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1 IntroductionComputers and algorithms improve over time and so does the power of an adversary incryptographic protocols. The VENONA project is an example where NSA and GCHQstored Russian ciphertexts over years until they could eventually be cryptanalysed. Of-�cial key length recommendations, e.g. by the Federal O�ce for Information Security(BSI) in Germany, usually do not exceed six years and future technology like quantumcomputers could render even paranoid choices for the key length obsolete.Everlasting security from assumptions which have to hold only during the protocolexecution would be an ideal solution to this problem. In this work we combine the no-tions of universal composability and long-term security. For the �rst time we investigateprotocols which are long-term secure and exhibit a composition theorem which allows amodular design of such protocols. In particular, we investigate commitment protocols andzero knowledge schemes which are composable and robust against future improvementsof the adversaries computing technology.To capture the threat of an adversary with increasing power we introduce the securitynotion of long-term universal composability (long-term-UC) with the intuition that theadversary becomes unlimited at some point of time after termination of the protocol. Theprotocols do not run after this point of time, but all information stored from past exe-cutions should not reveal any additional information to the then unlimited adversary. Asurprising consequence of our work is that unconditionally hiding universally composablecommitments [DN02] are not necessarily long-term-UC.Long-term-UC is preserved under composition, i.e., idealised building blocks can bereplaced by long-term-UC protocols while preserving the long-term security of the com-plete application. The security notion of long-term-UC lies strictly between informationtheoretical security, where the adversary is unlimited from the start, and computationalsecurity, where for a concrete security parameter the computational power of the adver-sary must be limited for all times to come.The idea of everlasting security has been considered with respect to memory boundedadversaries. Key exchange protocols and protocols for oblivious transfer have been devel-oped in the bounded storage model [CM97, CCM02]. These protocols can be broken byan adversary with more memory than assumed, however they cannot be broken in retro-spect even by an unlimited adversary. A scheme using distributed servers of randomness(virtual satellites) to achieve everlasting security has been implemented [Rab03]. In thisscheme the access of the adversary to the communication of the parties is limited duringthe key exchange.Long-term security has been investigated in quantum cryptography. It is generallyaccepted (even though not formally proven) that an only computationally secure authen-tication of a quantum key exchange yields a long-term secure key. Bit commitment andoblivious transfer quantum protocols which become unconditionally secure, but rely on2



temporary computational assumptions have been searched, but are now known to beimpossible3 (see, e.g. [BCMS99]).Zero knowledge proofs where the veri�er cannot (ever) break the protocol and theprover can only on-line break the protocol where given in [BCC88]. In [MQ05] protocolsachieving long-term security were stated, however, only secure function evaluation withconstant input size was considered.Another related topic is that of forward security, where it is demanded that pastsession keys remain computationally secure even if a long-term secret is given to theadversary. This notion is related to but less strict than long-term-UC as the session keyswill not remain secure forever.All previous work on long-term security did not take into account composability.When composability is required the situation changes drastically. E.g., an unconditionallyhiding UC commitment is not long-term-UC and a straightforward adaption of e.g., theprotocol of [BCC88] using an unconditionally hiding UC commitment does not yieldlong-term-UC zero knowledge arguments.In this work we thoroughly investigate under which assumptions long-term-UC com-mitments and long-term-UC zero knowledge arguments exist. We prove that a commonreference string or a coin toss functionality are not su�cient for realising long-term-UCcommitments. To be more general we de�ne a functionality F to be only temporarilysecret for a party P if, roughly speaking, every secret known to P and F can in principle(but not necessarily e�ciently) be computed from the communication of F with all theother parties. Coin tossing and a common reference string are only temporarily secretfor all parties and we show that long-term-UC commitments are impossible given anyfunctionality which is only temporarily secret for the committer.In contrast to this impossibility of commitments there exist non-trivial languages forwhich zero knowledge protocols are possible even with an only temporarily secret func-tionality. More concrete we give a zero knowledge proof of knowledge of the factorisationof a Blum integer using a helping coin toss functionality. This is astonishing as such aproof is not possible using a common reference string instead of a coin toss (unless factor-ing of Blum integers is easy for non-uniform machines). More generally we prove that nonon-uniformly non-trivial language has a zero knowledge argument with the help of anyfunctionality which works �o�ine� in the sense that it needs, like a common referencestring, only be invoked before the start of the protocol and which is only temporarily se-cret for both parties. Even though most PKI are of this form and hence do not allow anynon-trivial long-term-UC zero knowledge or commitment protocols we give an interest-ing and not too academic example of a PKI which allows to implement a long-term-UCcommitment.Further we give two helping functionalities which are motivated from (temporarily)tamper proof hardware which allow to implement an unlimited number of long-term-UCcommitments and zero knowledge arguments for all in NP. One of these functionalitiesresembles a trusted device which is computationally indistinguishable from a random3 Unless additional assumptions are made, such as bounded quantum storage or the availability of apiece of trusted hardware. 3



oracle and the other a smart card which can generate digital signatures, but from whichthe secret key cannot be extracted.1.1 PreliminariesNotation. We call a function f negligible, if for any polynomial p and su�ciently large
k, f(k) ≤ 1/p(k). We call f overwhelming, when 1− f is negligible.A PPT-algorithm (probabilistic polynomial time) is a uniform probabilistic algorithmthat runs in polynomial-time in the length of its inputs.We call a relation R on {0, 1}∗ × {0, 1}∗ poly-balanced if there is a polynomial p,s.t. |w| ≤ p(|x|) for all x,w with xRw. We call R an NP-relation if it is poly-balancedand deciding (x,w) ∈ R is in P. We call R an MA-relation if it is poly-balanced anddeciding (x,w) ∈ R is in BPP. The language LR associated with R is LR := {x ∈
{0, 1}∗ : ∃w : xRw}. We usually call x the statement and w with xRw the witness for x.We call a MA-relation R (uniformly) trivial if there is a PPT-algorithm that upon input
x ∈ LR outputs a witness for x with overwhelming probability. We call R non-uniformlydeterministically trivial there is a non-uniform deterministic polynomial-time algorithmthat upon input x ∈ LR outputs a witness for x.An integer n > 0 is called a Blum-integer, if n = pq for two primes p, q with p ≡ q ≡
3 mod 4.Cryptographic tools. In [NOVY98], it is shown that assuming the existence of a one-way permutation, an unconditionally hiding commitment scheme exists. This schemehas the additional properties that the unveil-phase consists of only one message, andthat given that message, committed value v, and the transcript of the interaction in thecommit phase, there is a deterministic polynomial-time algorithm that checks whetherthe veri�er accepts the value v.Using that commitment-scheme in the zero-knowledge proof-system for graph-3-colourability from [GMW91], we get a statistically witness indistinguishable argument ofknowledge for any NP-relation given any one-way permutation.4 Using a statistically wit-ness indistinguishable argument of knowledge for any NP-relation and a unconditionallyhiding commitment scheme, we can easily construct a statistically witness indistinguish-able argument of knowledge for any MA-relation using any one-way permutation.52 Modelling long-term UCWe now present our modelling of universally composable long-term security (short long-term UC). We build on the Universal Composability framework [Can05]. In that mod-4 The resulting scheme is of course also zero-knowledge, but we do not need that property here.5 Let B be a a PPT-algorithm s.t. B(w, x) = 1 with overwhelming probability for xRw and withnegligible probability otherwise. Such an algorithm exists for any MA-relation R. To prove a statement

x ∈ LR, the prover �rst commits to the witness w, then commits to randomness r′. The veri�er sendsto the prover randomness r′′. Then the prover proves using a statistically witness indistinguishableargument of knowledge that he knows a witness, s.t. B(w, x) = 1 with random-tape r := r′⊕r′′. Sincethe latter statement is in NP, this can be done given a one-way permutation.4



elling, a computationally limited entity called the environment has to distinguish betweenan execution of the protocol (with some adversary) and an execution of an ideal function-ality (with some simulator). To de�ne long-term security, we have to add the requirementthat even if some entity gets unlimited computational power after the execution of theprotocol, security is maintained. In the Universal Composability framework, this is quiteeasily done: We simply require that after the execution of the protocol (which is stillperformed against computationally limited adversaries) even an unlimited entity couldnot distinguish between an execution of the real protocol or of the functionality, i.e., werequire that the output of the environment is statistically indistinguishable.6De�nition 1 (Long-term UC). Let EXECπ,A,Z(k, z) denote the output of Z in anexecution of the protocol π with adversary A and environment Z, where k is the securityparameter and z the auxiliary input of the environment Z. EXECF ,A,Z(k, z) is de�nedanalogously.7A protocol π long-term-UC realises a functionality F , if for any polynomial-timeadversary A there exists a polynomial-time simulator S, s.t. for any polynomial-timeenvironment8 Z the families of random variables {EXECπ,A,Z(k, z)}k∈N,z∈{0,1}poly(k) and
{EXECF ,S,Z(k, z)}k∈N,z∈{0,1}poly(k) are statistically indistinguishable.Note that the Universal Composition Theorem from [Can05] applies with a virtuallyunmodi�ed proof.Conventions. In all our results we assume that secure channels are given for free (i.e., weare in the secure-channel network-model).9 Further, security always denotes security withrespect to static adversaries, i.e. parties are not corrupted during the protocol execution.However, we believe that our results can be adapted to adaptive adversaries.We consider the case without an honest majority, since given an honest majority wecould use information-theoretically secure protocols.2.1 On the minimality of the security notionAt this point one might wonder whether this de�nition is possibly stricter than necessary,especially in view of the various impossibility results presented below. However, if one iswilling to accept stand-alone security (i.e., simulation-based security without an environ-ment, see e.g. [Gol04]), with the extra requirement that the outputs of the parties and6 Note that we can w.l.o.g. assume that the output of the environment contains the whole view of thatenvironment.7 See [Can05] for details.8 Not limited to environments with single bit output.9 This much simpli�es the presentation. Since all our results concern the two-party case, it is easyto adapt our results to authenticated channels, if one adapts the de�nitions of the functionalitiesaccordingly (e.g., the commitment functionality would then send the value of an unveil to the adversaryas well as to the adversary). However, we cannot expect to use a key exchange protocol to make theauthenticated channels secure, since such an approach would not be long-term secure.5



the adversary/simulator are statistically indistinguishable in real and ideal model (long-term stand-alone security), as a minimal security notion, we can argue as follows: If wewant this minimal security and composability simultaneously, the proof from [Lin03]10states that the minimal security notion satisfying these two requirements is a securitynotion similar to De�nition 1, with the only di�erence that the simulator is allowed todepend on the environment (specialised-simulator long-term UC). Since all our impossi-bility results also apply for this weaker notion (we never use the fact that the simulatordoes not depend on the environment), we see that we cannot �nd an essentially morelenient security notion than De�nition 1 if we accept long-term stand-alone security as aminimal security notion.2.2 FunctionalitiesIn this section, we de�ne some commonly used functionalities that we will investigate inthe course of this paper.We assume the following conventions in specifying functionalities:We always assume that the adversary is informed of every invocation of the function-ality, and the functionality only delivers its output when the adversary has triggered thatdelivery. So a phrase like �upon input x from P1, F sends y to P2� should be understoodas �upon input y from P1, F sends (i-th input from P1) to the adversary, and upon amessage (deliver i) from the adversary, F sends y to P2�. For better readability, we usethe shorter formulation.Most of the functionalities de�ned here are parametrised by a function m giving thelength of their input and outputs. We will often omit explicitly stating this m if it isclear from the context.When a functionality receives an invalid input from some party, it simply forwardsthat input to the adversary.The �rst functionality used in this paper is the common reference string (CRS). In-tuitively, the CRS denotes a random string that has been chosen by some trusted partyor by some natural process, and that is known to all parties prior to the start of theprotocol.De�nition 2 (Common Reference String (CRS)). Let Dk (k ∈ N) be an e�cientlysamplable distribution on {0, 1}∗. At its �rst activation the functionality FD
CRS chooses avalue r according to the distribution Dk (k being the security parameter). Upon any inputfrom Pi, send r to the adversary and to Pi (in particular, all parties Pi get the same r).If Dk is the uniform distribution on {0, 1}m(k) for any k, we speak of a uniform CRSof length m. We then write Fm

CRS instead of FDk

CRS.The second functionality is the coin toss. At a �rst glance, the coin toss looks verysimilar to the CRS, since also the coin toss consists of a random string that is given toboth parties involved (and to the adversary). However, the coin toss guarantees that no10 With minor modi�cations: simply replace computational indistinguishability by statistical indistin-guishability. 6



party can learn the coin toss before both parties agree to toss the coin.11 As we will seebelow, a coin toss is more powerful than a CRS in the context of long-term UC.12De�nition 3 (Coin Toss (CT)). When both P1 and P2 have given some input, thefunctionality Fm
CT chooses a uniformly distributed r ∈ {0, 1}m(k) and sends r to theadversary, to P1, and to P2.The next functionality models the setup assumption, that there is a trusted (pre-distributed) public key infrastructure, which provides each party with a secret key andattests the corresponding public key to any interested party.De�nition 4 (Public Key Infrastructure (PKI)). Let G be a PPT-algorithm thatupon input 1k outputs two string sk and pk .13 When FG

PKI runs with parties P1, . . . , Pn,upon its �rst activation it chooses independent key pairs (sk i, pk i) ← G(1k) for i =
1, . . . , n and sends (pk 1, . . . , pkn) to the adversary. When receiving any input from Pi,send (sk i, pk1, . . . , pkn) to Pi.The next two functionalities are well-known cryptographic building blocks that �ndapplication in the construction of many protocols.De�nition 5 (Commitment (COM)). Let C and R be two parties. The function-ality FC→R,m

COM behaves as follows: Upon (the �rst) input x ∈ {0, 1}m(k) from C send
(committed) to R. Upon input (unveil) from C send x to R.We call C the sender and R the recipient.De�nition 6 (Zero-Knowledge (ZK)). Let R be a MA-relation, and let P and V betwo parties. The functionality FR,P→V,m

ZK behaves as follows: Upon the �rst input of (x,w)from P satisfying xRw and |x| ≤ m(k), send x to V .14We call P the prover and V the veri�er.3 CommitmentIn this section we will examine the possibility of long-term-UC realising commitments. Itwill turn out, that commitment cannot be long-term-UC realised using CRS or coin-toss,nor with an arbitrary PKI. In particular unconditionally hiding UC commitments, which11 This can be illustrated by the following example: Alice and Bob want to know which of them paysthe bill. So Alice and Bob agree: �We toss a coin, if the outcome is 1, Bob pays, otherwise Alice pays.�Of course, if they were to use a CRS instead of a coin toss they could not use this simple protocol,because the outcome of the CRS is known before the start of the protocol.12 Although, in contrast, a UC secure (without long-term) coin toss can be realised using a CRS underreasonable complexity assumptions, see [CF01].13 I.e., G is a key generation algorithm.14 The resulting functionality FZK is not polynomial-time if R is not an NP-relation. However, in thatcase FZK can be replaced by an e�cient implementation that uses a BPP-algorithm for checking xRwand errs only with negligible probability. The resulting functionality is then indistinguishable from
FZK. 7



are possible with a CRS [DN02], are not necessarily long-term UC.15 However, given aZK functionality, commitments can be realised.To state the impossibility results in a more general fashion, we �rst need the followingde�nition:De�nition 7 (Only temporarily secret). We say a functionality F is only temporar-ily secret (OTS) for party P , if the following holds in any protocol: Let trans denote thetranscript of all communication between F and the other machines (including the ad-versary). Let trans \ P denote the transcript of all communication between F and allmachines except P . Then there is a deterministic function f (not necessarily e�cientlycomputable) s.t. with overwhelming probability it is trans = f(k, trans \ P ).The intuition behind this de�nition is that if F is temporarily secret (OTS) for P ,then any secrets that P and F share may eventually become public. The following lemmagives some examples:Lemma 8. Coin toss (FCT) and CRS (FD
CRS with any D) are OTS for all parties. Com-mitment (FCOM) and ZK (FZK) are OTS for the recipient/veri�er. If G is a key genera-tion algorithm, s.t. the secret key depends deterministically on the public key (e.g., RSA,ElGamal16), the PKI FG

PKI is OTS for all parties.Proof. In the case of coin toss and CRS the adversary learns the random value r whenif some party learns it, so all communication can be deduced from the communicationwith the adversary. In case of Commitment and ZK the communication with the recip-ient/veri�er can be deduced from the communication with the sender. (In these cases,the function f is even e�ciently computable.) All secret keys chosen by FG
PKI can becalculated from the public keys pk1, . . . , pkn sent to the adversary. utUsing this de�nition, we can prove that using a CRS, coin-toss or other functionalitiesthat are OTS for the sender, one cannot long-term-UC realise a commitment:Theorem 9 (Impossibility of commitment with OTS functionalities). Let Fbe a functionality that is OTS for party C. Then there is no non-trivial protocol thatlong-term-UC realises commitment with sender C (FC→R

COM ) in the F-hybrid model.If one is willing to assume NP 6⊆ P/poly, this theorem is an immediate consequenceof Lemma 18 stating that FC→R,SAT
ZK is possible from FC→R

COM , and Corollary 15 statingthat FC→R,SAT
ZK cannot be realised using F (both shown in Section 4). However, in Ap-pendix B.1 we give a direct proof (similar in spirit to that of Theorem 14) for this theoremthat does not depend on NP 6⊆ P/poly.15 The intuitive reason being, that the simulator may choose a value for the CRS which is only compu-tationally indistinguishable from the uniform distribution without loosing the unconditional hidingproperty.16 Under the condition, that in the secret key, group elements are always given using a unique represen-tative (e.g., the secret exponent e in RSA is chosen smaller than ϕ(n)). See also Section 4.3.8



An interesting corollary from this theorem is that long-term-UC commitments cannotbe turned around, i.e. using one (or many) long-term-UC commitments from A to B, onecannot long-term-UC realise a commitment from B to A.Corollary 10 (Commitments cannot be turned around). There is no nontrivialprotocol long-term-UC realising FA→B
COM using any number of instances of FB→A

COM .Proof. Immediate from Lemma 8 and Theorem 9. utIn contrast to the impossibility results above, it is possible to get long-term-UC securecommitments using a ZK functionality:Lemma 11 (Commitment from ZK). Assume that a one-way permutation exists.Then there is a nontrivial protocol π that long-term-UC realises FC→R
COM (commitmentwith sender C) and that uses two instances of FSAT,C→R

ZK (ZK for SAT with the sender
C being the prover).The protocol π looks as follows:� To commit to v, the sender C �rst commits to v using an unconditionally hidingcommitment scheme.� Then C proves (using the �rst instance of FZK) that he knows v and matching unveilinformation u.17� To unveil, the sender C sends v to the recipient and proves (using the second instanceof FZK) that he knows matching unveil information u.The long-term-UC security of this protocol stems from the following two facts. Equiv-ocability: the simulator can unveil to any value v′ since he controls the second instanceof FZK. Extractability: Since the sender cannot (e�ciently) compute di�erent unveil in-formations u and u′, the message v given to the �rst instance of FZK must be the sameas that used in the unveil phase. Since the simulator controls the �rst instance of FZK,he learns that message v during the commit phase.The actual proof is given in Appendix B.2.4 Zero-KnowledgeIn the present section we examine to what extend long-term-UC secure zero-knowledgeproofs can be implemented using various functionalities. Besides several impossibilityresults, we also have a quite surprising possibility result (Theorem 16).4.1 Using OTS functionalitiesFirst, analogous to our investigations concerning commitments in Section 3, we are nowgoing to examine whether long-term-UC secure ZK can be realised using functionalitiesthat are OTS for one of the parties.17 I.e., unveil information that would convince the veri�er.9



Whether long-term-UC realising ZK for some relation R is possible strongly dependson the relation R under consideration. The following de�nition speci�es a class of relationswhich is going to play an important role in our results:De�nition 12 (Essentially unique witnesses). A MA-relation R has essentiallyunique witnesses if there is a PPT-algorithm UR (the witness uni�er), that has the fol-lowing properties:� If w is a witness for x, UR(1k, x, w) outputs a witness for x with overwhelming proba-bility, formally: for sequences wk, xk with xkRwk the probability P (xkRUR(1k, xk, wk))is overwhelming in k.� If w is a witness for x, the output of UR(1k, x, w) is almost independent of w, formally:for sequences w1
k, w

2
k, xk with xkRw1

k and xkRw2
k, the families of random variables

UR(1k, xk, w1
k) and UR(1k, xk, w

2
k) are statistically indistinguishable.A possible way to interpret the witness uni�er is as a statistically witness indistin-guishable proof, that simply sends a witness in the clear.It is most likely that relations without essentially unique witnesses exist:Lemma 13. If one-way-functions (secure against uniform adversaries) exist, or if NP 6⊆P/poly, then SAT does not have essentially unique witnesses.The proof is given in Appendix B.3.We are now ready to present the �rst impossibility result concerning long-term-UCsecure ZK:Theorem 14 (Impossibility of ZK with OTS functionalities). Let R be a MA-relation without essentially unique witnesses. Let F be a functionality that is OTS forparty P . Then there is no non-trivial protocol that long-term-UC realises ZK for therelation R with prover P (FR,P→V

ZK ) in the F-hybrid model.The rough idea of the proof is as follows: Clearly, if π was to be long-term-UC secure,the interaction between prover P and veri�er V must be (almost) statistically indepen-dent from the witness V received from the environment. Further, a simulator that isable to simulate convincingly in case of a corrupted prover must be able to extract awitness w̃ from the communication with that prover, which is (almost) statistically in-dependent from the witness w. So in particular, w̃ is (almost) statistically independentfrom w. Therefore, combining the prover and the simulator into one algorithm, we getan algorithm that given one witness w returns another almost independent one, in otherwords, a witness uni�er in the sense of De�nition 12. Therefore R must have essentiallyunique witnesses, which gives the desired contradiction.The proof is given in Appendix B.4.Note that we cannot expect an analogous result in the case that F is OTS for theveri�er V , since commitments are OTS for the recipient and Lemma 18 show that FP→V,R
ZKcan be long-term-UC implemented using commitments with the veri�er V as recipient.Combining the results in this section, we get the impossibility of long-term-UC secureZK for SAT: 10



Corollary 15. Let F be a functionality that is OTS for party P . If one-way-functions(secure against uniform adversaries) exist, or if NP 6⊆ P/poly, there is no non-triviallong-term-UC secure protocol for ZK with prover P for SAT in the F-hybrid model.Proof. Immediate from Lemma 13 and Theorem 14. utAt this point one might ask why our impossibility result needs the restriction to rela-tions without essentially unique witnesses. Would not the following argumentation showthat given a, say, coin-toss, there is no long-term-UC ZK protocol π for any nontrivialrelation: The simulator is able to extract a witness w from the interaction with the prover.Therefore w must information-theoretically already be �contained� in the interaction. Onthe other hand, in an interaction between simulator and veri�er, the witness w cannot be�contained� in the interaction, since the simulator does not know w. However, since theinteraction in both cases must be statistically indistinguishable from the interaction inthe uncorrupted case, that latter both �contains� and does not �contain� w, which gives acontradiction. Surprisingly, this intuition is not sound as shows the following possibilityresult:Theorem 16 (ZK for Blum-Integers using coin toss). Assume that a one-waypermutation exists. Let nR(p, q) if n = pq, p, q prime and p ≡ q ≡ 3 mod 4. There isa nontrivial protocol using two instances of FCT that long-term-UC realises FR
ZK in thecoin toss hybrid model.To construct such a protocol,we have to achieve two seemingly contradictory goalssimultaneously. If the prover or veri�er is corrupted, the simulator may choose the value

r the coin-toss functionality returns. First, since the simulator should be able to extracta witness (p, q) (i.e., a factorisation of n in this case) in case of the corrupted prover, thesimulator should be able to choose r having a trapdoor X s.t. it is possible to extract
(p, q) under knowledge of that trapdoor. However, in the case of long-term-UC the value
r should be statistically indistinguishable from uniform randomness. So the trapdoorshould be present (but possibly unknown) even if r is chosen randomly. Further, if theveri�er is corrupted, the simulator should be able to simulate the proof without knowinga witness. However, since also in this case r is almost uniformly distributed, the trapdoor
X is also present. So by �nding that trapdoor X we could extract a witness from theproof although the simulator never used that witness in constructing the proof. This canonly be realised, if �nding the witness can be reduced to �nding the trapdoor.In the case of factoring n, an example for such a trapdoor is the knowledge of randomsquare roots modulo n. Given an oracle that �nds square roots modulo n, we can factor
n. So if the trapdoor X consists of the square roots of r (when we consider r as asequence of integers modulo n) �nding the trapdoor is as hard as factoring n, so there isno contradiction in the fact that by �nding the trapdoor we can extract a witness (p, q)from an interaction that was produced without knowledge of (p, q).This leads us to the following simpli�ed version of our protocol:11



� The prover sends n to the veri�er.� Prover and veri�er invoke the coin-toss. The result r of that coin-toss is consideredas a sequence r1, . . . , rk of integers modulo n.� For each i, the prover chooses a random si with s2
i = ri. It sets si := ⊥ if ri doesnot have a square root.18� The prover sends s1, . . . , sk to the veri�er.� The veri�er checks, whether s2

i = ri for all si 6= ⊥, and whether at least 1
5 of all

si 6= ⊥.This protocol is not yet a long-term-UC realisation of FR
ZK, since it fails if n is not aBlum-integer, but it will demonstrate the main point. So why is this protocol long-term-UC secure if we guarantee that n is a Blum-integer? First, we see that if prover andveri�er are both honest, the veri�er will always accept. This is due to the fact that for aBlum-integer n, a random residue is a square with probability at least 1

4 .Now we consider the case that the veri�er is corrupted. In this case, the simulatorhas to produce coin-toss values r1, . . . , rn that are indistinguishable from the uniformdistribution, and a proof that is statistically indistinguishable from the proof given by theprover. In other words, the simulator needs to simultaneously produce (almost) uniformlydistributed r1, . . . , rn, and for each ri a random square root si modulo n if such si exists.Fortunately, if n is a Blum-integer, there is an e�cient algorithm Q for choosing such riand si (Lemma 32). So the simulator can successfully simulate by simply choosing the riand si using Q. Note that for this, it is vital that the simulator knows n before havingto send the coin-toss result r1, . . . , rn to the environment. This is why we let the proversend n to the veri�er before they invoke the coin-toss. In particular, we could not use aCRS here, because then the simulator might have to choose the ri before the environmentsends n to the prover.Now for the case that the prover is corrupted. In this case, the simulator needs tointeract with the environment incorporating the prover and to extract the witness (p, q)if the prover's proof would convince the honest veri�er. To do this, the simulator againchooses the coin-toss r1, . . . , rn using the algorithm Q and therefore knows random squareroots s̃i of all ri that are quadratic residues. Now the environment sends si to the simula-tor. The uncorrupted veri�er would only accept if at least k/5 of these si satisfy s2
i = ri.Therefore after receiving the si from the environment, the simulator knows k/5 indepen-dently chosen pairs (si, s̃i) of square roots of ri. For each such pair the probability of

si 6≡ s̃i mod n is 1
2 (we ignore the �ner detail of non-invertible ri at this point), and in thiscase we get a factor of n by evaluating gcd(si ± s̃i, n). This happens with overwhelmingprobability, so the simulator is successful in extracting a factor and therefore the witness

(p, q).However, the protocol as described so far has a major �aw: If n is not a Blum-integer,the above security proof does not work. So we must ensure that n is in fact a Blum-integer.If the veri�er is corrupted, the simulator gets n from the functionality FR
ZK which ensures(by de�nition of R) that n is a Blum-integer. So in this case there is no problem. However,if the prover is corrupted, the simulator will have to choose the coin-toss r1, . . . , rn. If18 This is feasible given the factorisation of n. 12



n is not a Blum-integer, he might learn this later on (since he learns (p, q) in case of asuccessful proof), but then it might already be too late, because the simulator sends the
ri to the environment before the end of the proof (the algorithm Q does not guarantee
r1, . . . , rn to be (almost) uniformly distributed if n is not a Blum-integer). To overcomethis di�culty, we add an additional step to the beginning of the protocol. Before thecoin-toss is invoked, the prover proves that n is indeed a Blum-integer. If the proversucceeds in this proof, the simulator can use the algorithm Q without danger, otherwisethe simulator may abort (since the veri�er would have done so, too). However, thisintroduces the additional di�culty that in case of a corrupted veri�er, the simulator hasto perform that proof, too, and without knowledge of the witness. To achieve this, wemake use of the FLS-technique [FLS99]: Prover and veri�er �rst invoke another instanceof the coin-toss functionality (in this case, a CRS would be su�cient, too) and thenthe prover proves using a statistically witness indistinguishable argument of knowledgeto the veri�er that either n is a Blum-integer or that he knows a the preimage of thecoin-toss t under a one-way permutation f . Then the simulator can simulate this proofby simply choosing t = f(u) for uniform u. Since f(u) is uniformly distributed, this isindistinguishable from what an honest prover knowing the witness would produce. Afterhaving successfully performed this �rst step, prover and veri�er proceed with the protocolas described above.The actual proof for Theorem 16 is given in Appendix B.5.Actually, we can somewhat strengthen this result and get a long-term-UC secure ZKthat does not only show the existence of a factorisation of n, but can also show that thefactorisation satis�es some predicate:Corollary 17. Assume that a one-way permutation exists. Let X be any predicate thatis in BPP. Let R be as in Theorem 16. Let (p, q)R′(n, x) if (p, q)Rn and X(p, q, n, x)evaluates to true. Then there is a protocol using two instanced of FCT that realises FR′

ZKin the coin toss hybrid model.Proof. This protocol construction is almost identical to that of Theorem 16. The onlydi�erence is the following: Instead of proving that n is a Blum-integer (using the statis-tically witness indistinguishable argument of knowledge), the prover proves that n = pqis a Blum-integer and that X(p, q, n, x) evaluates to true. The rest of the protocol isunmodi�ed. The security proof is completely analogous. utFurthermore, given a commitment, long-term-UC secure ZK for any NP-relation is(unsurprisingly) possible:Lemma 18 (ZK from commitment). Let R be a NP-relation. Then there is a long-term-UC secure protocol π for ZK with relation R (i.e., FP→V,R
ZK ) using a polynomialnumber of commitments from prover P to veri�er V (i.e., FP→V
COM ).Proof. It is su�cient to show the theorem for the relation R of graph-3-colourability(i.e., xRw i� w is a 3-colouring of the graph x). This can be done using the classical zero-13



knowledge proof for graph-3-colourability from [GMW91],19 using FCOM for implement-ing the commitments (in fact, by executing mk copies of the proof). It is straightforwardto see that the resulting scheme is long-term-UC secure (in fact, it is even statisticallyUC secure). Further, only commitments from prover P to veri�er V are used by theconstruction from [GMW91]. utNote that we cannot expect a similar result using commitments from veri�er to prover,since FCOM is OTS for the recipient and thus Theorem 14 applies.4.2 Using o�ine functionalitiesIn the preceding section, we saw that using a coin toss, long-term-UC secure ZK for thefactorisation of Blum-integer can be realised. It is therefore a natural question to askwhether something similar is also possible using a CRS, which can be seen as the o�inevariant of a coin-toss. Unfortunately, the answer is no. To state this result in greatergenerality, let us �rst formalise what we mean by an o�ine functionality.De�nition 19 (O�ine functionalities). We call a functionality F o�ine, if it has thefollowing form: When F runs with parties P1, . . . , Pn, upon its �rst activation, it choosesvalues (c, cP1 , . . . , cPn) according to a �xed distribution and sends c to the adversary.When receiving any input from Pi, send cPi
to Pi.Lemma 20. CRS and PKI are o�ine functionalities.Proof. For FCRS, set c := ci := r (cf. De�nition 2), and for FPKI, set c := (pk1, . . . , pkn)and ci := (sk i, pk 1, . . . , pkn) (cf. De�nition 4). utThe following result shows that a CRS as well as a PKI where the secret key isinformation-theoretically determined by the public key (cf. Lemma 8) cannot be used forlong-term-UC secure ZK for any relation R unless that relation is trivial for non-uniformalgorithms anyway.Theorem 21 (Impossibility of ZK with OTS o�ine functionalities). Let R be anon-uniformly deterministically nontrivial MA-relation.20 Let F be an o�ine functional-ity that is OTS for party P and for party V . Then there is no non-trivial protocol thatlong-term-UC realises ZK for relation R with prover P and veri�er V (i.e., FR,P→V

ZK ) inthe F-hybrid model.To understand the proof idea, assume that F is a CRS. Assume that there is a protocol
π for FR

ZK. Then there is a simulator S1 that is able to choose the CRS r1 and calculate acorresponding trapdoor T1, s.t. he can simulate the prover and convince the veri�er usingthis trapdoor (without knowledge of a witness). Furthermore, there is another simulator19 I.e., the prover commits to a 3-colouring where the colours have been randomly permuted, the veri�erchooses an edge, and the prover unveils the colours at that edge. This is repeated mk times to achieveexponential soundness where m is the number of edges of the graph and k the security parameter.20 I.e., there is no non-uniform deterministic polynomial-time algorithm that �nds witnesses for R.14



S2 that is able to choose the CRS r2 and calculate a corresponding trapdoor T2, s.t. hecan simulate the veri�er and � if the veri�er accepts � extract a witness w. Since both
r1 and r2 are statistically indistinguishable from an honestly chosen CRS, it follows thatan honestly chosen CRS always already �contains� such trapdoors T1 and T2 (however,given a CRS it can be infeasible to �nd these trapdoors). Therefore, if we provide S1 and
S2 with a CRS and with trapdoors T1 and T2, S1 will be able to produce a convincingproof (due to trapdoor T1), and S2 will be able to extract a witness from this convincingproof. Since S1 and S2 are polynomial-time, and CRS and trapdoors can be given asan auxiliary input, it follows that a non-uniform polynomial-time algorithm can �ndwitnesses for R in contradiction to the non-triviality of R. Functionalities other than aCRS are handled almost identically, see the full proof.The full proof is given in Appendix B.6.A natural question arising in this context is whether this impossibility result can bemade stronger. In particular, one might ask whether such an impossibility result alreadyholds if F is OTS for P or for V . This however is refuted by Corollary 24 below. Furtherone might ask, whether the theorem can be strengthened to state impossibility of ZK foruniformly non-trivial relations. The following gives strong evidence that this cannot bedone without new results about integer-factorisation.Corollary 22. Let γ be an e�ciently computable function from Σ∗ to N∪{⊥}, s.t. γ(x)depends only on the length of x, and γ(x) is a Blum-Integer or ⊥ for all x. Let R be as inTheorem 16. Let (n, x)Rγ(p, q) i� nR(p, q) and γ(x) = n. Then there is a protocol thatlong-term-UC realises FRγ

ZK with prover P in the CRS-hybrid model.It is not an unreasonable (although strong) assumption that such an γ exists, s.t. Rγis uniformly nontrivial. So to strengthen Theorem 21 one would have to disprove theexistence of such a γ.The rough proof idea for Corollary 22 is the following: Recall, why protocol π fromTheorem 16 needs a coin-toss instead of a CRS. The simulator had to choose the value
r = (r1, . . . , rk) of the second invocation of the coin-toss functionality in a manner so thatit new the square roots of ri modulo n. Therefore, it was necessary for the simulator toknow n before choosing r. In the case of Rγ however, there are only polynomially many
n = γ(x) since γ(x) depends only on the length of x. So we can modify the protocol π asfollows: Instead of using coin-toss, we use a di�erent CRS r(|x|) = (r

|x|
1 , . . . , r

|x|
k ) for eachlength |x|. Then the simulator can choose the CRS r(|x|) before the start of the protocol,since the n for which the CRS r(|x|) is to be used is already known (n = γ(0|x|)).The proof is given in Appendix B.7.4.3 Using a PKILemma 8 tells us that at least for some commonly used encryption schemes, FG

PKI isOTS for all parties (here and in the following G denotes the key generation algorithm)and therefore cannot be used for long-term-UC realising commitment or zero-knowledge21.21 Except for non-uniformly trivial relations, see Theorem 21.15



However, in general this is not necessarily the case. So the question arises whether thereare encryption schemes so that FG
PKI can be used to realise, say, a commitment. In thissection, we specify an encryption scheme (or more to the point, its key generator G) andgive a protocol that using FG

PKI implements a commitment. Surprisingly, the encryptionscheme we use is not a pathological construction, but a relatively natural variant ofElGamal in the RSA group. So we cannot expect a generalisation of Theorems 9 and 21that covers all PKIs with �natural� encryption schemes.The ElGamal-Variant we consider has the following key generation algorithm Gamal :Upon input 1k, Gamal chooses a random n of length k as the product of two safe primes.Further it chooses a random x ∈ {0, . . . , 22k},22 and a random invertible g ∈ Zn (notethat then with overwhelming probability g has high order). Then it outputs the secretkey (n, g, x) and the public key (n, g, gx).Lemma 23. Assume that factoring the product of two random safe primes is hard(w.r.t. non-uniform adversaries). Then there is a protocol π using one instance of FGamal

PKIthat long-term-UC realises FC→R,1
COM (a 1-bit commitment from C to R).The protocol π is quite simple:� Let (n, g, x) be C's secret key and (n, h, x) the corresponding public key (as providedby FGamal

PKI ).� To commit to a bit b ∈ {0, 1}, the sender C sends c := x + b mod 3 to the recipient
R.� To unveil b, the sender C sends (b, x) to the recipient R. The recipient R checks,that x + b ≡ c mod 3 and that h ≡ gx mod n.The rough intuition behind this protocol is the following: The protocol is binding,because it is hard to �nd an x′ 6= x satisfying h = gx′

mod n without knowledge ofthe factorisation of n. The protocol is unconditionally hiding, because there are manydi�erent x′ with length 2k satisfying h = gx′
mod n, and for a random such x′, x′ mod 3is almost equally distributed on {0, 1, 2} (note that this does not hold modulo 2, since

2 | ϕ(n)). The scheme is equivocable (i.e., the simulator can choose b after committing),since the simulator knows the factorisation of n, and therefore can choose a random x′with gx′ ≡ h mod n and b + x′ ≡ c mod 3. The scheme is extractable (i.e., the simulatorcan learn the bit b before unveil), since the simulator knows the x that will be sent by Cand thus calculates b := c− x mod 3.That the protocol actually long-term-UC realises F1
COM is proven in Appendix B.8.Note that the protocol given here only shows that we cannot expect a generalisationof Theorem 9 to general PKIs, it does not show that it is practicable to use PKIs forimplementing long-term-UC secure commitments. The reason for this is that during theunveil phase, the secret key is transmitted and the PKI thus rendered useless for furtheruse. In contrast, the next section presents functionalities that can be used for an arbitrarynumber of commitments/ZK-proofs.We additionally get the following:22 This is probably the most uncanonical choice in our construction, since an x of length |n| would befully su�cient. 16



Corollary 24. Assume that factoring the product of two random safe primes is hard(w.r.t. non-uniform adversaries), and let A and B be two parties. Then there is an o�inefunctionality F that is OTS for B, s.t. there are long-term-UC protocols using F for:commitment with recipient B (FA→B,m
COM ), zero-knowledge for any NP-relation R withprover A (FA→B

ZK ), m-bit coin-toss (Fm
CT) and zero-knowledge for some non-uniformlynontrivial NP-relation R with prover B (FB→A,R

ZK ).Proof. Let F consist of m copies of FGamal

PKI .23 Since the protocol π from Lemma 23 doesnot uses the recipient's secret key, we can assume that F chooses a public/secret keypair only for A, so that F is OTS for B. Then using π we can implement m instancesof FA→B,1
COM . From this, FA→B,m

COM can be trivially realised. Further, by Lemma 18 weget FA→B
ZK from su�ciently many instances of FA→B,1

COM . From FA→B,m
COM we easily get

Fm
CT.24 By Theorem 16 we get FB→A,R

ZK for the NP-relation R from Theorem 16. Since byassumption factoring the product of two random safe primes is hard, R is non-uniformlynontrivial. ut5 Other setup-assumptionsAs the preceding sections have shown, trying to design long-term-UC secure protocolsusing a CRS, coin toss or PKI is a futile endeavour. Therefore, in the following sectionswe will investigate alternative setup-assumptions that are more fruitful in the context oflong-term-UC.5.1 Trusted devices implementing a random oracleA very powerful assumption in the context of universally composable security is therandom oracle. It may therefore seem worthwhile to investigate whether a random oraclecan be used to realise long-term-UC secure commitment and ZK. However, a closer lookshows that in the context of long-term-UC security the random oracle is a very unrealisticassumption due to the following fact: Real-life implementations of the random oracle haveto be done via some e�ciently computable function (e.g., using trusted hardware thatcalculates some pseudorandom function with a secret seed). In the context of long-term-UC, this function could be �broken� by an unlimited adversary after protocol execution.In contrast, a random oracle functionality ensures, that even for an unlimited adversary,the function looks completely random. Therefore, we advocate that in the context oflong-term-UC, instead of a random oracle one should use a functionality that evaluatesa pseudorandom function with a secret seed (representing e.g. a (temporarily) trusteddevice).We now give a de�nition of such a functionality FTPF. Note however, that all possi-bility results given in this section also hold (with identical proofs) when using a randomoracle instead of FTPF.23 I.e., m public/secret key pairs are generated for each party.24 A commits to a random string r′ of length m. B sends a random string r′′ to A. A unveils. r′ ⊕ r′′ isthe result of the coin-toss. 17



De�nition 25 (Trusted pseudorandom function (TPF)). Let fs be an e�cientlycomputable family of deterministic functions fs : {0, 1}l(|s|) → {0, 1}l(|s|) with polynomi-ally bounded l.Then, the functionality trusted pseudorandom function (TPF) Ff
TPF is de�ned asfollows: Upon its �rst activation, it chooses a uniformly random s ∈ {0, 1}k. When re-ceiving a message x ∈ {0, 1}l(k) from a party P or the adversary, it sends fs(x) to P orthe adversary, respectively.Theorem 26 (ZK from TPF). Assume that a one-way permutation exists. Let fs be apseudorandom function (as in [Gol01]), and R an NP-relation. Then there is a nontrivialprotocol π using one instance of Ff

TPF that long-term-UC realises unlimited number ofinstances of FR
ZK (i.e., ZK for the relation R).We give the proof idea here. First a commitment scheme is constructed which iscomputationally binding, unconditionally hiding and extractable (however, this commit-ment is not necessarily UC). The extractable commitment is constructed from a givencommitment which is unconditionally hiding. To commit to a value v one �rst commitsto v, fs(v). Then one commits to u, fs(u) where u is the unveil information for the �rstcommitment. As the the function fs(.) can only be evaluated by using the functionality

FTPF a simulator can extract the committed value v from the calls which are placedto FTPF.Using this extractable commitment we modify the zero knowledge protocol for graph-3-colourability of [GMW91]. Instead of letting the prover commit to a colouring and thenlet the veri�er choose a random edge e for which the colours are unveiled and checkedwe let the veri�er commit to e before the prover commits to the colouring.In this protocol the simulator can, if the prover is corrupted, extract a witness fromthe commitments of the simulated real adversary or the protocol will fail and is theneasily simulated. In case of a corrupted veri�er the simulator can extract the edge whichwill later be investigated before committing to the colouring. So the simulator can easilycommit to a fake colouring and still pass the test at the edge in question.In both cases the communication between the parties, the adversary and the environ-ment are statistically indistinguishable in the real protocol and in this simulation and weachieve a long-term-UC zero knowledge argument for graph-3-colouring and hence for allNP-statements. The complete proof can be found in Appendix B.9.According to Lemma 11 one commitment can be obtained from two invocations of azero knowledge scheme and we can hence conclude:Corollary 27 (Commitments from TPF). Assume that a one-way permutation ex-ists. Let fs be a pseudorandom function. Then there is a nontrivial protocol π using oneinstance of Ff
TPF that long-term-UC realises an unlimited number of instances of FCOM(i.e., commitments).Proof. Immediate from Lemma 11 and Theorem 26. ut18



5.2 Signature cardsOne disadvantage of the TPF-assumption from the foregoing section is that trustedhardware implementing a pseudorandom function are unlikely to be available for practicaluse.25 However, another kind of trusted device is already available commercially today:the signature card. A signature card is a tamperproof device with an built-in secret key.Upon request, this card signs an arbitrary document, but never reveals the secret key.The corresponding public key can be obtained from some certi�cation authority. Theseproperties are required e.g. from the German signature law [Sig01].These properties are captured by the following ideal functionality (basedon [HMQU05]):De�nition 28 (Signature Card (SC)). Let S = (KeyGen ,Sign,Verify) be a signa-ture scheme. Let H be a party. Then the functionality FH,S
SC (signature card for scheme Swith holder H) behaves as follows: Upon the �rst activation, FH,S

SC chooses a public/secretkey pair (pk , sk) using the key generation algorithm KeyGen(1k). Upon a message (pk )from a party P or the adversary, send pk to that party or the adversary, resp. Upon amessage (sign ,m) from the holder H, produce a signature σ for m using the secret key
sk and send σ to H.26It was shown in [HMQU05] that signature cards are powerful assumptions in thecontext of universal composability. Using an adaption of their technique, we can showthat these signature cards are also very useful for long-term-UC security:Theorem 29 (ZK from a signature card). Assume that a one-way permutation ex-ists. Let S be an EF-CMA secure signature scheme. Let R be any MA-relation. Thenthere is a nontrivial protocol π that long-term-UC realises an unbounded number of in-stances of FR,P→V

ZK (i.e., ZK for the relation R with prover P ) using a single instance of
FS,P

SC (i.e., a signature card for S with P as the holder).The idea of the proof is as follows: To prove the existence of a witness w for somestatement x, the prover P signs x using his signature card (resulting in a signature σ)and then performs a statistically witness indistinguishable argument of knowledge thatone of the following holds: (i) he knows a w and a σ, so that xRw and σ is a validsignature for w, or (ii) he knows a secret key sk ′ matching the public key pk provided bythe signature card functionality.Consider the case of a corrupted prover. Since S is EF-CMA secure, it is infeasible toget a secret key sk ′ matching the public key pk chosen by the signature card (since thesignature card allows only black-box access to the signing algorithm). So the prover hasto show the knowledge of a signature σ of the witness w. The only way to obtain sucha signature σ is to sign the witness w using the signature card. Since in the ideal model,25 Not because of technical di�culties, but simply and plainly due to the forces of supply and demand.26 The de�nition from [HMQU05] additionally provides the possibility of locking the card (called seizeand release there). These however are not needed in our protocols, so we omit them.19



the signature card FSC is simulated by the simulator, the simulator learns that witness
w. So the simulator is able to extract w while honestly simulating veri�er and FSC.In case the veri�er is corrupted, the simulator knows the secret key sk matching thepublic key pk . So the simulator can prove (ii) instead of (i). Since the proof systemwe use is statistically witness indistinguishable, the resulting interaction is statisticallyindistinguishable.The full proof is given in Appendix B.10.Corollary 30 (Commitments from a signature card). Assume that a one-way per-mutation exists. Let S be an EF-CMA secure signature scheme. Then there is a nontrivialprotocol π that long-term-UC realises an unbounded number of instances of FC→R

COM (i.e.,commitment with sender C) using a single instance of FS,P
SC (i.e., a signature card for Swith P as the holder).Proof. This is an immediate consequence of Theorem 29 and Lemma 11. ut6 ConclusionsWe have examined the notion of long-term UC which allows to combine the advantages oflong-term security (i.e., security that allow for unlimited adversaries after protocol end)and Universal Composability. We saw that the usual set-up assumptions used for UCprotocols (e.g., CRS) are not su�cient any more in the case of long-term UC. However,we could show that there are other practical alternatives to these setup-assumptions(e.g., signature cards) that allow to implement the important primitives commitmentsand zero-knowledge proofs.Further research in this directions might include the following:� Which protocol tasks can or cannot be long-term-UC realised using commitmentsand zero-knowledge proofs.� What other setup-assumptions might be useful in the context of long-term UC. Inparticular, under which assumptions can OT (and therefore everything) be realised.� Our investigations were in the secure-channels communication-model. If only authen-ticated channels are present, the important issue of key exchange occurs. What setup-assumptions are necessary to implement the latter?� The protocols presented here were not optimised for e�ciency. To what extend cane�cient protocols be found for the tasks discussed in this work?� Much work on unconditional and long-term security has been done in the �eld ofquantum cryptography. How does long-term UC behave in the presence of quantumcommunication. Can some of the impossibility results given in this work be avoided?In particular, quantum communication could solve the problem of key exchange men-tioned above.
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A Auxiliary lemmasLemma 31. Let R be a MA-relation. Let A be an PPT-algorithm, and Dk a family ofdistributions over strings of polynomial length (not necessarily an e�ciently samplableone). Let P > 0. Assume that for su�ciently large x ∈ LR, A(x,D|x|) outputs somewitness w with xRw with probability at least P .Then there is a non-uniform deterministic polynomial-time algorithm Ã that uponinput x outputs a witness w with xRw.Proof. W.l.o.g. we assume that all x ∈ {0, 1}∗.From A, we can construct a deterministic polynomial-time algorithm that takes itsrandom tape as input, i.e., for su�ciently long x ∈ LR, A(x,D|x|,T ) outputs a witnesswith probability at least P if T is the uniform distribution on strings polynomial in |x|.Further, since there are only �nitely many x that are not solved with probability at least
P , we can assume that A′ solves these by table-lookup.We can amplify the probability of yielding a witness by repeating A′, so there is andeterministic polynomial-time algorithm Ã and a family of distributions Ek of stringsof polynomial length p(k) (constructed as su�ciently many copies of Dk,T , paddedto length p(k)), s.t. Ã(x, E|x|) outputs a witness w for x with probability greater than
1− 2−|x|.Let G(x, e) := 1 i� xRÃ(x, e). Let Lk := LR ∩ {0, 1}k. For each k, let ek ∈ {0, 1}p(k)be the string maximising P (G(x, ek) = 1) for randomly chosen x ∈ Lk. For contradiction,we assume that there is an xk ∈ Lk, s.t. G(xk, ek) 6= 1. Then for random x ∈ Lk and
e← Ek we would have

2−n > P (G(x, e) 6= 1)

=
∑

e′∈{0,1}p(k)

P (e = e′)P (G(x, e′) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′)P (G(x, ek) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′)P (x = xk)P (G(xk, ek) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′) · 2−#Lk · 1

= 2−#Lk ≥ 2−n.So for all x ∈ Lk, G(x, ek) = 1, i.e., for all x ∈ Lk, Ã(x, ek) gives a witness for x. But
Ã(·, ek) is a deterministic non-uniform polynomial-time algorithm with auxiliary input
ek, which concludes the proof. utLemma 32. There is a PPT-algorithm Q s.t. U(1k, n) outputs two values r ∈
{0, . . . , 2k|n|− 1}, s ∈ {0, . . . , n− 1}∪ {⊥}, s.t. the following holds if n is a Blum-integer21



� The distribution of r is almost uniformly distributed on {0, . . . , 2k|n| − 1}.27� If r is a quadratic residue mod n, then s is a almost uniformly distributed root of rmodulo n (and s = ⊥ otherwise).Proof (of Lemma 32). First, we remember some facts: The Legendre-symbol (a
p

) for prime
p is de�ned as (

a
p

)

= +1 if a is a quadratic residue modulo p, (

a
p

)

= −1 if a is a quadraticnon-residue modulo p, and (

a
p

)

= 0 if a ≡ 0 mod p. The Jacobi-symbol (

a
pq

) for di�erentprimes p, q is de�ned as (

a
pq

)

:=
(

a
p

)(

a
q

). If n = pq is a Blum-integer and not a square,
−1 is a quadratic non-residue modulo p, modulo q and modulo n. There is an e�cientalgorithm R, so that R(p, q, r) returns a random square root of r modulo pq (or ⊥ if r isnot a square) if p, q are primes.We now de�ne an auxiliary algorithm Q′ as follows:� Input: a Blum-integer n = pq with p 6= q, and an r0 ∈ Zn.� Calculate the Jacobi symbol J :=

(

r0
n

).� If J = −1, output (r0,⊥).� If J = 0 and r0 6= 0, factor n.28 Output (r0, R(p, q, r0)).� If r0 = 0, return (0, 0).� If J = +1, choose a uniformly random invertible s ∈ Zn,29 and with probability 1
2 ,output (s2, s), otherwise (−s2,⊥).Let n = pq with p 6= q.Let S1 ⊆ Zn be the set of all r0 with (

r0
n

)

∈ {−1, 0}. Then given a Blum-integer n, foruniformly chosen r0 ∈ S1 and (r, s)← Q′(n, r0), we have that r is uniformly distributedon S1 (since r = r0 for r0 ∈ S1). If r0 is not a square, s = ⊥ (since 0 is a square, and bythe de�nition of R). If r0 is a square, s is a uniformly distributed root of r (since 0 hasonly one root, and by the de�nition of R).Let S2 ⊆ Zn be the set of all r0 with (

r0
n

)

= +1. All elements of S2 are invertible.Let further Q be the set of all invertible squares in Zn. Then Q ⊆ S2, and S2 \Q is theset of all invertible elements that are neither quadratic residues modulo p nor modulo q.For a uniformly random invertible s ∈ Zn, s2 is uniformly distributed over Q, and s isa uniformly random root of s2. Since also −1 has that property (see above), multiplyingan element of Q with −1 gives an element of S2 \Q and vice versa. So #Q = #(S2 \Q)and −s2 is uniformly distributed on S2 \Q.Therefore for any r0 ∈ S2, Q′(n, r0) outputs (r, s), s.t. r is uniformly distributed on
S2, and if r is a square, s is a uniformly chosen root (and s = ⊥ otherwise).It follows that for uniformly chosen r0 ∈ Zn, Q′(n, r0) outputs (r, s), s.t. r is uniformlydistributed on Zn, and if r is a square, s is a uniformly chosen root (and s = ⊥ otherwise).Now we de�ne algorithm Q′′:27 I.e., the distribution of r is statistically indistinguishable (in k) from the uniform distribution on

{0, . . . , 2k|n| − 1}.28 This can be done e�ciently, since if �r0

n

�
= 0, gcd(r0, n) is a factor of n.29 How to do this is discussed later. 22



� Input: a Blum-integer n.� Check whether n is a square. If so, let p, q :=
√

n, choose a random r ∈ Zn andoutput (r,R(p, q, r)).� Otherwise, choose a random r0 ∈ Zn, let (r, s)← Q′(n, r0) and output (r, s).Obviously, if n is a Blum-integer (possibly with identical prime factors), Q′′(n) out-puts (r, s), s.t. r is uniformly distributed on Zn, and if r is a square, s is a uniformlychosen root (and s = ⊥ otherwise).Now, consider the following algorithm Q:� Input: a parameter 1k and a Blum-integer n.� Let (r, s)← Q′′(n).� Let r̄ ∈ {0, . . . , n− 1} be a representative of r ∈ Zn.� Let d := b2k|n|/nc, and choose a uniformly random e ∈ {0, . . . , d− 1}.� Return (r̄ + en, s).Obviously, for uniform r ∈ Zn, r̄+en is almost uniformly distributed on {0, . . . , 2k|n|−
1}. So if n is a Blum-integer, Q(k, n) outputs (r, s), s.t. r is almost uniformly distributedon {0, . . . , 2k|n| − 1}, and if r is a square, s is a uniformly chosen root (and s = ⊥otherwise), so Q has the properties stated in the lemma.However, algorithm Q′ (which again is called by Q) contains the instruction �choose auniformly random invertible s ∈ Zn�. We have to check whether we can do this e�ciently(with some error probability negligible in k). If n is a Blum-integer with di�erent primefactors p, q, a random element s is invertible if it is nonzero modulo p and modulo q.Since p, q ≥ 3, the probability for this is at least (2

3 )2. So we can choose an invertible
s ∈ Zn by choosing random s ∈ Zn and check whether it is invertible (e.g., using Euclid'salgorithm). If we repeat this up to k times, the probability of failure is negligible. utLemma 33. Let U , Ũ , L, B̃ be interactive machines that send only a polynomially-bounded number of messages. Let 〈U,L〉k,z denote the transcript of the communication ininteraction of U and L where both machines get input k, z. Assume

〈U,L〉k,z ≈ 〈Ũ , L〉k,z ≈ 〈U, L̃〉k,zwhere ≈ denotes statistical indistinguishability (in k). Then
〈U,L〉k,z ≈ 〈Ũ , L̃〉k,z.Proof. In the following, we omit k, z for readability. W.l.o.g. we can assume, that ina run of 〈U,L〉 the machines alternatingly send messages to each other, with the �rstmessage sent by U . Analogously for the other networks. Let U(vi) denote the distributionof message sent by machine U under the condition that the communication has been

vi so far. Note that this distribution does not depend on which other machine U iscommunicating with. De�ne L, Ũ , L̃ analogously. Let 〈U,L〉i denote the communicationof U and L up to the i-th message. Then if e.g., i is odd, U(〈U,L〉i−1) has the samedistribution as 〈U,L〉i. If i is even, the same holds for L (since U sends the odd and Lthe even messages). Let p(k) be the polynomial upper bound on the number of messagessent by the machines. 23



Let ∆ denote the statistical distance of random variables, and let
ui := ∆(〈U,L〉i, 〈Ũ , L〉i), li := ∆(〈U,L〉i, 〈U, L̃〉i) and di := ∆(〈U,L〉i, 〈Ũ , L̃〉i)Further, δ := max{up(k), lp(k)}. By assumption, δ is negligible in k. To show the lemma,it is su�cient to show that dp(k) is negligible, too. Assume that i is odd (i.e. it is the U 'sor Ũ 's turn to send a message).

di = ∆
(

U(〈U,L〉i−1), Ũ (〈Ũ , L̃〉i−1)
)

≤ ∆
(

U(〈U,L〉i−1), Ũ (〈Ũ , L〉i−1)
)

+ ∆
(

Ũ(〈Ũ , L〉i−1), Ũ(〈U,L〉i−1)
)

+ ∆
(

Ũ(〈U,L〉i−1), Ũ (〈Ũ , L̃〉i−1)
)

≤ ∆
(

〈U,L〉i), 〈Ũ , L〉i
)

+ ∆
(

〈Ũ , L〉i−1, 〈U,L〉i−1

)

+ ∆
(

〈U,L〉i−1, 〈Ũ , L̃〉i−1

)

= ui + ui−1 + di−1 ≤ 2δ + di−1.An analogous calculation (with L(. . . ) and L̃(. . . ) instead of U(. . . ) and Ũ(. . . ), and with
〈U, L̃〉 instead of 〈Ũ , L〉) gives di ≤ li + li−1 + di−1 ≤ 2δ + di−1. Since obviously d0 = 0,we have dp(k) ≤ 2p(k)δ which is negligible, since δ is negligible and p polynomial. utB Postponed proofsB.1 Proof of Theorem 9Proof (of Theorem 9). For this proof, let us �rst introduce some notation. If Ak,z and Bk,zare families of random variables, we write A C B, if there is some probabilistic function
G (not necessarily an e�ciently computable one) s.t. Ak,z and G(k,Bk,z) are statisticallyindistinguishable. Note that G knows k, but does not have direct access to z. (Intuitively
A C B means, that A does not contain (noticeably) more information about z than B).Obviously, C is transitive. We will investigate di�erent networks of machines (cf. Figure 1).To facilitate calculation, we use the following notation: comk,z

X (AB,CD, . . . ) denotes thetranscript of the communication between machines A and B, between machines C and
D etc. in a run of the network X on security parameter k when the environment getsauxiliary input z. E.g., comk,zII (RZC , RÃC , RF) denotes all communication of party R innetwork II.To produce a contradiction, we assume that there is a non-trivial protocol π thatlong-term-UC realises FC→R,1

COM (i.e., one-bit commitment with sender C and recipient
R). First, consider the following network I (depicted in Figure 1, the adversary Ã hasbeen omitted for simplicity): The uncorrupted sender C and recipient R run togetherwith the environment Z0 and the dummy-adversary Ã.30 The environment Z0 behavesas follows: It takes an auxiliary input of the form b or (b, unveil) where b ∈ {0, 1}. Then itsends b to the sender C (i.e., instructs C to commit to b) and waits for the (committed )-message from the recipient R. If the auxiliary input was of the form (b, unveil), it then30 A dummy-adversary is an adversary, that forwards all messages to the environment, and follows allinstructions given by that environment. 24
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(com)(III)Fig. 1. Networks from the proof of Theorem 9.sends (unveil) to C and waits for the bit b̃ sent by the recipient. During the protocolrun, it instructs the dummy-adversary Ã to deliver all messages. We assume that allenvironments constructed in this proof simply output their view (i.e., the transcript ofall messages they sent or got and of all their internal states).Since π is long-term-UC secure, for auxiliary input b (i.e., in the case that Z0 does notinstruct C to unveil) the communication observed by the adversary A and the recipient
R is statistically indistinguishable in the cases b = 0 and b = 1, i.e.,comk,0I (Z0Ã, CR,RF) ≈ comk,1I (Z0Ã, CR,RF) (1)where ≈ means statistical indistinguishability.We now make use of the fact that F is OTS for C. So, by De�nition 7, the communi-cation of F with C can be (ine�ciently) calculated from the communication of F with
R and with the dummy-adversary Ã. The communication of F with Ã again can be cal-culated from the communication between Ã and Z0 (since Ã simply forwards messagesfor Z0). Summarising these facts, we havecomk,zI (Z0Ã, CR,CF) C comk,zI (Z0Ã, CR,RF).Now we corrupt C and simulate it honestly, i.e., we construct an environment ZCthat simulates Z0 and C, and forwards all messages C generates through the dummy-adversary ÃC . The resulting network II is given in Figure 1. Then the communicationbetween ZC and AC consists of the following: (i) the communication of the simulated
C with V and F and (ii) the communication of the simulated Z0 with the adversary.Therefore comk,zII (ZCÃC) C comk,zI (Z0Ã, CR,CF).Now, since π is long-term-UC secure, there is a simulator SC , s.t. in the network IIIdepicted in Figure 1 the environment ZC has a statistically indistinguishable output from
ZC in network II. Since the communication between ZC and the adversary/simulator isoutput by ZC , we get comk,zIII (ZCSC) C comk,zII (ZCÃC).Since Z0 gets the (committed ) fromR in network I, it also gets that message from FCOM innetwork III (since the view of Z0 is indistinguishable in all three networks). Furthermore,25



if the auxiliary input is (b, unveil), Z0 receives b with overwhelming probability from the
FCOM after having sent (unveil) to C. So the bit b̃ that SC sends to FCOM in networkIII ful�ls b̃ = b with overwhelming probability. This even holds if the auxiliary inputhad the form b (not (b, unveil)), since SC cannot learn whether (unveil) is going to besent until after it has sent b̃ (since Z0 waits until it receives (committed ) before sending
(unveil)). Therefore, if Bk,z denotes the bit b̃ the simulator SC sends in a run of networkIII with security parameter k and auxiliary input z, we have Bk,b = b with overwhelmingprobability (for b ∈ {0, 1}).Note however, that in network III, the bit b̃ sent from SC to FCOM depends on b onlythrough the communication between ZC and SC . So

Bk,z
C comk,zIII (ZCSC).Combining all C-inequalities above, we get

Bk,b
C comk,zI (Z0Ã, CR,RF).By de�nition of C and (1), there is a probabilistic function G s.t.

Bk,0 ≈ G
(comk,0I (Z0Ã, CR,RF)

)

≈ G
(comk,1I (Z0Ã, CR,RF)

)

≈ Bk,1,which is a contradiction to Bk,b = b. utB.2 Proof of Lemma 11Proof (of Lemma 11).Given one-way permutations exist there is a computationally binding and uncondi-tionally hiding bit commitment for which the unveil information can deterministicallybe veri�ed(see Section 1.1). We will use the FSAT
ZK functionality to turn this commitmentinto a commitment protocol π which is long-term-UC.The protocol π looks as follows:� To commit to v, the sender C �rst commits to v using the unconditionally hidingcommitment scheme.� Then C proves (using the �rst instance of FSAT

ZK ) that he knows v and matchingunveil information u.31� To unveil, the sender C sends v to the recipient and proves (using the second instanceof FSAT
ZK ) that he knows matching unveil information u.To use the FSAT

ZK functionality the statement to be proven must be an NP statement.This is the case for both usages of FSAT
ZK in the protocol as the unveil information candeterministically be veri�ed.Next we prove that π is a long-term-UC commitment. To do this we have to look atthree cases:No party is corrupted : It is easy to see that given all messages are delivered thencommit and unveil will be successful with overwhelming probability so the protocol isnon-trivial.31 I.e., unveil information that would convince the veri�er.26



The sender C is corrupted : We construct a simulator S as follows:� The simulator S runs a simulated copy of the real adversary A (playing the role ofthe corrupted sender C) which he connects
• to the environment Z,
• to a simulated copy of an honest real recipient R, and
• to two simulated instances of the functionality FSAT

ZK (of which all witnesses arestored).� IF the recipient R accepts the commit phase THEN extract the witness u, v fromthe the call A places to FSAT
ZK .� S sends (commit, v) to the ideal functionality FCOM.� IF the recipient R accepts the unveil THEN S sends (unveil) to the ideal functionality

FCOM.The interaction of the simulator with the environment is statistically indistinguish-able from the interaction Z has with the real adversary in the real model as S runs afaithful simulation of the real adversary A. It remains to be proven that the interactionof (a computationally limited) Z with the adversary and the recipient is statisticallyindistinguishable in the real and in the ideal model. The ideal recipient accepts a com-mitment i� the simulated real recipient accepts it, which itself is a faithful simulationof the real recipient, hence we have indistinguishability in the commit phase. To proveindistinguishability also for the unveil phase we additionally have to show that a success-fully unveiled value in the real model equals the witness used in the �rst instance of the
FZK functionality. As the bit commitment is binding the real adversary can know onlyone value v with corresponding unveil information v so the values v and u in the �rstinstance of FSAT

ZK must equal the v and u used in the unveil. This concludes the proof oflong-term-UC in the case of a corrupted sender.The recipient R is corrupted : We will see that the protocol is statistically secure inthis case and hence especially long-term-UC for a corrupted recipient.We construct a simulator S as follows:� The simulator S runs a simulated copy of the real adversary A which he connects
• to the environment Z,
• to a simulated copy of an honest real sender C, and
• to two simulated instances of the functionality FSAT

ZK .� IF S receives a value (commit) from FCOM THEN S lets C commit to 0.� IF S receives a value (unveil, v) from FCOM THEN
• S sends v in the name of C to A and then
• S sends a fake message in the name of the simulated 2nd instance of FSAT

ZK to Aindicating that the unveil information u corresponding to v is known to C.As the commitment scheme used in the protocol is statistically hiding the communi-cation of Z with the protocol in the commit phase is statistically indistinguishable in thereal and in the ideal model.In the unveil phase the communication the simulated A receives is statistically in-distinguishable from an honest unveil to the value v. Hence the communication of the27



environment with the protocol in the unveil phase is also indistinguishable in the real andin the ideal model. This implies long-term-UC for the case of a corrupted recipient. utB.3 Proof of Lemma 13Proof (of Lemma 13). Assume that SAT has essentially unique witnesses. Let R be thefollowing relation: For two circuits f1, f2, it is (f1, f2)Rw i� f1(w) = 1 or f2(w) = 1.Since SAT has essentially unique witnesses, so has R. Then let UR be as in De�nition 12.We �rst assume that there is a one-way-function h (secure against uniform adver-saries). Consider the following algorithm A that, upon input (1n, y), behaves as follows:� Choose a random w′ ∈ {0, 1}n and let y′ := h(w′).� Let f be the circuit that upon input w outputs 1 i� h(w) = y.� Let f ′ be the circuit that upon input w outputs 1 i� h(w) = y′.� Let w be the result of evaluating UR(1n, f , w′) where f is (f, f ′) or (f ′, f) (randomlychosen).� If h(w) = y, output w.By the properties of UR, w is a witness for f with overwhelming probability (in n).This w is a witness of f or of f ′. Further, when the input of A is h(w̃) for a uniformlychosen w̃ ∈ {0, 1}n, f and f ′ will have the same distribution. Therefore, again by theproperties of UR, the probability that w is indeed a witness for f is negligibly far from
1
2 . So A(1n, h(w̃)) returns a preimage of h(w̃) for random w̃ ∈ {0, 1}n with noticeableprobability, in contradiction to the fact that h is a one-way-function.We come to the second part of the statement and assume that NP 6⊆ P/poly. Let Rand UR be as above. Let Lk be the set of all satis�able circuits of length k and L the setof all satis�able circuits. For any M ⊆ Lk let Ū(M) be a distribution, that returns a pair
(f,w), s.t. f is uniformly chosen from M and f(w) = 1. Note that these distributionsare not necessarily e�ciently samplable.Consider the (non-e�cient) algorithm A that upon input of a circuit f and a set Mbehaves as follows:� Choose (f ′, w′)← Ū(M).� Let w be the result of evaluating UR(|f |, f , w′) where f is (f, f ′) or (f ′, f) (randomlychosen).� If f(w) = 1, output w.Analogously to the reasoning in the case of one-way-functions, we see that for any
M ∈ Lk, the probability that A(f,M) outputs a w with f(w) = 1 for w uniformly chosenfrom M is negligibly close to 1

2 (in the length of f). In particular, for su�ciently large fthat probability is greater than 7
16 . Then, for at least 1

4 of all f ∈M the output A(f,M)satis�es f with probability at least 1
4 , since otherwise the probability for a random x ∈Mto be solved would be bounded by 1
4 · 1 + 3

4 · 1
4 = 7

16 .Let S(M) be the set of the f ∈M , s.t. f(A(f,M)) = 1 with probability less than 1
4 .By the above, #S(M) ≤ 3

4#M . We then de�ne inductively: M0
k := Lk, M i+1

k := S(M i
k).Then #M3k ≤ (3

4 )3k#Ln ≤ (3
4)3k2k < 1, so M3k

n = ∅.28
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x(V) Fig. 2. Networks from the proof of Theorem 14.Consider the (ine�cient) algorithm A∗ that upon input of a circuit f of length kbehaves as follows:� For each i = 0, . . . , 3k − 1, let wi ← A(Mk, f).� If one of the wi ful�ls f(wi) = 1, output w := wi.Since any f lies in some M i
k \S(M i

k) with i < 3k, this algorithm outputs a satisfying
w with probability at least 1

4 .Let now Ū∗
k be the distribution Ū(M0

k )× · · · × Ū(M3k−1
k ). Then A∗ can be rewrittenas (with k := |f |):� Let (f ′

0, w
′
0, . . . , f

′
3k−1, w

′
3k−1)← Ū∗

k .� For each i = 0, . . . , 3k−1, let w ← UR(k, f , w′
i) where f is (f, f ′

i) or (f ′
i , f) (randomlychosen).� If f(wi) = 1 for some i, output w := wi.Since the only ine�cient step of that algorithm is sampling Ū∗

k , there is a PPT-algorithm A∗∗ s.t. for su�ciently long f ∈ Lk, A(f, Ū∗
k ) outputs some w satisfying fwith probability at least 1

4 . Then, by Lemma 31 there is a non-uniform deterministicpolynomial-time algorithm Ã that �nds witnesses for SAT, so SAT ∈ P/poly and there-fore NP ⊆ P/poly, which stands in contradiction to our assumption. utB.4 Proof of Theorem 14Proof. In this proof, we again use the C-notation and the comk,z
X (. . . )-notation presentedin the proof of Theorem 9 in Appendix B.1: If Ak,z and Bk,z are families of randomvariables, we write A C B, if there is some probabilistic function G (not necessarily ane�ciently computable one) s.t. Ak,z and G(k,Bk,z) are statistically indistinguishable.Note that G knows k, but does not have direct access to z. (Intuitively A C B means,that A does not contain (noticeably) more information about z than B). Obviously, C istransitive. We will investigate di�erent networks of machines (cf. Figure 2). To facilitatecalculation, we use the following notation: comk,z

X (AB,CD, . . . ) denotes the transcript ofthe communication between machines A and B, between machines C and D etc. in a runof the network X on security parameter k when the environment gets auxiliary input z.E.g., comk,zII (RZC , RÃC , RF) denotes all communication of party R in network II.29



To produce a contradiction, we assume that there is a non-trivial protocol π thatlong-term-UC realises FR,P→V,m
ZK for some polynomially-bounded m(k) ≥ k (i.e. ZK forthe relation R with prover P and Veri�er V and with support for statements of length

≤ m(k)). First consider the following network I (depicted in Figure 2, the adversary Ãhas been omitted for simplicity): The uncorrupted prover P and veri�er V run togetherwith the environment Z0 and the dummy-adversary Ã.32 The environment Z0 behavesas follows: It takes its auxiliary input (x,w) an sends that auxiliary input to P . Then itinstructs the dummy-adversary Ã to deliver all messages. A message x from V is simplyrecorded. We assume that all environments constructed in this proof simply output theirview (i.e., the transcript of all messages it sent or got and of all its internal states).We will from now on assume that the auxiliary input of the environment is always ofthe form (x,w) with xRw and |x| ≤ m(k). Then, since the protocol π is non-trivial, Vwill eventually send some x̃ to Z0 with overwhelming probability.We now corrupt P and simulate it honestly. That is, we consider an environment ZPthat simulates Z0 and P , and forwards all messages P generates through the dummy-adversary ÃP . The resulting network II is shown in Figure 2. Then the communicationbetween ZP and AP consists of the following: (i) the communication of the simulated
P with V and F and (ii) the communication of the simulated Z0 with the adversary.Therefore comk,x,wII (ZP ÃP ) C comk,x,wI (Z0Ã, PV, PF).Now, since π is long-term-UC secure, there is a simulator SP , s.t. in the network IIIdepicted in Figure 2 the environment ZP has a statistically indistinguishable output from
ZP in network II. Since the communication between ZP and the adversary/simulator isoutput by ZP , we get comk,x,wIII (ZPSP ) C comk,x,wII (ZP ÃP ).Note that the following fact hold with overwhelming probability in network III (sinceotherwise Z0 would not have indistinguishable view in networks I, II and III): A statement
x̃ is sent from FZK to ZP that is equal to the x from ZP 's auxiliary input. Therefore,by de�nition of FZK, the w̃ sent from SP to FZK is a witness for x (but not necessarily
w = w̃).Let W̃ k,x,w be the random variable denoting the distribution of w̃ in a run of networkIII. Since all machines in network III are polynomially-bounded, there is a PPT-algorithm
Ū , so that Ū(k, x,w) has the same distribution as W̃ k,x,w. That algorithm has the prop-erty, that for xRw and |x| ≤ m(k), its output is a witness for x with overwhelmingprobability. To show that R has essentially unique witnesses, we have to show furtherthat Ū 's output is almost independent of w.Note that in network III, the witness w̃ sent from SP to FZK depends on w onlythrough the communication between ZP and SP . In other words,

W k,x,w
C comk,x,wIII (ZPSP ).32 A dummy-adversary is an adversary, that forwards all messages to the environment, and follows allinstructions given by that environment. 30



To show that W k,x,w is almost independent of w, we have to got back to network I andmake use of the fact that F is OTS for P . Then, by De�nition 7, the communicationof F with P can be (ine�ciently) calculated from the communication of F with V andwith the dummy-adversary Ã. The communication of F with Ã again can be calculatedfrom the communication between Ã and Z0 (since Ã simply forwards messages for Z0).Summarising these facts, we havecomk,x,wI (Z0Ã, PV, PF) C comk,x,wI (Z0Ã, PV, V F).Now, let us consider yet another network. Assume that V is corrupted and simulatedhonestly by the environment ZV , i.e. ZV simulates both Z0 and V . V 's communicationis routed through ÃV . The resulting network IV is depicted in Figure 2. Since the com-munication of the simulated V with P and F is routed through ÃV and therefore partof the latter's communication, we getcomk,x,wI (Z0Ã, PV, V F) C comk,x,wIV (ZV ÃV ).Finally, since π is long-term-UC secure, there is a simulator SV , s.t. the output of ZV innetworks IVand V(cf. Figure 2) are statistically indistinguishable. It followscomk,x,wIV (ZV ÃV ) C comk,x,wV (ZV SV ).Combining all C-inequalities so far, we get
W k,x,w

C comk,x,wV (ZV SV ). (2)Let now xk, w
1
k, w

2
k be sequences with xkRw1

k and xkRw2
k. Assume further that |xk| ≤

m(k). Since in network V for such x,w the functionality FZK behaves independently of
w (it only checks, whether w is indeed a witness), the communication between ZV and
SV is independent of w. More formally,comk,xk,w1

k

V (ZV SV ) and comk,xk,w2
k

V (ZV SV )are identically distributed. By de�nition of C and (2), there is a probabilistic function Gs.t.
W k,xk,w1

k ≈ G
(comk,xk,w1

k

V (ZV SV )
)

≈ G
(comk,xk,w2

k

V (ZV SV )
)

≈W k,xk,w2
k ,where ≈ denotes statistical indistinguishability. So W k,x,w and therefore also Ū(k, x,w)is independent of w in the sense of De�nition 12. However, Ū does not completely ful�lthe conditions for a witness uni�er, since we have shown the above only for xk with

|xk| ≤ m(k). But by de�ning UR(k, x,w) := Ū(max{k, |x|}, x, w) we get a witness uni�erin the sense of De�nition 12 (since m(k) ≥ k and thus |xk| ≤ m(max{|xk|, k})). So Rhas essentially unique witnesses, which leads to a contradiction and therefore shows theTheorem. ut31



B.5 Proof of Theorem 16Proof (of Theorem 16). Let fk be a one-way permutation on {0, 1}k . Let SWIAOK be asystem for statistically witness indistinguishable arguments of knowledge (such systemsexist for any MA-relation under the assumptions of the theorem, cf. Section 1.1). By Rwe denote the relation speci�ed in the theorem. Then the protocol π between P and Vusing two instances of FCT is de�ned as follows:1. P is invoked with input (p, q, n).2. P checks whether nR(p, q). Otherwise he aborts.3. P and V invoke the �rst instance of FCT and receive a random k bit string r̄.4. P sends n to V .5. P proves using the SWIAOK the knowledge of p, q, r̄∗, s.t. nR(p, q) or fk(r̄
∗) = r̄.6. P and V invoke the second instance of FCT and receive a random bit string r oflength k · (|n|+ k). They split r into strings r1, . . . , rk of length |n|+ k.7. For each ri, the prover selects a random square root si of ri modulo n, i.e. a uniformlydistributed si ∈ {si ∈ {0, . . . , n−1} : s2

i ≡ ri mod n}. If for some i no such si exists,let si := ⊥.338. P sends s1, . . . , sn to V .9. V checks whether s2
i ≡ ri mod n for all si 6= ⊥, and whether #{i : si 6= ⊥} > k/5.If so, V outputs n.To show that this protocol π long-term-UC realises FR

ZK for the relation R given inthe theorem, we have to prove the following three claims:� The protocol is non-trivial, i.e., on input (p, q, n) with nR(p, q) for the prover, theveri�er outputs n if all messages are scheduled and both parties are uncorrupted (thisroughly corresponds to the completeness of the proof-system)� There is a simulator for the case that the prover P is corrupted (this roughly corre-sponds to the knowledge-soundness of the proof-system).� There is a simulator for the case that the veri�er V is corrupted (this roughly corre-sponds to the zero-knowledge-property of the proof-system).We start by showing, that if the prover gets input (p, q, n) with nR(p, q), the veri�eroutputs n (in the uncorrupted case). The protocol contains only two steps in which theveri�er might abort, during the SWIAOK (Step 5) and during the checks at the end(Step 9). Because of the completeness of the SWIAOK, and since indeed nR(p, q), theveri�er will abort only with negligible probability during Step 5. To see that the veri�eraccepts in Step 9, it is necessary to see that with overwhelming probability, more than
k/5 of the ri are squares modulo n. Since n = pq is a Blum-integer, we have p, q ≥ 3.For random r′ ∈ Zn, r′ mod p and r′ mod q are independently uniformly distributed. Atleast 1/2 of all r′ mod p ∈ Zp are squares (because 0 and half of the invertible elementsare squares), the same holds for q. Since r′ is a square modulo n if and only if it is asquare modulo p and modulo q, it follows that r′ is a square with probability at least
1/4. Further, for random ri of length |n|+k, ri mod n is almost uniformly distributed onZn. So the probability that ri is a square modulo n is at least 1

4 − µ for some negligible33 This can easily be done e�ciently using the factorisation of n.32



µ. Therefore the probability, that at least k/5 of k independently chosen ri are squaresis overwhelming. This concludes the proof of the non-triviality of π.W.l.o.g., we can assume a dummy-adversary.34We now consider the case that the prover P is corrupted. Then we have to �nd asimulator SP , s.t. the interaction between the environment (posing as the prover andrelaying through the dummy-adversary) and the simulator SP is indistinguishable fromthe interaction between the environment and the veri�er. Furthermore, when the veri�erwould output n, the simulator has to send (p, q, n) to the ideal functionality FR
ZK so thatit will output n.We construct the simulator SP as follows:� SP simulates an honest and unmodi�ed instance of the veri�er V .� When prover and veri�er invoke the �rst coin-toss, the resulting value r̄ is chosenuniformly from {0, 1}k (as would FCT is the real model).� When prover and veri�er invoke the second coin-toss, the resulting value r is chosenas the concatenation of r1, . . . , rn. To chose the ri, the algorithm Q from Lemma 32is invoked and returns (ri, s̃i) where si is a random root of ri if ri is a square modulo

n.� When the veri�er V outputs n in Step 9, the simulator checks the following:
• Is n a square. Then √n is a nontrivial factor of n.
• Is ri not invertible modulo n for some i? Then gcd(ri, n) is a nontrivial factor of

n.
• Is gcd(si − s̃i, n) a nontrivial factor of n for some i with si 6= ⊥?If one these tests succeed, the simulator knows a nontrivial factor of n and can send

(p, q, n) to FZK (which ful�l nR(p, q) if n is a Blum-integer).By the knowledge-soundness of the SWIAOK and using the fact that no polynomially-bound machine can �nd an r̄∗ = f−1
k (r̄), for polynomially-bounded environments, we canassume that if the simulator veri�er does not abort in Step 5, n is a Blum-integer. So, byLemma 32, the ri are almost uniformly distributed on {0, 1}|n|+k. So r (as chosen by thesimulator) is statistically indistinguishable from a uniform r of length k(|n| + k). Sincethe veri�er behaves as would an honest veri�er, it follows that the interaction with thereal V is statistically indistinguishable from that with the simulator.It is left to show that with overwhelming probability the simulator SP sends (p, q, n)with nR(p, q) to FZK when the simulated veri�er V outputs n. By the soundness of theSWIAOK, we can assume that n is a Blum-integer. Therefore it is left to show that theprobability is negligible that the three tests performed by SP fail. This would mean thatall ri are invertible modulo n, and that n is not a square. Since n is a Blum-integer,each ri then has four roots, and since the s̃i are chosen (almost) independently of si(Lemma 32 guarantees that s̃i is an almost uniformly distributed root of ri), for each

si 6= ⊥ with probability 1
2 it is si 6= ±s̃i. So with overwhelming probability for at leastone si we have si 6= ±s̃i, and in consequence gcd(si, s̃i) is a nontrivial factor of n. So thesimulator SP successfully simulates.34 I.e., an adversary, that simply follows the instructions of the environment, cf. [Can05].33



We now come to the case that the veri�er V is corrupted. In this case, the simulator
SV gets an n from the functionality FZK which is guaranteed to be a Blum-integer, but thesimulator does not get the factorisation of n. Now the simulator SV has to interact withthe environment in a way that is statistically indistinguishable from the interaction ofthe honest veri�er with the environment (through the dummy-adversary). We constructthe simulator SV as follows:� When the �rst coin-toss is requested, the simulator chooses its value r̄ as r̄ := fk(r̄

∗)for uniformly chosen r̄∗ ∈ {0, 1}k .� When the second coin-toss is requested, the simulator invokes the algorithm Q fromLemma 32 k times and gets r1, . . . , rk and s1, . . . , sk. The value r of the secondcoin-toss is then the concatenation of the ri.� SV simulates the prover P with the following modi�cations:
• When performing the SWIAOK in Step 5 of the protocol, instead of using p, qas the witness (which is unknown), we use r̄∗ as chosen above as a witness (forthe rhs r̄ = fk(r̄

∗) of the statement to be proven).
• Instead of trying to �nd square roots of the ri in Step 7 (which is infeasiblewithout the factorisation of n) we use the si returned by the algorithm Q.Since n is always a Blum-integer, Lemma 32 guarantees, that the ri and si have anindistinguishable distribution from that in an interaction with the real prover (since inthe latter case the ri would be uniformly distributed and the si would be random rootsof the ri or si = ⊥ if no such root exists). Further, since the SWIAOK is statisticallywitness indistinguishable, the proof of the honest prover (which uses witness p, q) and theproof of the simulated prover (which uses witness r̄∗) are statistically indistinguishable.Combining these facts, it is straightforward to see that the interaction between with thereal and with the simulated prover are statistically indistinguishable.So π long-term-UC realises FR

ZK. utB.6 Proof of Theorem 21Proof (of Theorem 21). To show the Theorem, we assume that there is a protocol πconsisting of prover P and veri�er V that non-trivially long-term-UC realises FR,P→V,m
ZKwith m(k) ≥ k using the o�ine functionality F , and that F is OTS for party P and forparty V .Since F is an o�ine functionality, we can assume w.l.o.g. that each party accesses Fonly once, and that this is done upon its �rst activation. We call the value P gets cP andthe value V gets cV . W.l.o.g. we can assume that the value c that the adversary gets isalways the empty string (since if the protocol is secure and non-trivial using an F thatgives some information to the adversary, it certainly is so, if that information is not givento the adversary).Consider the following network I (shown in Figure 3, the dummy-adversary is omittedfor simplicity): The parties P and V run uncorrupted with an environment Z0 and thedummy-adversary Ã. The environment Z0 takes its auxiliary input (x,w) and sends

(x,w) to the prover P . Then it instructs the dummy-adversary Ã to deliver all messages.We assume that all environments constructed in this proof simply output their view (i.e.,34
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V ÃP F
cV

c
P

x̃

ZP

(II) Z0 P
(x,w)

SPFZK

c
P

(x̃,w̃)x̃

ZP

(III)
Z0 FZK SV

(x,w) x

V
x̃

c
V

ZV

(IV) Z0 FZK S̄V

(x,w) x

V F
cV

c
P

x̃

ZV

(V) Z0 FZK S̄V

(x,w) x

SPFZK

c
P

(x̃,w̃)x̃ (VI)Fig. 3. Networks from the proof of Theorem 21.the transcript of all messages they sent or got and of all their internal states). Since theprotocol is non-trivial, the veri�er V eventually gives output if xRw and |x| ≤ m(k).Now we corrupt P and simulate it honestly, i.e., we construct an environment ZP thatsimulates Z0 and P and routes all messages from and to P through the dummy-adversary.The resulting network II is depicted in Figure 3. Since π is long-term-UC secure, there isa simulator SP , s.t. the output of ZP is statistically indistinguishable in networks II andIII (cf. Figure 3). Call the machines in the upper half of network I U , those in the lowerhalf L. The upper half of network III consists of the same machines as that of network I,so we also call it U . The lower half of III we call L̃. Since ZP consists of the machines U ,the communication between U and L̃ is contained in ZP 's output, so the communicationbetween U and L is statistically indistinguishable from that between U and L̃.We can consider U , L and L̃ as single machines with security parameter k and auxil-iary input x,w. Let then 〈U,L〉k,x,w denote the transcript of the communication betweenthese machines. Then
〈U,L〉k,x,w ≈ 〈U, L̃〉k,x,w,where ≈ means statistical indistinguishability.Now we go back to network I, corrupt V and simulate it honestly, i.e., we constructan environment ZV simulating Z0 and V , and routing the communication through thedummy-adversary ÃV . W.l.o.g., we assume that ZV queries the value cV from the dummy-adversary ÃV in its �rst activation, i.e., before invoking Z0 and in particular before usingits auxiliary input. Then we construct the corresponding simulator SV . So we get thenetwork IV shown in Figure 3. The communication of V and Z0 with the rest of thenetwork is statistically indistinguishable for networks I and IV.The simulator SV has to provide the value cV at its �rst activation, i.e., the choice of

cV and the internal state t of the simulator SV after that step are chosen independently ofthe environment's auxiliary input x,w. So there is a family of probability distributions Dks.t. the (t, cV ) are distributed according to Dk. Let Ek denote the distribution of (cP , cV )as chosen by F . Since cV is part of the communication observed by ZV , the distributions35



of cV in as chosen by Ek and by Dk are statistically indistinguishable. Therefore, thereis a probabilistic function Dk (not necessarily e�ciently computable) s.t. when choosing
(cP , cV )← Ek, the pair (Dk(cV ), cV ) has statistically indistinguishable distribution from
Ek. Further, since F is OTS for V , there is a function f s.t. cV = f(cP ). Therefore,
(Dk(f(cP )), cV ) is statistically indistinguishable from Dk. So instead of using a simulator
SV that chooses (t, cV ) according to Dk and then sends cV to V and keeps t for itself,we can use a modi�ed simulator S̄V that instead receives cP as chosen by an instance Fand calculates t := Dk(f(cP )). The machine V gets cV from F . The resulting networkV is depicted in Figure 3. The communication of V and Z0 with the rest of the networkis statistically indistinguishable for networks IV and V (and I, as seen above). Note that
S̄V is not necessarily a polynomial-time machine.When cV and cP are chosen by F , cP can be deterministically calculated from cV ,since F is OTS for P . Therefore the communication of V , Z0 and F with the rest of thenetwork is statistically indistinguishable for networks I and V. So if we call the upperhalf of V Ũ , and the lower half L (it consists of the same machines as the lower half L ofnetwork I), we get

〈U,L〉k,x,w ≈ 〈Ũ , L〉k,x,w.Since all machines send only a polynomial number of messages, by Lemma 33 itfollows that
〈U,L〉k,x,w ≈ 〈Ũ , L̃〉k,x,w.Let network VI be the network consisting of Ũ and L̃ (i.e., the upper half of network Vand the lower half of network III). Since in network I the statement x̃ send from V to

Z0 ful�ls x̃ = x with overwhelming probability, the same holds for network VI. So the w̃sent from SP to FZK in network VI is a witness for x with overwhelming probability (i.e.,
x̃Rw) as long as xRw and |x| ≤ m(k). So the following algorithm �nds witnesses for xwith overwhelming probability (assuming x has a witness).1. Simulate network VI up to the point where S̄V has evaluated t := Dk(f(cP )) withsecurity parameter k := |x|. Call the state of the network s0. (This step is not e�cient.Note that the auxiliary input of Z0 has not been used so far, so this step dependsonly on the length of x but not on its value.)2. Continue the simulation of network VI from state s0 using (x,w) as auxiliary inputfor Z0 where w is some witness for x. (Note that for this simulation, we do not needto explicitly �nd such a w, since the FZK in the upper half of network VI will not usethe value of w as long as it ful�ls xRw. So this step can be performed e�ciently.)3. Extract the w̃ sent by SV to FZK from this simulation and output w̃.Obviously, the output of this algorithm is a witness for x with overwhelming probability.However, Step 1 is not e�cient. But since the auxiliary input of Z0 is not used in thatstep, the distribution Gk of s0 only depends on k := |x|. So there is an algorithm Ataking inputs x, s0 (consisting simply of Steps 2 and 3) that has the following property:
A(x,G|x|) is a witness for x with overwhelming probability. So by Lemma 31 witnessesfor R can be found by a non-uniform deterministic polynomial-time algorithm, so R isnon-uniformly deterministically trivial, which gives us a contradiction and proves thetheorem. ut36



B.7 Proof of Corollary 22Proof (of Corollary 22). To implement FR,P→V,m
ZK using a CRS we use the followingprotocol π (notation is as in the proof of Theorem 16 in Appendix B.5):1. A CRS r = (r̄, r(0), . . . , r(m(k))) is provided by the functionality FCRS, where r̄ haslength k, and r(i) has length k · (|γ(0i)|+ k) (and |r(i)| := 0 for γ(0i) = ⊥).2. P is invoked with input (p, q, n, x).3. P checks whether (n, x)R(p, q). Otherwise he aborts.4. P sends (n, x) to V .5. P proves using the SWIAOK the knowledge of p, q, r̄∗, s.t. (n, x)R(p, q) or fk(r̄

∗) = r̄.6. r(|x|) is split into r1, . . . , rk, each of length |n|+k (note that the lengths match, since
|r(|x|)| = k · (|γ(0|x|)|+ k) = k · (|n|+ k)).7. For each ri, the prover selects a random square root si of ri modulo n, i.e. a uniformlydistributed si ∈ {si ∈ {0, . . . , n−1} : s2

i ≡ ri mod n}. If for some i no such si exists,let si := ⊥.358. P sends s1, . . . , sn to V .9. V checks whether s2
i ≡ ri mod n for all si 6= ⊥, and whether #{i : si 6= ⊥} > k/5.If so, V outputs n.We only describe how the simulator chooses the CRS r: Like in the proof of Theo-rem 16, r̄ is chosen randomly if P is corrupted, and r̄ = fk(r̄

∗) for random r̄∗ if V iscorrupted.For µ = 0, . . . ,m(k), the simulator (both in case of a corrupted V and of a corrupted
P ) invokes the algorithm Q from Lemma 32 on input n := γ(0µ). Then Q outputs
r1, . . . , rk of length |n|+ k together with random square roots s1, . . . , sk (or si = ⊥, if noroot exists). Then r(i) is chosen as the concatenation of r1, . . . , rk. The si are stored.Aside from this modi�cation, the simulators are constructed analogously to the sim-ulators in the proof of Theorem 16, and the proof of security is analogous to that ofTheorem 16 (note that for any (n, x) ∈ LR, the r(|x|) used in the protocol will have beenconstructed using Q with argument ñ := γ(0|x|), which satis�es n = ñ, since γ dependsonly on the length of its argument). utB.8 Proof of Lemma 23Proof (of Lemma 23). The protocol π is as follows:� Let (n, g, x) be C's secret key and (n, h, x) the corresponding public key (as providedby FGamal

PKI ).� To commit to a bit b ∈ {0, 1}, the sender C sends c := x + b mod 3 to the recipient
R. Upon receipt of that message the recipient outputs (committed ).� To unveil b, the sender C sends (b, x) to the recipient R. The recipient R checks,that x + b ≡ c mod 3 and that h ≡ gx mod n. If that check succeeds, the veri�eroutputs b.35 This can easily be done e�ciently using the factorisation of n.37



Obviously, an honest C always succeeds in unveiling with an honest R. So the protocolis nontrivial.Consider the case that the sender C is corrupted. In this case, the simulator SC hasto interact with the environment in such a way that the interaction with the simula-tor is indistinguishable from an interaction with the honest recipient R. Further, whenthe veri�er accepts the commit-phase, the simulator has to enter a bit b̃ into the idealfunctionality F1
COM. When the veri�er accepts the unveil-phase and outputs bit b, thesimulator SC has to unveil b̃ using F1

COM. In order for SC to be successful, it must be
b̃ = b with overwhelming probability. We achieve this as follows: The simulator honestlysimulates the recipient R and the PKI FGamal

PKI . In particular, SC learns x and c (as de�nedin the description of the protocol).When the recipient R outputs (committed ), the simulator sets b̃ := c− x mod 3 anduses this value to commit using F1
COM.Obviously, the interaction with SV and with the real recipient R are statisticallyindistinguishable (since SV performs an honest simulation). It remains to check that

b = b̃ with overwhelming probability. If b 6= b̃, the value x′ received from the sender Cduring unveil ful�ls x′ 6= x, but x′ ≡ x mod ϕ(n) (otherwise h 6= gx′ and the recipientwould not have accepted). But then 4(x′ − x) is a multiple of 4 ord g, which again isa multiple of ϕ(n) with high probability.36 Since g, x and gx can be chosen withoutknowledge of the factorisation of n, this implies that there is a PPT-algorithm that �ndsa multiple of ϕ(n) given n. By [Bon99, Fact 1] this implies the possibility to factor n andthus contradicts the complexity assumption in the lemma.Now, we come to the case where the recipient R is corrupted. In this case, the sim-ulator SR has to interact with the environment in a way that its communication isindistinguishable from an interaction with the honest sender C. However, the simulatorlearns the bit b to be unveiled only at the beginning of the unveil phase (in contrast tothe sender that knows b already during commit, because it has to commit to b).We construct this simulator SR as follows:� The PKI FGamal

PKI is simulated honestly. However, the simulator stores the factorisation
n = pq.� To commit, the simulator sends a random c′ ∈ {0, 1, 2}.� To unveil to b, the simulator chooses a random x′ ∈ {0, . . . , 22k − 1} subject to theconditions x′ + b ≡ c′ mod 3 and x′ ≡ x mod ord g (here x is part of the secret keychosen by FGamal

PKI , and ord g can be e�ciently calculated using p, q).Since n is a safe prime, ϕ(n) = 2p′q′ where p′, q′ are primes greater 3 with overwhelm-ing probability. So 3 - ϕ(n). Therefore for a random solution x of h ≡ gx mod n it holdsthat x mod 3 is almost uniformly distributed over {0, 1, 2} (since x is chosen from a setof size at least 2kn). So also the c chosen by the honest sender C is almost uniformlydistributed on {0, 1, 2}. It follows that c and c′ have statistically indistinguishable dis-tributions. So, given some �xed value of c, x is a uniformly random element subject to
x + b ≡ c′ mod 3 and gx ≡ h mod n. But this is exactly how the simulator chooses x′, so36 Here we use that n is a product of safe primes: In this case, ϕ(n) = 4p′q′ for large primes p′, q′, andthe probability that ord g | 4 or that only one of p′, q′ is a factor of ord g is negligible.38



the distribution of (c, x) and of (c′, x′) are statistically indistinguishable (given only thepublic key). So SR is successful in presenting an indistinguishable interaction.Summarising, we have that π long-term-UC realises F1
COM. utB.9 Proof of Theorem 26Proof (of Theorem 26).The proof proceeds in two steps. First we construct from FTPF a (not necessarily long-term-UC secure) commitment which is computationally binding, unconditionally hiding,and extractable. In the second step we construct a simple zero knowledge protocol usingthis extractable commitment.Constructing an extractable commitment. Given the prerequisite that one-waypermutations exist there also exists a bit commitment scheme COM0 which is computa-tionally binding, unconditionally hiding, and where the unveil information can determinis-tically be veri�ed, see Subsection 1.1. Partially following the construction from [HMQ04]we turn this commitment scheme into a commitment scheme COM1 which has the ad-ditional property of extractability, i.e., if an uncorrupted recipient accepts the commitphase then the simulator can extract a value v from the information the environment givesto the adversary and the probability that a value di�erent from v can later be unveiledis negligible. (Note that the newly constructed commitment need not be long-term-UCsecure as it may not be equivocable).The protocol COM1 looks as follows:� To commit to v, the sender C calls FTPF with value v and receives fs(v) then Ccommits to v, fs(v) using COM0 and obtains unveil information u. Next C calls

FTPF with value u and commits to u, fs(u).� The recipient outputs (commit) after having received two commitments.� To unveil the sender sends v, u and the unveil information for the second commit-ment.� The recipient checks if u is the correct unveil information for v, fs(v) and veri�es ifthe second commitment was correctly unveiled to (unveil, v).To extract the value v from a valid commitment the simulator keeps a list of all callsplaced to the FTPF functionality. The values v and u must be in this list, because itis infeasible to generate a commitment (which can be unveiled) without querying FTPF.As all machines are polynomially limited during the protocol execution there are onlypolynomially many candidates for v and u. By trying to unveil the �rst instance of
COM0 with all possible candidates for u the simulator can identify the value v or thecommitment cannot be unveiled.Long-term UC zero knowledge based on extractable commitments. It is suf-�cient to prove the existence of a long-term UC ZK protocol for graph-3-colourability,which we will construct using the above computationally binding, unconditionally hid-ing, and extractable commitment. We modify the zero knowledge protocol for graph-39



3-colourability from [GMW91] to obtain the following long-term-UC protocol π (oneinstance of that protocol is run for each instance of FR
ZK).� The prover P gets as input a graph with m edges and a colouring and aborts if it isnot a valid 3-colouring.� The prover sends the graph to the veri�er V .� DO m · k times in parallel

• The veri�er commits (using COM1) to a randomly chosen edge (v1, v2) of thegraph.
• The prover chooses a random permutation π of the three colours in his witnessand commits (using COM1) to (v, π(cv)) for each vertex v with colour cv.
• The veri�er unveils the edge (v1, v2).
• The prover unveils the two corresponding vertices (v1, π(cv1)), (v2, π(cv2)).
• The veri�er checks if π(cv1) 6= π(cv2).� The veri�er outputs (accept) if all m · k parallel checks were successful.The protocol always works for uncorrupted parties and is hence non-trivial. Next weconsider the two cases of a corrupted veri�er and of a corrupted prover.The veri�er V is corrupted : We construct a simulator S as follows:� The simulator S runs a simulated copy of the real adversary A which he connects
• to the environment Z,
• to a simulated honest prover P (one for each instance of π) with a modi�cationas detailed below, and
• to a simulated functionality FTPF.� When S receives a message from (an instance of) FZK that a graph G is 3-colourablethen S starts the simulation of the corresponding honest prover P .� In each of the m · k parallel executions
• Whenever the simulated prover accepted a commitment from A the simulator Sextracts (if possible) the edge (v1, v2) from this commitment.
• The simulated prover is modi�ed to commit to a random colouring (not neces-sarily a 3-colouring) with cv1 6= cv2 (if an edge could be extracted).In case the environment does not give a valid witness to the uncorrupted prover thesimulation is clearly statistically indistinguishable from the real protocol. We can in thefollowing assume that the graph in question is 3-colourable.As the commitment scheme used in the protocol is extractable the simulator caneither extract an edge (v1, v2) from the commitment of the simulated real adversary or thecommitment cannot (can only with negligible probability) be unveiled to an edge. So farthe communication of the environment with the protocol is statistically indistinguishablefor the real and the ideal model. Next the prover commits to a random colouring instead ofa true 3-colouring, but still the communication with the environment remains statisticallyindistinguishable for the real and the ideal model, because the commitment scheme isunconditionally hiding. If the simulated real adversary fails to unveil the commitmentthen the protocol will abort and the simulation is statistically indistinguishable fromthe real protocol. Else the extracted edge (v1, v2) must equal the unveiled edge (v′1, v

′
2),because of the extractability of the commitment. Then the simulated prover will unveil40



(v1, cv1), (v2, cv2) with the colours being random, but unequal and hence statisticallyindistinguishable from what is unveiled by the uncorrupted real prover.The prover is corrupted : We construct a simulator S as follows:� The simulator S runs a simulated copy of the real adversary A which he connects
• to the environment Z,
• to a simulated unmodi�ed honest veri�er V (one for each instance of π), and
• to a simulated functionality FTPF.� Whenever the simulated veri�er V accepts a commit phase the simulator extractsthe values of the commitments of the simulated real adversary.� As soon as the simulated honest veri�er accepts the zero knowledge argument thesimulator enters a witness for the 3-colouring into (the corresponding instance of)the functionality FZK if one of the m ·k colourings extracted from the commitmentsis a 3-colouring.The communication of the environment Z with the adversary is clearly statisticallyindistinguishable in the real and in the ideal model, as the simulator runs a faithfulsimulation of the real model. It remains only to be proven that the simulator can enter(with overwhelming probability) a witness to the ideal zero knowledge functionality if thesimulated honest veri�er accepts the proof. Lets assume no proper 3-colouring could beextracted, then (with overwhelming probability) there exists at least one edge in each ofthe m·k parallel executions where the colours cannot be unveiled to be unequal, because itis infeasible to unveil something di�erent from the extractable value. Then the probabilitythat the protocol will not abort is negligible, namely at most (1 − 1/m)m·k ∈ O(e−k).Hence the probability that the simulator can extract a witness if the simulated veri�eraccepted is overwhelming and the protocol is proven long-term-UC for a corrupted prover.

ut

B.10 Proof of Theorem 29
Proof (of Theorem 29). Let S = (KeyGen,Sign ,Verify), where Sign(sk ,m) returns a sig-nature for m using secret-key sk , and Verify(pk ,m, σ) returns 1 if σ is a valid signaturefor m with public key pk . By SWIAOK, we mean the statistically witness indistinguish-able argument of knowledge described in Section 1.1 (which exists under the assumptionsof the theorem).We �rst describe the protocol π for implementing FR

ZK (one instance of that protocolis run for each instance of FR
ZK): 41



� The prover P is activated with input (x,w).� P checks, whether xRw. Otherwise, he aborts.� P sends x to V .� P obtains a signature σ for w from FP,S
SC .� P proves using the SWIAOK the knowledge of strings σ,w, sk ′, s.t. one of the fol-lowing holds:(i) Verify(pk , w, σ) = 1 and xRw, or(ii) For random m ∈ {0, 1}k , it is Verify(pk ,m,Sign(sk ,m)) = 1.The prover P can perform this proof using σ and w as obtained above.� If the veri�er V accepts the SWIAOK, it outputs x.Obviously, if no-one is corrupted and xRw, and all messages are delivered, the veri�er

V outputs x with overwhelming probability, so the protocol is nontrivial.W.l.o.g., we can assume a dummy-adversary.37Let us �rst consider the case that the veri�er V is corrupted. In this case, the simulator
SV has to interact with the environment in a way that is statistically indistinguishablefrom the interaction of the honest prover with the environment (through the dummy-adversary). However, in contrast to the prover, the simulator does not have access to awitness. The simulator SV is constructed as follows:� Simulate FS

SC honestly.� For each protocol instance, upon input x from the ideal functionality FR
ZK (i.e., theenvironment sent (x,w) to the functionality with xRw), simulate an honest prover

P with input (x, 0) with the following modi�cation:� As witness for the SWIAOK, the simulated prover P uses sk ′ := sk where sk is thesecret key used by the simulator FS

SC (i.e., the prover proves (ii) instead of (i)).Since the SWIAOK is statistically witness indistinguishable, the resulting interaction(even if several instances of P are simulated in parallel) is statistically indistinguishablefrom an interaction with an honest prover.Now we consider the case that the prover P is corrupted. In this case, the simulator
SP has to interact with the environment in a way that is statistically indistinguishablefrom the interaction of an honest veri�er with the environment (through the dummy-adversary). Additionally however, if the honest veri�er would output x, the simulatorhas to send (x,w) with xRw to the ideal functionality FR

ZK. We construct the simulator
SP as follows:� Simulate FS

SC honestly. However, whenever a string m is signed, store m in a list M .� For each instance of the protocol, simulate the veri�er V honestly.� When the simulated veri�er V outputs x, check whether xRw for some w ∈ M . Ifso, send (x,w) to FR
ZK. Otherwise, fail, abort and panic.Obviously, as long as SV does not fail, this interaction is indistinguishable from aninteraction with the real veri�er. We therefore only have to show that SV fails withnegligible probability. Therefore, assume that for some environment, SV fails with non-negligible probability. In this case, the environment can be transformed into a non-37 I.e., an adversary, that simply follows the instructions of the environment, cf. [Can05].42



uniform polynomial-time algorithm that, given an (x,w) ∈ R as input and access toa public key pk and a signing oracle (the simulated FS

SC) succeeds with non-negligibleprobability in performing the SWIAOK without signing a witness for x. By the argument-of-knowledge-property, using the knowledge extractor we get a non-uniform polynomial-time algorithm that, given access to a public key pk and a signing oracle, has the followingproperties:38� It never signs any w′ with xRw′.� With non-negligible probability it outputs σ,w, sk ′ s.t. (i) or (ii) (from the de�nitionof π) holds.However, �nding an sk ′ s.t. (ii) holds (even with non-negligible probability) contradictsthe EF-CMA security of S. Furthermore, �nding a signature σ for some w′ that has notbeen signed using the oracle (even with non-negligible probability) also contradicts theEF-CMA security, (i) cannot be ful�lled by an non-uniform polynomial-time algorithmeither. So by contradiction, the simulator SP fails only with negligible probability. utReferences[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge, 1988.JCSS, 37:156-189.[BCMS99] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail. Defeating clas-sical bit commitments with a quantum computer. Los Alamos preprint archive quant-ph/9806031, May 1999.[Bon99] D. Boneh. Twenty years of attacks on the rsa cryptosystem. Notices of theAmerican Mathematical Society (AMS), 46(2):203�213, 1999. Online available athttp://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html.[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-tocols. In 42th Annual Symposium on Foundations of Computer Science, Proceedings ofFOCS 2001, pages 136�145. IEEE Computer Society, 2001. Full version online availableat http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps.[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-cols. IACR ePrint Archive, December 2005. Full and revised version of [Can01], onlineavailable at http://eprint.iacr.org/2000/067.ps.[CCM02] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a memory-bounded receiver. In 34th Annual ACM Symposium on Theory of Computing, Proceedingsof STOC 2002, pages 493�502. ACM Press, 2002.[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,editor, Advances in Cryptology, Proceedings of CRYPTO '01, volume 2139 of Lecture Notesin Computer Science, pages 19�40. Springer-Verlag, 2001. Full version online available athttp://eprint.iacr.org/2001/055.ps.[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adver-saries. In Burton S. Kaliski Jr., editor, Advances in Cryptology, Proceedings of CRYPTO'97, volume 1294 of Lecture Notes in Computer Science, pages 292�306. Springer-Verlag,1997.[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universallycomposable commitment schemes with constant expansion factor. In Moti Yung, editor,38 Note that the environment together with the signing-oracle and the key-generator are polynomial-time, we can apply the knowledge-extractor the environment. Since the knowledge-extractor has onlyblack-box access to the environment, the resulting algorithm does not perform any oracle queries theenvironment would not perform. 43
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