1, …, Cn} be a public key, and then seeking a binary plaintext b1…bn from known Ḡ ≡ ∏

n
i =1 Ci

b
 i (%

M) is called the (modular) subset product problem, shortly SPP.
Evidently, ∏

n
i = 1 Ci

b
 i = LM + Ḡ. Owing to L ∈ [1,], deriving the non-modular product ∏

n
i=1 Ci

b
 i from Ḡ is

infeasible, which means inferring b1…bn from Ḡ is not a factorization problem.
Observe an extreme case. Assume that C1 = … = Cn = C, then Ḡ ≡ ∏

n
i =1C

b i (% M). It can be written as
Ḡ ≡ C ∑

n

i = 1

b
 i (% M).

Because we need not only to figure out the value of ∑

n
i = 1 bi but also to find out the position of every bi

= 1, we may express equivalently the sum ∑

n
i = 1 bi as ∑

n
i =1 bi 2 i – 1, and let z = ∑

n
i =1 bi 2 i – 1.

Correspondingly,
Ḡ ≡ C

z (% M),
which is a discrete logarithm problem.

In practice, when C1, …, Cn are generated, we can check C1, …, Cn to make C1, …, Cn pairwise distinct.
Therefore, factually, SPP can not be reduced to DLP, namely SPP is generally harder than DLP in the
same prime field.

Another evidence.

> http://eprint.iacr.org/2006/420.pdf <

 17

Presume that DLP can be solved in tolerable subexponential time.
When DLP can be solved in tolerable time, can also be factorized [14] [21], so a generator can be

found through the algorithm 4.80 in section 4.6 of [21].
Let g be a generator of (*

M, ·).
Let C1 ≡ g

u1 (% M), …, Cn ≡ g
un (% M), Ḡ ≡ g

v (% M).
Then, solving Ḡ ≡ ∏

n
i = 1 Ci

b
 i (% M) is equivalent to solving

b1 u1 + … + bn un ≡ v (%),
which is a subset sum problem.

It has been proved that SSP is NP- Complete (in its feasibility recognition form), and the computational
version of the subset sum problem is NP-hard [4][21], which illustrates that even if DLP can be solved,
b1…bn can not be found yet in polynomial time in general. Therefore, solving Ḡ ≡ ∏

n
i = 1 Ci

b
 i (% M) for

b1…bn is harder than solving DLP so far.
However, it should been noted that the subset sum problem will degenerate from NPC when the

density and length of a sequence are comparatively small [11][31], which manifests that provable
security by the polynomial time reduction is substantially relative and asymptotic.

5.2.2 ASPP Can Resist the L3 Lattice Base Reduction

It is known from section 3.2 that the ciphertext Ḡ ≡ ∏

n
i =1 Ci

ḇ

i (% M).

Let {C1, …, Cn} be a public key, and then seeking original ḇ 1…ḇ n from Ḡ ≡ ∏

n
i =1 Ci

ḇ
 i (% M) is called the

anomalous (modular) subset product problem, shortly ASPP.
Let g be a generator of *

M.
Let C1 ≡ g

u1 (% M), …, Cn ≡ g
un (% M), Ḡ ≡ g

v (% M).
Then, seeking ḇ 1…ḇ n from Ḡ is equivalent to solving the congruence

u1 ḇ 1 + … + un ḇ n ≡ v (%), (5)
where v may be substituted with v + k with k ∈ [0, n – 1] [32]. {u1, …, un} is called a compact sequence
due to ḇ i ∈ [0, n], and correspondingly (5) is called the anomalous subset sum problem (ASSP).

Recall [10] and [11]. Let {a1, …, an} be a positive integer sequence, ê = 〈e1, …, en, 0〉 with ei ∈ [0, 1]
be the solution vector, s = ∑

n
i = 1 ai ei, and t = ∑

n
i = 1 ai.

In [10], there are two important conditions:
t / n ≤ s ≤ (n – 1) t / n, and ê2 ≤ n / 2,

where ê denotes the distance in l2-Norm of the vector ê, which decides the threshold density < 0.6463.
In [11], there are similar

t / n ≤ s ≤ (n – 1) t / n, and ê2 ≤ n / 4,
which decide the threshold density < 0.9408.

However, for (5), due to 0 ≤ ḇ i ≤ n, the similar conditions do not hold.
It is well understood that the L3 lattice base reduction algorithm is employed in cryptanalysis to find

the shortest vector or approximately shortest vectors in a lattice, and hence, if a solution to the subset sum
problem has a comparatively big distance, or is not unique, it will not occur in the reduced base.

Let be a lattice spanned by the vectors
〈1, 0, …, 0, N u1〉,
〈0, 1, …, 0, N u2〉,

……,
〈0, 0, …, 1, N un〉,

〈0, 0, …, 0, N (v + k)〉
which compose a base of the lattice, where N is a positive integer greater than (n2)1

/

2 = n (but not much

greater, or else will influence speed of the L3 reduction algorithm). Notice that because g is random, is
also random.

Let Ḏ be the determinant of a matrix corresponding to the lattice base. Then, by the Guassian heurisic,
the expected size of the shortest vector in on the base of n + 1 dimensions lies between [15]

Ḏ 1

/

(n + 1)((n + 1) / (2π e))1

/

2 and Ḏ 1

/

(n + 1)((n + 1) / (π e))1

/

2,

where e ≈ 2.7182818.
In our case, there is log M / (n + 1) ≈ 9, and the right expression is roughly

(N k 29(n + 1))1

/

(n + 1)((n + 1) / (π e))1

/

2 ≈ 29((n + 1) / 23)1

/

2 ≈ 27(2n)1

/

2.

For (5), the largest distance of the solution vector 〈ḇ 1, …, ḇ n, 0〉 is n, and thus the solution vector will

> http://eprint.iacr.org/2006/420.pdf <

 18

possibly occur in the reduced base. However, whether the solution vector occurs surely or not will be
influenced by a knapsack density.

To compute the density of the compact sequence, we extend {u1, …, un} into
{u1, 2u1, …, n u1, u2, 2u2, …, n u2, ……, un, 2un, …, n un}.

It is not difficult to understand that the length of the extend sequence is n2.
The density of the compact sequence {u1, …, un} is

D ≈ n2 / log M.
When n = 80 and log M = 696, D ≈ 9.19 > 2 > 1.
When n = 96 and log M = 864, D ≈ 10.66 > 2 > 1.
When n = 112 and log M = 1030, D ≈ 12.18 > 2 > 1.
When n = 128 and log M = 1216, D ≈ 13.47 > 2 > 1.
D > 2 indicates that many different subsets will have the identical sum, namely the solution to (5) is not

unique, and the original solution is possibly not shortest for ḇ i ∈ [0, n]. Thus, it is very likely that the
original solution does not occur in the reduced base which only contains n + 1 vectors.

Further, we can estimate the time cost of the L3 lattice base attack.
Although SLLL, namely segment LLL in floating point arithmetic and L2-FP are two of currently fast

lattice base reduction algorithms [33][34], because floating point operation on integers greater than the
modulus M with log M ≥ 696 can not be executed directly, and even are instable under a low precision
circumstance, it is inappropriate to utilize these two algorithms to find the solution vector 〈ḇ 1, …, ḇ n, 0〉,
which manifests that the only classical L3 algorithm is appropriate.

According to [21], the running time of attack on equation (5) from ASPP by the lattice base reduction
algorithm is roughly

ŦL ≈ O(n LM [1 / 3, 1.923] + n (n + 1)6
 (log M 2)3)

on condition that N is slightly greater than n.
When n = 80 and log M = 696, ŦL ≈ 283.
When n = 96 and log M = 864, ŦL ≈ 283.
When n = 112 and log M = 1030, ŦL ≈ 286.
When n = 128 and log M = 1216, ŦL ≈ 286.
However, as is pointed out in the above, owing to D > 9 > 2 > 1 and ḇ i ∈ [0, n], it is almost impossible

that the solution vector 〈ḇ 1, …, ḇ n, 0〉 occurs in the final reduced base, which means that attack by L3
algorithm will be unavailing.

Besides, we also see that there exists an exhaustive search attack on the plaintext block b1…bn. Clearly,
the running time of such an attack is O(2n) arithmetic steps.

Hence, the plaintext security of REESSE1+ is built on the problem Ḡ ≡ ∏

n
i=1 Ci

ḇ

i (% M) which contains

the trapdoor information, and means that computing an anomalous subset product from subset elements
is tractable while seeking the involved elements of the set from the product is intractable.

5.3 Avoid Adaptive-chosen-ciphertext Attack

Theoretically, absolute most of public key cryptographies may probably be faced with
adaptive-chosen- ciphertext attack.

 During the late 1990s, Daniel Bleichenbacher demonstrated a practical adaptive-chosen-ciphertext
attack on SSL servers using a form of RSA encryption [35]. Almost at the same time, The Cramer-Shoup
asymmetric encryption algorithm was proposed [36]. It is the first efficient scheme proven to be secure
against adaptive-chosen-ciphertext attack using standard cryptographic assumptions, which implies that
not all uses of cryptographic hash functions require random oracles some require only the property of
collision resistance, and an extension of the Elgamal algorithm which is extremely malleable.

It is lucky that REESSE1+ can avoid the adaptive-chosen- ciphertext attack. In REESSE1+, a
ciphertext may be produced rapidly according to the following algorithm:

Assume that b1…bn is a plaintext block, and {C1, …, Cn} is a public key.
S1: Set k ← 0, i ← 1.
S2: If bi = 0, let k ← k + 1, ḇ i ← 0;

else let ḇ i ← k + 1, k ← 0.
S3: Let i ← i + 1.

If i ≤ n, goto S2.
S4: Randomly produce d1…dn ∈ {0, 1}n.

> http://eprint.iacr.org/2006/420.pdf <

 19

S5: If ḇ n = 0, set r ← n – k, dr = 1, ḇ r ← ḇ r + k.
S6: Compute Ḡ ← ∏

n
i=1(Ci d i + (i – ḇ i + 1) ¬d i)

ḇ
 i % M.

On input of an identical plaintext many times, the algorithm will return the many ciphertexts which
may be different from one another. Contrariwise, it is easily understood that a ciphertext can be
decrypted in polynomial time, and the output will uniquely correspond to the original plaintext.

Another approach to avoiding the adaptive-chosen-ciphertext attack is to append a stochastic
fixed-length binary sequence to the terminal of every plaintext bock when it is encrypted. For example, a
concrete implementation is referred to the OAEP+ scheme [37].

6 Security Analysis of the Signature

Firstly, we give a related concept.
Definition 3: Let A and B be two computational problems. A is said to reduce to B in polynomial time,

written as A ≤P B, if there is an algorithm for solving Α which calls, as a subroutine, a hypothetical
algorithm for solving B, and runs in polynomial time excluding the time of the algorithm for B.

The hypothetical algorithm for solving B is called an oracle. It is easy to understand that no matter
what the running time of the oracle is, it does not influence the result of the comparison.

A ≤P B means that the difficulty of A is not greater than that of B, namely the running time of the fastest
algorithm for A is not greater than that of the fastest algorithm for B when all polynomial times are treated
as being pairwise equivalent. Concretely speaking, if A can not be solved in polynomial or
subexponential time, B can not also be solved in corresponding polynomial or subexponential time; and
if B can be solved in polynomial or subexponential time, A can also be solved in corresponding
polynomial or subexponential time.

Definition 4: Let A and B be two computational problems. If A ≤P B and B ≤P A, then A and B are said
to be computationally equivalent, written as A =P B.

A =P B means that either if A is a hardness on condition that the dominant variable approaches a large
number, B is also a hardness on the same condition; or A, B both can be solved in linear or polynomial
time.

Definition 3 and 4 suggest a reductive proof method called polynomial time (Turing) reduction (PTR)
[21]. Provable security by PTR is substantially relative and asymptotic just as a one-way function is.
Relative security implies that the security of a cryptosystem based on a problem is comparative, but not
absolute. Asymptotic security implies that even if a cryptosystem based on a problem is proven to be
secure, it is practically secure only on condition that the dominant parameter is large enough.

Naturally, we will meditate whether A <P B exists or not. The definition of A <P B may possibly be
given theoretically, but the proof of A <P B is not easy in practice.

6.1 Extracting a Related Private Key from a Signature Is of Exponential Time Complexity

Assume that p is a prime integer, and k | (p – 1) holds. In terms of the probabilistic algorithm in section
1.6 of [38], the time complexity of finding out a random solution to x

k ≡ c (% p) is at least the maximum
of O(2

k – 1) and O(p / k). Thus, when k > 80 or p / k > 2 80, this algorithm is ineffectual actually.
However, when gcd(k, p – 1) = 1 or gcd(k, (p – 1) / k) = 1 with k | (p – 1), the trivial solution to x

k ≡ c
(% p) can be acquired in terms of theorem 1 and 2.

It is known from the digital signature algorithm that there exist
Q ≡ (R G0)Sδ ħ (% M),
U ≡ (R W

ḵ –

δ)Q

 δ ā

Đ r (% M).

In term of section 3.4, δ ā

Đ r belongs to the subgroup of order đ T of *

M . Because of T ≥ 2n, divining the
value of δ ā

Đ r is impossible.

Let ě ≡ δ ā

Đ r

T (% M), where ě ∈ Š ─ the subgroup of order đ, the second congruence is equivalent to
UT ≡ (R W

ḵ – δ)QT
 ě(% M).

When an attacker attempts to seek R G0 or R W

ḵ

– δ, he has to solve the two equations:

x
S ≡ Q δ –1

 ħ–1 (% M),
y

QT ≡ UT ě–1 (% M).
For the first congruence, because δ, ħ are unknown, and its right is not a constant, it is impossible to

solve the equation for (R G0). If δ is divined, the probability of hitting δ is 1 / δ < 1 / 2n. Besides, it is more
difficult to divine ħ.

> http://eprint.iacr.org/2006/420.pdf <

 20

For the second congruence, there is ě–1 ≤ đ. Assume that đ is guessed out, and the solutions to x
đ ≡ 1

(% M) can be found out, then ě–1 may possibly be hit.
The equation x

đ ≡ 1 (% M) may probably have the trivial root, and to its other roots, there are three
approaches: 1 algorithm 4.80 in section 4.6 of [21], which first finds out a generator g, then let x ≡ g

ĐT;
2 the probabilistic algorithm in section 1.6 of [38], of which the running time is O(M / đ); 3 the
Index-calculus method of seeking discrete logarithms, of which the running time is LM [1 / 3, 1.923].

Even if ě–1 is known, gcd(Q,) = 1 or gcd(Q, / Q) = 1 holds, and gcd(T, / T) = 1 holds, namely the
trivial root to the second congruence exists, the probability that the trivial root just equals the specific R W

ḵ –

δ is only 1 / T ≤ 1 / 2n, and moreover due to the randomicity of R, it is thoroughly impossible to separate

δ, W, or ḵ from R W
ḵ –

δ.
Additionally, substituting R in UT

 ≡ (R W
ḵ –

δ)QT
 ě (% M) with G0

–1(Q (δ ħ)–1)S –1 which is from Q ≡ (R

G0)Sδ ħ (% M) gives
U

T ≡ (G0
–1(Q(δ ħ)–1)S –1W ḵ –

δ)QT
 ě (% M),

namely
U

T ≡ (G–1
 Ḡ (Q(δ ħ)–1)

S –1W –δ)QT
 ě (% M),

where G ≡ G0 G1 and Ḡ ≡ G1W
ḵ (% M).

Thus,
((GWδ)–1(δ ħ)–

S –1)QT ≡ UT

 (Ḡ Q

S –1)–QT ě–1 (% M).
Similarly, if ě–1 is known, and (UT

 (Ḡ Q

S –1)–QT ě–1)

/

(T

k) ≡ 1 (% M), where k = gcd(Q,), through the

Index-calculus method, one may find out all the solutions to the equation
xQT

 ≡ UT
 (Ḡ Q

S –1)–QT ě–1 (% M).

However, the probability that a certain found solution is no other than (GWδ)–1(δ ħ)–

S –1 is less than 1 / T

≤ 1 / 2n. Further, the running time of separating G, W, ħ, or δ from (GW
δ

)–1
 (δ ħ)–

S –1 is at least O().

Therefore, the time complexity of extracting a related private key from a signature is O(δ) > O(2n), or
O() > O(2n).

6.2 Faking a Digital Signature only through a Public Key Is a Hardness

According to section 3.5, the discriminant X ≡ Y (% M) contains the two variables Q and U of which
one may be supposed in advance by an adversary. However, seeking the other through the supposed
value is faced with a problem.

6.2.1 Transcendental Logarithm Problem

Assume that g ∈ *
p with p being prime is a generator, then

{y | y ≡ g x (% p), x = 1, …, p – 1} = *
p [24].

Assume that k with gcd(k, p – 1) = 1 is an integer, then also
{y | y ≡ x k (% p), x = 1, …, p – 1} = *

p [24].
Namely, ∀x ∈ [1, p – 1], y ≡ g x (% p) or y ≡ x k (% p) with gcd(k, p – 1) = 1 is a self-isomorph of the

group *
p .

However, for the x
x operation, {y | y ≡ x x (% p), x = 1, …, p – 1} = *

p does not hold, that is,
{y | y ≡ x x (% p), x = 1, …, p – 1} ≠ *

p .
For example, when p = 11, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 3, 4, 5, 6}, where 33 ≡ 66 ≡ 88 ≡ 5 (%

11).
When p = 13, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 3, 4, 5, 6, 9, 12}, where 77 ≡ 1111 ≡ 6 (% 13), and

11 ≡ 33 ≡ 88 ≡ 99 ≡ 1212 ≡ 1 (% 13).
When p = 17, {y | y ≡ x x (% p), x = 1, …, p – 1} = {1, 2, 4, 8, 9, 10, 12, 13, 14}, where 22 ≡ 1212 ≡ 4 (%

17), 66 ≡ 1515 ≡ 2 (% 17), and 1010 ≡ 1414 ≡ 2 (% 17).
The above examples illustrate that {y ≡ x x (% p) | x = 1, …, p – 1} cannot construct a complete set for

a group. Furthermore, mapping from x to y is one-to-one sometimes, and many-to-one sometimes. That is,
inferring x from y is indeterminate, x is nonunique, and even inexistent. Thus, x

x has extremely strong
irregularity, and is essentially distinct from g x and x k.

It should be noted that an attempt at solving y ≡ x x (% p) for x in light of the Chinese Remainder
Theorem is specious. Refer to the following example.

Observe the congruent equation 4
4 ≡ 8 ≡ 3

12 (% 31), where 3 ∈ *
31 is a generator.

Try to seek x which satisfies x ≡ 12 (% 30) and x ≡ 3 (% 31) at one time, and verify whether x ≡ 4 (%

> http://eprint.iacr.org/2006/420.pdf <

 21

31) or not.
In light of the Chinese Remainder Theorem [21], let m1 = 30, m2 = 31, a1 = 12, and a2 = 3. Then

M = 30 × 31 = 930,
M1 = M / m1 = 930 / 30 = 31,
M2 = M / m2 = 930 / 31 = 30.

Compute y1 = 1 such that M1 y1 ≡ 1 (% m1).
Compute y2 = 30 such that M2 y2 ≡ 1 (% m2).
Thereby,

x = a1 M1 y1 + a2 M2 y2 = 12 × 31 × 1 + 3 × 30 × 30 = 282 (% 930).
It is not difficult to verify

282 288 ≡ 8 ≠ 4 (% 31), and 282 288 ≡ 504 ≠ 8 ≠ 4 (% 930).
The integer 282 is an element of the group (*

930, ·), and the element 4 of the group (*
31, ·) can not be

obtained from 282, which is pivotal.
Definition 5: Assume that p is a prime, and y ∈ *

p is known. Then solving y ≡ x
x (% p) for x ∈ [1, p –

1] is called the transcendental logarithm problem, shortly TLP.
What needs to be emphasized is that TLP is more suitable for designing signature schemes due to the

non-uniqueness of its solution.
Let Ĥ(y = f(x)) represent the complexity or hardness of solving the problem y = f(x) for x [30].
Property 9: TLP is equivalent to or harder than DLP in the same prime field. The latter comparison

means that TLP can not be solved in DLP subexponential time yet on the assumption that DLP can be
solved.

Proof:
 Let g ∈ *

p be a generator coprime to p – 1, which does not lose generality since g may be selected
in practice.

Assume that y ∈ *
p is known, and there is y ≡ (g x)x (% p).

Raising either side of the equation to the g-th power gives
y

g ≡ (g x)g x (% p).
Let

z ≡ y
g (% p), and w = g x,

where the latter is not a congruence, then
z ≡ w

w (% p).
Suppose that ŌT(y, p, Q) is an oracle of solving y ≡ x

x (% p) for x, where Q is the set of all the possible
values of x, namely the codomain, p is a prime modulus, and y ∈ [1, p – 1].

Its output is x ∈ Q (each of solutions if they exist), or 0 (no solution).
Let Q1 = {1, 2, …, p – 1}, and Q2 = {1 g, 2 g, …, (p – 1)g}.
Clearly, by calling ŌT(y, p, Q1), y ≡ x x (% p) is solved for x.
It is easily observed that between the limited sets Q1 and Q2, there is a linear bijection

Γ : Q1 → Q2, Γ (a) = g a,
which means that the set Q1 is equivalent to the set Q2 [39]. Hence, substituting Q1 with Q2 as the
codomain of a function will not increase the running time of ŌT.

Similarly, by calling ŌT(z, p, Q2), z ≡ w
w (% p) is solved for w, namely all the satisfactory values of w

are obtained.
Further, x ≡ w g –1 (% p), or x ≡ w g –1 (% p – 1).
Thereby, in terms of definition 3, there is

Ĥ(y ≡ (g x)x (% p)) ≤ Ĥ (y ≡ x x (% p)).
Namely the difficulty in inverting y ≡ (g x)x (% p) is not greater than that in inverting y ≡ x x (% p).
Again, suppose that ŌŤ(y, g, p) is an oracle of solving y ≡ (g x)x (% p) for x, where p is a prime modulus,

and y, g ∈ [1, p – 1].
Its output is x ∈ [1, p – 1] (each of solutions if they exist), or 0 (no solution).
Let g = 1.
By calling ŌŤ(y, 1, p), the solution x to y ≡ x

x (% p) will be obtained.
Thereby, in terms of definition 3, there is

Ĥ(y ≡ x
x (% p)) ≤P Ĥ(y ≡ (g x)x (% p)).

In terms of definition 4, we have that
Ĥ(y ≡ x x (% p)) =P Ĥ(y ≡ (g x)x (% p)).

> http://eprint.iacr.org/2006/420.pdf <

 22

That is to say, the difficulty in inverting y ≡ (g x)x (% p) is equivalent to that in inverting y ≡ x
x (% p).

 The congruence y ≡ (g x)x (% p) may be written as y ≡ g
x

 xx (% p), where g is any generator.
Change ŌŤ(y, g, p) into ŌŤ(y, g, p, ŵ), where sw = 0 or 1. Its structure is as follows:
S1: If ŵ = 1 and x to y ≡ g x

 x x (% p) inexistent, return ‘No’.
S2: If ŵ = 1,

S2.1: find y1, and compute y2 by y ≡ y1 y2 (% p),
S2.2: compute x < p by y1 ≡ g

x (% p),
S2.3: if y2 ≠ x

x (% p), goto S2.1;
else

S2.4: compute x < p by y ≡ g
x (% p).

S3: Return x.
Clearly, by calling ŌŤ(y, g, p, 0), the solution x to y ≡ g x (% p) will be obtained.
Therefore, still in terms of definition 3, there is

Ĥ(y ≡ g x (% p)) ≤P Ĥ(y ≡ g x
 x

x (% p)).
Integrating and , we have that

Ĥ(y ≡ g
x (% p)) ≤P Ĥ(y ≡ g

x
 x

x (% p)) =P Ĥ(y ≡ x
x (% p)),

namely inverting y ≡ x
x (% p) is equivalent to or harder than inverting y ≡ g x (% p) for x.

Additionally, let y ≡ g
t (% p), and x ≡ g u (% p), and then it seems that there is g

t ≡ g
u

g u (% p).

However due to g u (% p) ≠ g u (% p – 1), y ≡ x x (% p) can not be expressed as t ≡ u g u (% p – 1).
We can also understand that in the process of x being sought from y ≡ x

x (% p), it is inevitable that the
middle value of x is beyond p because modular multiplication, inverse, and power operations are
inevitable.

Considering the middle value of x beyond p, let
z1 = x % p with z1 < p, and z2 = x % (p – 1) with z2 < p – 1.

Then there are x = z1 + k1 p = z2 + k2(p – 1) and z1 = (z2 – k2) % p, where k1, k2 ≥ 0 are two integers. Further,
we have y ≡ (g (z2 – k2))

z2 (% p), which indicates that due to x (% p) ≠ x (% p – 1) with x > p, the relation
between x (% p – 1) and x (% p) is stochastic when x changes in the interval (1, p

p
).

Therefore, it is reasonable that letting v ≡ g (z2 – k2) (% p), and we obtain y ≡ v
z

 2 (% p).
If v is a constant, inverting y ≡ v

z
 2 (% p) is equivalent to DLP. However, v will not be a constant forever.

So, it should be impossible anyway that Ĥ(y ≡ (g x)x (% p)) =P Ĥ(y ≡ g

x (% p)).
The above evidence inclines us believe that there is

Ĥ(y ≡ g x (% p)) <P Ĥ(y ≡ g x
 x

x (% p)),
namely on the assumption that DLP can be solved through an oracle, TLP can not be solved in DLP
subexponential time yet.

The famous baby-step giant-step algorithm, Pollard’s rho algorithm, Pohlig-hellman algorithm, and

index-calculus algorithm for discrete logarithms [21] are ineffectual on transcendental logarithms. At
present, there is no better method for seeking a transcendental logarithm than the exhaustive search, and
thus the time complexity of solving x x ≡ c (% p) may be expected to be O(p) > O(2n), where n is the
bit-length of a message digest.

Notice that for y ≡ x
x (% p), there is no determinate relation between y and x, namely y ≥ x or y

< x. Therefore, in the case of a small modulus, x in y ≡ x
x (% p) is still secure.

In REESSE1+, the form of TLP is y ≡ (g x)
x (% p), where g is a constant. When the bit-length of the

modulus is very small ─ 80 for example, the difference between the running times of solving y ≡ (g x)
x (%

p) and solving y ≡ x
x (% p) is valuable because g x changes with g, and has more freedom than x, which

makes the relation between y and x be more indeterminate.

6.2.2 Faking a Signature by the Verification Algorithm Is of TLP

Assume that F is any arbitrary file, H is its hash output, and (Q, U) is a signature on F. According to
the discriminant X ≡ Y (% M), namely

(α Q

–1)QU

T
 α

Q
n
 ≡ (Ḡ Q U

–1)U

S

T
 β H

Q
n – 1 + H n (% M),

an attacker may suppose the value of any signature variable.
If suppose the value of Q, no matter whether U exists or not, seeking U is equivalent to TLP.
Similarly, if suppose the value of U, seeking Q is also equivalent to TLP.
If the attacker hits exactly the small đ, raises either side of the discriminant to the đ-th power, and

assumes Đ | (δ Q – WH), then there is

> http://eprint.iacr.org/2006/420.pdf <

 23

(α Q –1)đ
Q

U

T ≡ (Ḡ Q U

–1)đU

S

T (% M).

Further, let
(α Q –1)

đ

Q

T ≡ (Ḡ Q U
–1)

đ ST (% M). (6)
Now, suppose that Q is known, and U is unknown. If the equation

U
đT ≡ ((α –1Q)đ

Q

T)S –1

 Ḡ Q
đ

T (% M)

has the trivial solution, work U out by theorem 2; otherwise work U out by the Index-calculus method.
However, Q and U must satisfy the constraint Đ | (δ Q – WH), which is at most with the probability 1 / Đ
< 1 / 2n when δ and W are unknown since continuous integral values of Q can not guarantee the integral
continuity of values of (δ Q – WH).

We observe that (α Q

n
β –(H Q

n – 1 + H n))

đ ≡ 1 (% M), namely the element α Q

n
β –(H Q

n – 1
 +

H n)
 ∈ Š which is the

subgroup of order đ.
Assume that ě is a solution to x

đ
 ≡ 1 (% M), and g is a generator of *

M . Evaluate u, v, q by the Index-

calculus such that g u ≡ α (% M), g v ≡ β (% M), and g q ≡ ě (% M) [21]. Then
g

u

Q

n
 g

–v(H Q
n – 1 + H n) ≡ g

q (% M),
namely

uQ

n
 – vH Q

n – 1 – vH
n

 – q ≡ 0 (%) (7)
which is a true polynomial in Q.

If the polynomial has solutions, and Q can be figured out, U may be evaluated according to (6). In this
way, Q and U which likely meet the original discriminant can be found. However, the Index-calculus
method is completely ineffective on the high degree polynomial equation, and thus one solves it only
through the probabilistic algorithm in section 1.6 of [38], of which the time complexity is O(/ n) >
O(2n).

Again because there is possibly gcd(u,) > 1, namely (7) is not necessarily the polynomial of which
the coefficient of the first term is 1, and there exists 1 / n ∈ (2696 / 80, 21216

/

128) ≈ (28.7, 29.5), the Coppersmith

reduction method that finds sufficiently small integer solutions, of which the absolute values are less than

1

/ n, to a modular univariate polynomial [40] is ineffectual on (7).
We also observe that on the condition that đ is guessed accurately and gcd(U,) = 1, there is

((α Q –1)QT(Ḡ –Q
 U)ST)đ ≡ 1, or ((α Q –1)Q(Ḡ –Q

 U)

S)đT ≡ 1 (% M),
which implies that the element (α Q

–1)Q

T

 (Ḡ –Q
 U)

S

T ∈ Š. Thereby, if gather many enough signature pairs

(Q, U), all the elements of Š can be picked out. However, The analysis in section 6.1 shows that even if all
the elements of the subgroup of order đ can be found out, it does not influence the security of a
REESSE1+ signature. Further, through gathering more enough signature pairs or following the Index-

calculus method, all the elements of the subgroup of order đ T can be figured out and enumerated in the
running time of O(Đ) > O(2n), or described with a general expression in the running time of LM [1 / 3,
1.923].

6.2.3 Faking a Signature by the Signature Algorithm Is of Exponential Time Complexity

Owing to Q ≡ (R G0)S
 δ ħ (% M), UT ≡ (R W ḵ –

δ)QT ě (% M), and V ≡ (R
–1

 W

δ
 G1)QU

 δ
λ (% M), an adversary

may attempt the following attack approach.
Let

Q ≡ a
S

 δ ħ (% M), UT ≡ b
QT

 ě (% M), V ≡ c Q

U
 δ λ (% M),

where λ meets
λ S ≡ ((W Q)n –

1 + ξ + r U S)(δ Q – HW) (%).
Then, there are a c ≡ (αδ –1

 ħ–1)1 / S, and b c ≡ Ḡ (% M).
Firstly, if ě is hit, (Q, U) is a known signature, and (UT

 ě–1)

/

(T

k) ≡ 1 (% M) holds, where k = gcd(Q,),

then resorting to the Index-calculus method, a solution b to the equation b

QT ≡ UT
 ě–1 (% M) can be found,

or the equation has the trivial root. Further, c can be figured from b c ≡ Ḡ (% M). However, it is
impossible to find δ from V ≡ c Q

U
 δ λ (% M), and of course, it is impossible to find a from a c ≡ (αδ –1

 ħ–1)1

/ S (% M).
Secondly, when δ, ħ are found, if suppose a value of a, then c, b can be figured out. Further, when Đ is

factorized from , W is found, and r is guessed, the adversary may compute the values of Q and U which
make

Đ | (δQ – WH) (%),
đ | ((W Q)n –

1 + ξ + r U S) (%).
To seek δ and W from a known pivotal and clear clue, the attacker has to try to solve the simultaneous

> http://eprint.iacr.org/2006/420.pdf <

 24

equations
α ≡ δ (δ

n

+

δ

W

n – 1)T (% M)
β ≡ δ W

n

T (% M).
Obviously, the first equation is at least equivalent to TLP. The second equation contains two variables,

and belongs to nondeterministic problems. Raising either side of the first to the W-th power yields
α W ≡ δ (δ nW + δ

W n)T ≡ δ δ nW

T β

δ (% M),
which is still very complicated, and the problem is not simplified.

Let g be a generator of the group (*
M , ·). By the Index- calculus for discrete logarithms [21], evaluate

u, v, and x such that g
u ≡ α, g

v ≡ β, and g
x ≡ δ (% M) (Notice that this does not means g

x ≡ δ (%)). Then,
we obtain

u ≡ x(δ n + δ W n – 1)T (%)
v ≡ x T W n (%).

If gcd(x T,) | v and gcd(n, φ ()) = 1, there exists the trivial root to x T W n ≡ v (%) (see theorem 1).
However, even if W and x are known, seeking δ of a large value from the true polynomial u ≡ x(δ n

 + δ W

n–1)T (%) is very arduous. If you are afraid of the Coppersmith reduction [40], in practice, the exponent
n may be substituted with a larger integer.

In conformity with the key generation algorithm, there is W ≡ (∏

n
i = 1 Ai)–

1(α δ –1
 ħ–1)(S

δ)–1 (% M).

However, because ∏

n
i=1 Ai, ħ are unknown, and W is at least the δ −1-th power of (α δ –1

 ħ–1), the
substitution of W will not make the simultaneous equations reduced.

6.3 Faking a Signature through Known Signatures with a Public Key Is a Hardness

Given the file F and a signature (Q, U) on it, and assume that there exists another file F′ with
corresponding H′ and Ḡ ′. Then, if any arbitrary (Q′, U′) satisfies

(α Q′ –1)Q′

U

′

Tα

Q′ n ≡ (Ḡ ′

Q′
 U′

–1)U

′ S

T β H ′ Q′
n – 1 + H

′ n (% M),

it is a signature fraud on F′.
Clearly, an adversary is allowed to utilize the known values of Q and U separately.
If let Q′ = Q, Q′ does not necessarily satisfy Đ | (δ Q′ – WH′), and computing U′ is equivalent to TLP.
If let U′ = U, no matter whether the discriminant has solutions or not, seeking Q′ is also equivalent to

TLP.
If the two signatures (Q1, U1) and (Q2, U2) on the files F1 and F2 are obtained, due to Đ | (δ Q1 – WH1)

and Đ | (δ Q2 – WH2), we see that
Đ | (δ (Q1 + Q2) – W(H1 + H2)).

Let Q′ = Q1 + Q2, H′ = H1 + H2, then Đ | (δ Q′ – WH′). However, inferring F′ from H′ is intractable in terms
of the property of hash functions, and finding a fit U′ from

U′
T

đ ≡ ((α –1Q′)Q′

T

S –1
Ḡ ′

Q′T)đ (% M)
is also intractable since U′ has T đ values.

If many of the pair (Q, U) are known, because Q is random, Q and U interrelate through a
transcendental logarithm, and the value of U changes intensely between 1 and M, there is no polynomial
function or statistic regularity among different (Q, U), which means that they are unhelpful to solving
TLP, but yet they is helpful to finding elements of the subgroup of order đ or đ T as is pointed out in
section 6.1.

Thus, forging another signature through known signatures with a public key is of TLP or hash-hard.

6.4 Adaptive-chosen-message Attack Is Faced with Indistinguishability

Conforming to section 3.4, Q satisfies Đ | δ Q – WH, namely Q ≡ (āĐ – WH)δ –1 (%), where ā is
random, and satisfies đ T ł ā.

The randomness of ā leads Q to be random while U is interrelated with Q in a transcendental logarithm,
where Q ≡ (R G0)S

 δ ħ (% M), and U ≡ (R W
ḵ – δ)Q

 δ ā

Đ r (% M).

Hence, for an identical file F, there will be many different signatures on it. That is, the signature (Q, U)
owns indistinguishability.

In terms of [27], the signature (Q, U) on F is secure against adaptive-chosen-message attack.

6.5 Chosen-signature Attack Is Faced with RSP and SPP

It is well understood from the discriminant that

> http://eprint.iacr.org/2006/420.pdf <

 25

Ḡ QU

S

T
 β H

Q
n – 1 + H n ≡ (α Q

–1)QU

T
 α Q

n
 U

U ST (% M). (8)
Assume that the values of Q and U are chosen in advance, and an adversary attempts to figure out H

and the corresponding file or message F.
Let Ḡ = f (H) = ∏

n
i = 1Ci

b
 i % M, where H = b1…bn = ∑

n
i =1 bi2i

–1, then (8) is an equation in b1, …, and bn.

Moreover, let g be a generator of (*
M, ·), and in terms of the Index-calculus method, work out q1, …, qn,

v, u, w such that
g q1 ≡ C1 (% M), …, g qn ≡ Cn (% M), g

v ≡ β (% M),
g

u ≡ (α Q

–1)QU

T
 α Q

n
 U

U ST (% M), w ≡ QUST (%).
Then, there is

(q1 b1 +…+ qn bn)w + v(Q

n

–

1∑

n
i=1bi2i

–

1
 + (∑

n
i=1bi2i

–

1)n) ≡ u (%),

which is the root seeking problem (RSP) of a high degree multivariate polynomial.
On the other hand, if there exists the inverse function H = f–1(Ḡ), namely H in (8) is substituted with Ḡ,

then evaluating Ḡ from (8) is the combination of DLP and RSP. Even if Ḡ is found out, due to Ḡ ≡ ∏

n
i=1

Ci
bi (% M), evaluating H from Ḡ is a subset product problem (see section 5.2.1).
Notice that in the verification algorithm, Ḡ ≡ ∏

n
i=1 Ci

bi (% M) is of SPP, and in the decryption algorithm,
Ḡ ≡ ∏

n
i =1 Ci

ḇ

i (% M) is of ASPP (see section 3.2).

7 Conclusion

Because REESSE1+ is only a prototypal cryptosystem which is used for explaining some concepts,
ideas, and methods, the space and time complexities of the five algorithms are not analyzed in the paper.

A REESSE1+ private key contains 2n + 5 variables, but does not contain quadratic polynomials; thus
REESSE1+ is a multivariate cryptosystem different from TTM and TTS.

In REESSE1+, not only numerical calculation ability but also logic judgement ability of a computer is
utilized, and thus, the reversibility of the functions is relatively poorer.

MPP which contains indeterminacy is a compound problem integrating IFP and DLP, and ASPP is
also a compound problem integrating IFP, DLP, and ASSP which can resist the L3 lattice base reduction.
TLP is a primitive problem. Evidences in the paper show that MPP, ASPP, and TLP are harder than DLP
in the same prime field (M), namely MPP, ASPP, and TLP can not be solved in DLP subexponential
time, which makes us believe that the polynomial-time algorithms for solving MPP, ASPP, and TLP do
not exist on a quantum computational model while the polynomial-time algorithms for solving IFP and
DLP exist [20]. Due to indeterminacy, even when log M ≈ 80, solving MPP is infeasible yet.

Among univariate functions, the transcendental logarithm problem y ≡ x
x (% M) or y ≡ (g x)

x (% M) and
the root seeking problem of a true polynomial ─ a x

n
 + b x

n – 1 + c x + d ≡ 0 (%) with n ≥ 80 for example are
two primitive problems which can withstand any attacks except for brute forces so far even if log M ≈ 80.
Notice that log M ≈ 80 indicates that the constraint M > (max

1≤i≤n Ai)n is removed from the key generator, and
REESSE1+ is only used for digital signature.

At present, the REESSE1+ cryptosystem is constructed in a multiplicative group *
M.

Suppose that M is a prime, then M is a finite field with general addition and multiplication, and M [x]
is a Euclidean domain over M, namely a principle ideal domain and a uniquely factorial domain [24].
Additionally, we assume that P(x) ∈ M[x] is an irreducible polynomial, of which the coefficient of the
first term is the integer 1, then M[x] / P(x) constitute a congruent Abelian group. Therefore, it is feasible
to transplant REESSE1+ to the group M[x] / P(x) from the group *

M .
From the dialectical viewpoint, it is impossible that a public key cryptosystem possesses all merits

because some merits are possibly restrained by some others. Along with the development of CPU
techniques and quantum computations, what people are more concerned about are the securities of
cryptosystems, but not the lengths of parameters.

Clearly, it is worthy to be researched further how to decrease the length of a REESSE1+ modulus and
to increase the speed of a REESSE1+ decryption.

Appendix A

What follows in rows is a program in MS Visual C++ for producing the set Q, namely Ω in section 4,
and it contains the several nested loops.

> http://eprint.iacr.org/2006/420.pdf <

 26

/* Find an odd set Q such that for arbitrary e1, e2, e3, e4 belonging to Q, e1 + e2 + e3 != e4.
 Of course, there are e1 != e2 and e1 + e2 != e3. */
Void CkeyManagementPage::OnBtnGetAnOddSetQ()
// CkeyManagementPage is the name of a class.
{
 DWORD i, j, max_s_2, max_s_3;
 DWORD *Q, e, g, n = 128;
 // n = 80, 96, 112, 128.
 BYTE B[256 * 256];
 char str[10];
 // Initialization
 Q = (DWORD *)calloc(2 * n, sizeof(DWORD));
 // The initial value of each element of Q is zero.
 Q[0] = 5; Q[1] = 7; Q[2] = 9;
 for (i = 0; i < 256 * 256; i++) B[i] = 0;
 B[12] = 2; B[14] = 2; B[16] = 2;
 /* That an element of B with an even index equals 2 means
 that the number denoted by the index itself is the sum of
 some two elements in Q. */
 B[21] = 3;
 /* That an element of B with an odd index equals 3 means
 that the number denoted by the index itself is the sum of
 some three elements in Q. */
 i = 2;
 max_s_2 = 16;
 // The maximum sum of two elements in Q.
 max_s_3 = 21;
 // The maximum sum of three elements in Q.
 while (i < 2 * n – 1) {
 e = Q[i] + 2;
 while (B[e] == 3) e += 2;
 i++;
 Q[i] = e;
 for (j = 12; j <= max_s_2; j += 2) {
 g = j + Q[i];
 if ((B[j] == 2) && (B[g] != 3)) {
 B[g] = 3;
 max_s_3 = (g > max_s_3) ? g : max_s_3;
 }
 }
 for (j = 0; j <= i – 1; j++) {
 g = Q[j] + Q[i];
 if (B[g] != 2) {
 B[g] = 2;
 max_s_2 = (g > max_s_2) ? g : max_s_2;
 }
 }
 }
 _ultoa(Q[2 * n – 1], str, 10);
 MessageBox(str, NULL, MK_OK);
 _ultoa(max_s_2, str, 10);
 MessageBox(str, NULL, MK_OK);
 _ultoa(max_s_3, str, 10);
 MessageBox(str, NULL, MK_OK);
 free(Q);
}

> http://eprint.iacr.org/2006/420.pdf <

 27

Appendix B ― Offering a Reward

This paper shows that any effectual attack on REESSE1+ will be reduced to the solution of MPP,
ASPP, TLP, and a true polynomial modulo a composite number.

Assume that M is a prime. As n ≥ 80 and log M ≥ 80, it is well known that it is infeasible to find a large
root to a x

n + b x

n

–

1 + c x + d ≡ 0 (%) with a ∉ {0, 1}, b + c ≠ 0, and d ≠ 0 [40].

According to the pragmatized aim, let n = 80, 96, 112, or 128 with log M = 384, 464, 544, or 640, or with
log M = 80, 96, 112, or 128 as REESSE1+ is downsized to the lightweight.

Assume that ({Ai}, {ℓ(i)}, W, δ, M) is a private key, and ({Ci}, M) is a public key, where W, δ ∈ (1,),
Ai ∈ {2, 3, …, 1201}, and ℓ(i) ∈ {1, 3, …, 2n – 1} for i = 1, …, n.

The authors promise solemnly that
 anyone who can extract the private key definitely from

Ci ≡ (Ai W ℓ

(i))δ (% M)

in DLP subexponential time will gain a reward of USD 100000, or USD 10000 as log M = 80, 96, 112, or
128;

 anyone who can recover the plaintext b1…bn definitely from the ciphertext
Ḡ ≡ ∏

n
i =1 Ci

ḇ
 i (% M)

in DLP subexponential time will gain a reward of USD 100000, or USD 10000 as log M = 80, 96, 112, or
128, where ḇ i = 0 if bi = 0, 1 plus the number of successive 0-bits before bi if bi = 1, or 1 plus the number of
successive 0-bits before and after bi if bi is the rightmost 1;

 anyone who can find a large answer x ∈ (1,) definitely to
y ≡ (g x)

x (% M)
with known g, y ∈ (1,) in DLP subexponential time will gain a reward of USD 100000, or USD 10000 as
log M = 80, 96, 112, or 128.

Of course, any solution must give a formal process, can be verified with our examples, and is subject
to a CPU speed with regard to n and log M.

Acknowledgment

The authors would like to thank the Academicians Jiren Cai, Changxiang Shen, Zhongyi Zhou, Zhengyao Wei, Andrew C. Yao,
Binxing Fang, and Xicheng Lu for their important guidance, suggestions, and helps.

Also would like to thank the Professors Dingyi Pei, Dengguo Feng, Zejun Qiu, Jie Wang, Ronald. L. Rivest, Moti Yung, Alfred
J. Menezes, Dingzhu Du, Xuejia Lai, Yongfei Han, Mulan Liu, Huanguo Zhang, Dake He, Maozhi Xu, Yixian Yang, Jianfeng Ma,
Xiaoyun Wang, Kefei Chen, Yupu Hu, Qibin Zhai, Haiwen Ou, Chao Li, Wenbao Han, Dongqing Xie, Guoqiang Bai, Dongdai Lin,
Lei Hu, Rongquan Feng, Ping Luo, Lusheng Chen, Zhiying Wang, and Quanyuan Wu for their important advice, suggestions, and
corrections.

References

[1] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining Digital Signatures and Public-key Cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120-126, Feb. 1978.

[2] T. ElGamal, “A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” IEEE Transactions on
Information Theory, vol. 31, no. 4, pp. 469-472, Jul. 1985.

[3] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Information Theory, vol. 22, no. 6,
pp. 644-654, Nov. 1976.

[4] O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge, UK: Cambridge University Press, 2001, ch.1-2.
[5] A. C. Yao, “Theory and Applications of Trapdoor Functions,” in Proc. the 23rd Annual Symposium on the Foundations of

Computer Science, IEEE, 1982, pp. 80-91.
[6] S. Vadhan, Computational Complexity [online]. http://eecs.harvard.edu/~salil/papers/encyc.pdf, Jul. 2004.
[7] M. Bellare and P. Rogaway, “The Exact Security of Digital Signatures — How to Sign with RSA and Rabin,” in Proc.

Advance in Cryptology: Eurocrypt ’96, Springer-Verlag, 1996, pp. 399-416.
[8] R. C. Merkle and M. E. Hellman, “Hiding information and Signatures in Trapdoor Knapsacks,” IEEE Transactions on

Information Theory, vol. 24, no. 5, pp. 525-530, Sep. 1978.
[9] A. Shamir, “A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem,” in Proc. the 23th IEEE

Symposium on the Foundations of Computer Science, 1982, pp. 145-152.
[10] E. F. Brickell, “Solving Low Density Knapsacks,” in Proc. Advance in Cryptology: CRYPTO ’83, Plenum Press, 1984, pp.

25-37.
[11] M. J. Coster, A. Joux, and B. A. LaMacchia etc., “Improved Low-Density Subset Sum Algorithms,” Computational

Complexity, vol. 2, issue 2, pp. 111-128, Dec. 1992.
[12] C. P. Schnorr and M. Euchner, “Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems,”

Mathematical Programming: Series A and B, vol. 66, issue 2, pp. 181-199, Sep. 1994.
[13] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography. Cambridge, UK: Cambridge University Press,

1999, ch. 1, 6.

> http://eprint.iacr.org/2006/420.pdf <

 28

[14] S. Y. Yan, Number Theory for Computing (2nd ed.). New York: Springer- Verlag, 2002, ch. 1, 3.
[15] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A Ring-based Public Key Cryptosystem,” in Proc. the Algorithmic

Number Theory Symposium - ANTS III, Springer-Verlag, 1998, pp. 267-288.
[16] T. Moh, “An Application of Algebraic Geometry to Encryption: Tame Transformation Method,” Revista Matemática

Iberoamericana, vol. 19, no. 2, pp. 667-685, May 2003.
[17] J. M. Chen and B. Y. Yang, “A More Secure and Efficacious TTS Signature Scheme,” in Proc. 6th Int. Conference on

Information Security & Cryptology (ICISC ′ 03), Springer-Verlag, 2003, pp. 320-338.
[18] S. Su, “The REESSE1 Public-key Cryptosystem,” Computer Engineering & Science (in Chinese), vol. 25, no.5, pp.13-16, Sep.

2003.
[19] S. Liu, F. Zhang, and K. Chen, “Cryptanalysis of REESSE1 Digital Signature Algorithm,” in Proc. CCICS 2005, Xi′an, China,

May 2005, pp. 200-205.
[20] P. W. Shor, “Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM

J. on Computing, vol. 26, issue 5, pp.1484-1509, Oct. 1997.
[21] A. J. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. London, UK: CRC Press, 1997, ch. 2,

3, 8.
[22] P. Garrett, Making, Breaking Codes: An Introduction to Cryptology. New Jersey: Prentice-Hall, 2001, ch. 12.
[23] S. Su and S. Lü, “To Solve the High Degree Congruence x ^ n ≡ a (mod p) in GF(p),” in Proc. of Int. Conference on

Computational Intelligence and Security, IEEE Computer Society, Dec. 2007, pp.672-676.
[24] T. W. Hungerford, Algebra. New York: Springer-Verlag, 1998, ch. 1-3.
[25] K. H. Rosen, Elementary Number Theory and Its Applications (5th ed.). Boston: Addison-Wesley, 2005, ch. 12.
[26] D. Z. Du and K. Ko, Theory of Computational Complexity. New York: John Wiley & Sons, 2000, ch.3-4.
[27] M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm for Designing Efficient Protocols,” in Proc. the 1st

ACM Conference on Computer and Communications Security, New York: ACM Press, 1993, pp. 62-73.
[28] R. Canetti, O. Goldreich, and S. Halevi, “The Random Oracle Methodology Revisited, ” in Proc. the 30 th Annual ACM

Symposium on Theory of Computing, New York: ACM Press, 1998, pp. 209-218.
[29] D. R. Stinson, Cryptography: Theory and Practice (2nd ed.). London, UK: CRC Press, 2002, ch. 6.
[30] M. Davis, The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions.

Mineola: Dover Publications, 2004, ch. 2-4.
[31] H. Ritter, “Breaking Knapsack Cryptosystems by Max-Norm Enume- ration,” in Proc. 1st International Conference of the

Theory and Application of Cryptology - Pragocrypt ’96, 1996, pp. 480-492.
[32] V. Niemi, “A New Trapdoor in Knapsacks,” in Proc. Advances in Cryptology: EUROCRYPT ’90, Springer-Verlag, 1991, pp.

405-411.
[33] C. P. Schnorr, “Fast LLL-Type Lattice Reduction,” Information and Computation, vol. 204, no. 1, pp. 1-25, 2006.
[34] P. Q. Nguên and D. Stehlé, “Floating-Point LLL Revisited,” in Proc. Advances in Cryptology: EUROCRYPT ’05,

Springer-Verlag, 2005, pp. 215-233.
[35] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1,” in Proc.

Advance in Cryptology: Crypto ’98, Springer-Verlag, 1998, pp. 1-12.
[36] R. Cramer and V. Shoup, “A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext

Attack,” in Proc. Advance in Cryptology: Crypto ’98, Springer-Verlag, 1998, pp. 13-25.
[37] V. Shoup, “OAEP Reconsidered,” in Proc. Advance in Cryptology: Crypto ’01, Springer-Verlag, 2001, pp. 239-259.
[38] H. Cohen, A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, 2000, ch. 1, 3.
[39] R. R. Stoll, Set Theory and Logic. Mineola: Dover Publications, 1979, ch. 2-3.
[40] D. Coppersmith, “Small Solutions to Polynomial Equations and Low Exponent RSA Vulnerabilities,” Journal of Cryptology,

vol. 10, no. 4, pp. 223-260, Nov. 1997.

Shenghui Su received a bachelor degree in computer science from National University of Defense Technology, a master degree

from Peking University, and a Ph.D. degree from University of Science and Technology Beijing. He was given the title of a senior
programmer by Ministry of Electronic Industry China in 1994, and of a professor by Academic and Technologic Committee Beijing
in 2004. He is a senior member of China Computer Federation, and of China Association for Cryptologic Research. He was
long engaged in design of algorithms and development of software. Since 2000, he has been indulged in designing the new
cryptosystems. He is currently with college of computer science, Beijing University of Technology. His research area covers
computational complexity, cryptographic algorithms, and trusted systems.

Shuwang Lü received a bachelor degree in electronics from University of Science and Technology China. He is a senior

member of China Association for Cryptologic Research, and sits on the academic committee of SKLOIS. Since 1980, he has
mainly been making researches on cipher algorithms and cipher chips. He presided over the projects supported by the national plan
of high technology development, and of fundamental science researches, and was the chief designer of the SMS4 symmetric
cryptosystem, an industrial standard. He is with the School of Graduate, Chinese Academy of Sciences, also with University of
Science and Technology China, and with USTB as a professor and a Ph.D. advisor. Nowadays, his research interests are still
focused on cryptographic algorithms and knowledge security.

	Introduction
	A Coprime Sequence and a Lever Function
	Design of the REESSE1+ Public key Cryptosystem
	The Key Generation Algorithm
	The Encryption Algorithm
	The Decryption Algorithm
	The Digital Signature Algorithm
	The Identity Verification Algorithm
	The Double Congruence Theorem
	Characteristics of REESSE1+
	Correctness of the Decryption Algorithm
	Uniqueness of a Plaintext Solution to a Ciphertext

	Necessity and Sufficiency of the Lever Function for Resisting Continued Fraction Attacks
	Necessity of the Lever Function ?(.)
	Ineffectualness of the Continued Fraction Attack
	Discussion of the Two Discrepant Cases
	Case of h = 1
	Case of h (1
	Time Complexity of Continued Fraction Attack by (4) with ?(x1) + ?(x2) = ?(y1) + ?(y2)

	Relation between the Lever Function ?(.) and a Random Oracle

	Security Analysis of the Encryption
	Extracting a Private Key from a Public Key Is of MPP
	Interaction of the Key Transform Items
	Consideration of a Certain Single Ci

	Recovering a Plaintext from a Ciphertext and a Public Key Is of ASPP
	SPP Should Be Harder than DLP
	ASPP Can Resist the L3 Lattice Base Reduction

	Avoid Adaptive-chosen-ciphertext Attack

	Security Analysis of the Signature
	Extracting a Related Private Key from a Signature Is of Exponential Time Complexity
	Faking a Digital Signature only through a Public Key Is a Hardness
	Transcendental Logarithm Problem
	Faking a Signature by the Verification Algorithm Is of TLP
	Faking a Signature by the Signature Algorithm Is of Exponential Time Complexity

	Faking a Signature through Known Signatures with a Public Key Is a Hardness
	Adaptive-chosen-message Attack Is Faced with Indistinguishability
	Chosen-signature Attack Is Faced with RSP and SPP

	Conclusion

