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Abstract. Algorithmic progress and future technology threaten today’s cryptographic
protocols. Long-term secure protocols should not even in future reveal more information
to a—then possibly unlimited—adversary.
In this work we initiate the study of protocols which are long-term secure and universally
composable. We show that the usual set-up assumptions used for UC protocols (e.g., a
common reference string) are not sufficient to achieve long-term secure and composable
protocols for commitments or general zero knowledge arguments. Surprisingly, nontrivial
zero knowledge protocols are possible based on a coin tossing functionality: We give a long-
term secure composable zero knowledge protocol proving the knowledge of the factorisation
of a Blum integer.
Furthermore we give practical alternatives (e.g., signature cards) to the usual setup-
assumptions and show that these allow to implement the important primitives commitment
and zero-knowledge argument.
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1 Introduction

Computers and algorithms improve over time and so does the power of an adversary in
cryptographic protocols. The VENONA project is an example where NSA and GCHQ
stored Russian ciphertexts over years until they could eventually be cryptanalysed. Of-
ficial key length recommendations, e.g. by the Federal Office for Information Security
(BSI) in Germany, usually do not exceed six years and future technology like quantum
computers could render even paranoid choices for the key length obsolete.

Everlasting security from assumptions which have to hold only during the protocol
execution would be an ideal solution to this problem. In this work we combine the no-
tions of universal composability and long-term security. For the first time we investigate
protocols which are long-term secure and exhibit a composition theorem which allows a
modular design of such protocols. In particular, we investigate commitment protocols and
zero knowledge schemes which are composable and robust against future improvements
of the adversary’s computing technology.

To capture the threat of an adversary with increasing power we introduce the secu-
rity notion of long-term universal composability (long-term-UC) with the intuition that
the adversary becomes unlimited at some point of time after termination of the proto-
col. The protocols do not run after this point of time, but all information stored from
past executions should not reveal any additional information to the then unlimited ad-
versary. A surprising consequence of our work is that unconditionally hiding universally
composable commitments [DN02] are not necessarily long-term-UC.

Long-term-UC is preserved under composition, i.e., idealised building blocks can be
replaced by long-term-UC protocols while preserving the long-term security of the com-
plete application. The security notion of long-term-UC lies strictly between information
theoretical security, where the adversary is unlimited from the start, and computational
security, where for a concrete security parameter the computational power of the adver-
sary must be limited for all times to come.

The idea of everlasting security has been considered with respect to memory bounded
adversaries. Key exchange protocols and protocols for oblivious transfer have been de-
veloped in the bounded storage model [CM97, CCM02]. These protocols can be broken
by an adversary with more memory than assumed, however they cannot be broken in
retrospect even by an unlimited adversary. A scheme using distributed servers of random-
ness (virtual satellites) to achieve everlasting security has been implemented [Rab03]. In
this scheme the access of the adversary to the communication of the parties is limited
during the key exchange. It was shown by [DM04] that in the bounded-storage model
composability cannot be taken for granted. They gave a key-exchange protocol that is
secure in the bounded-storage model even if the initial key leaks after protocol termina-
tion, and then showed that if the initial key was generated by a computationally secure
key exchange protocol, the resulting protocol is insecure. However, theirs was a purely
negative result in that they did not give any criteria under which composition would be
possible.

Long-term security has been investigated in quantum cryptography. It is generally
accepted (even though not formally proven) that an only computationally secure authen-
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tication of a quantum key exchange yields a long-term secure key. Bit commitment and
oblivious transfer quantum protocols which become unconditionally secure, but rely on
temporary computational assumptions have been searched, but are now known to be
impossible3 (see, e.g. [BCMS99]).

Zero knowledge proofs where the verifier cannot (ever) break the protocol and the
prover can only on-line break the protocol where given in [BCC88]. In [MQ05] protocols
achieving long-term security were stated, however, only secure function evaluation with
constant input size was considered.

Another related topic is that of forward security, where it is demanded that past
session keys remain computationally secure even if a long-term secret is given to the
adversary. This notion is related to but less strict than long-term-UC as the session keys
will not remain secure forever.

With exception of [DM04], previous work on long-term security did not take the
problem of composability into account. When composability is required the situation
changes drastically. E.g., an unconditionally hiding UC commitment is not long-term-UC
and a straightforward adaption of e.g., the protocol of [BCC88] using an unconditionally
hiding UC commitment does not yield long-term-UC zero knowledge arguments.

In this work we thoroughly investigate under which assumptions long-term-UC com-
mitments and long-term-UC zero knowledge arguments exist. We prove that a common
reference string or a coin toss functionality are not sufficient for realising long-term-UC
commitments. To be more general we define a functionality F to be only temporarily
secret for a party P if, roughly speaking, every secret known to P and F can in principle
(but not necessarily efficiently) be computed from the communication of F with all the
other parties. Coin tossing and a common reference string are only temporarily secret
for all parties and we show that long-term-UC commitments are impossible given any
functionality which is only temporarily secret for the committer.

In contrast to this impossibility of commitments there exist nontrivial languages for
which zero knowledge protocols are possible even with an only temporarily secret func-
tionality. More concrete we give a zero knowledge proof of knowledge of the factorisation
of a Blum integer using a helping coin toss functionality. This is astonishing as such a
proof is not possible using a common reference string instead of a coin toss (unless factor-
ing of Blum integers is easy for nonuniform machines). More generally we prove that no
nonuniformly nontrivial language has a zero knowledge argument with the help of any
functionality which works “offline” in the sense that it needs, like a common reference
string, only be invoked before the start of the protocol and which is only temporarily se-
cret for both parties. Even though most PKI are of this form and hence do not allow any
nontrivial long-term-UC zero knowledge or commitment protocols we give an interesting
and not too academic example of a PKI which allows to implement a long-term-UC
commitment.

Further we give two helping functionalities which are motivated from (temporarily)
tamper proof hardware which allow to implement an unlimited number of long-term-UC

3 Unless additional assumptions are made, such as bounded quantum storage or the availability of a
piece of trusted hardware.
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commitments and zero knowledge arguments for all in NP. One of these functionalities
resembles a trusted device which is computationally indistinguishable from a random
oracle and the other a smart card which can generate digital signatures, but from which
the secret key cannot be extracted. Note however that in contrast to the classical (i.e., not
long-term secure) UC definition, commitments and ZK are not sufficient to implement
any functionality.

1.1 Preliminaries

Notation. We call a function f negligible, if for any polynomial p and sufficiently large
k, f(k) ≤ 1/p(k). We call f overwhelming, when 1− f is negligible.

A PPT-algorithm (probabilistic polynomial time) is a uniform probabilistic algorithm
that runs in polynomial-time in the length of its inputs.

We call a relation R on {0, 1}∗ × {0, 1}∗ poly-balanced if there is a polynomial p,
s.t. |w| ≤ p(|x|) for all x,w with xRw. We call R an NP-relation if it is poly-balanced
and deciding (x,w) ∈ R is in P. We call R an MA-relation if it is poly-balanced and
deciding (x,w) ∈ R is in BPP. The language LR associated with R is LR := {x ∈
{0, 1}∗ : ∃w : xRw}. We usually call x the statement and w with xRw the witness for x.
We call a MA-relation R (uniformly) trivial if there is a PPT-algorithm that upon input
x ∈ LR outputs a witness for x with overwhelming probability. We call R nonuniformly
deterministically trivial there is a nonuniform deterministic polynomial-time algorithm
that upon input x ∈ LR outputs a witness for x.

An integer n > 0 is called a Blum-integer, if n = pq for two primes p, q with p ≡ q ≡
3 mod 4.

Cryptographic tools. In [NOVY98], it is shown that assuming the existence of a one-
way permutation, an unconditionally hiding commitment scheme exists. This scheme has
the additional properties that the unveil-phase consists of only one message, and that
given the message, the committed value v, and the transcript of the interaction in the
commit phase, there is a deterministic polynomial-time algorithm that checks whether
the verifier accepts the value v.

Using that commitment-scheme in the zero-knowledge proof-system for graph-3-
colourability from [GMW91], we get a statistically witness indistinguishable argument of
knowledge for any NP-relation given any one-way permutation.4 Using a statistically wit-
ness indistinguishable argument of knowledge for any NP-relation and a unconditionally
hiding commitment scheme, we can easily construct a statistically witness indistinguish-
able argument of knowledge for any MA-relation using any one-way permutation.5

4 The resulting scheme is of course also zero-knowledge, but we do not need that property here.
5 Let B be a PPT-algorithm s.t. B(w, x) = 1 with overwhelming probability for xRw and with negligible

probability otherwise. Such an algorithm exists for any MA-relation R. To prove a statement x ∈ LR,
the prover first commits to the witness w, then commits to randomness r′. The verifier sends to the
prover randomness r′′. Then the prover proves using a statistically witness indistinguishable argument
of knowledge that he knows a witness, s.t. B(w,x) = 1 with random-tape r := r′⊕r′′. Since the latter
statement is in NP, this can be done given a one-way permutation.
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2 Modelling long-term UC

We now present our modelling of universally composable long-term security (short long-
term UC). We build on the Universal Composability framework [Can05]. In that mod-
elling, a computationally limited entity called the environment has to distinguish between
an execution of the protocol (with some adversary) and an execution of an ideal function-
ality (with some simulator). To define long-term security, we have to add the requirement
that even if some entity gets unlimited computational power after the execution of the
protocol, security is maintained. In the Universal Composability framework, this is quite
easily done: We simply require that after the execution of the protocol (which is still
performed against computationally limited adversaries) even an unlimited entity could
not distinguish between an execution of the real protocol or of the functionality, i.e., we
require that the output of the environment is statistically indistinguishable.6

Definition 1 (Long-term UC). Let EXECπ,A,Z(k, z) denote the output of Z in an
execution of the protocol π with adversary A and environment Z, where k is the security
parameter and z the auxiliary input of the environment Z. EXECF ,A,Z(k, z) is defined
analogously.7

A protocol π long-term-UC realises a functionality F , if for any polynomial-time
adversary A there exists a polynomial-time simulator S, s.t. for any polynomial-time
environment8 Z the families of random variables {EXECπ,A,Z(k, z)}k∈N,z∈{0,1}poly(k) and
{EXECF ,S,Z(k, z)}k∈N,z∈{0,1}poly(k) are statistically indistinguishable.

Note that the Universal Composition Theorem from [Can05] applies with a virtually
unmodified proof.

Conventions. In all our results we assume that secure channels are given for free (i.e.,
we are in the secure-channel network-model).9 Further, security always denotes security
with respect to static adversaries, i.e. parties are not corrupted during the protocol
execution. However, we believe that our results can be adapted to adaptive adversaries.

We consider the case without an honest majority, since given an honest majority we
could use information-theoretically secure protocols.

2.1 On the minimality of the security notion

At this point one might wonder whether this definition is possibly stricter than neces-
sary, especially in view of the various impossibility results presented below. However,

6 Note that we can w.l.o.g. assume that the output of the environment contains the whole view of that
environment.

7 See [Can05] for details.
8 Not limited to environments with single bit output.
9 This much simplifies the presentation. Since all our results concern the two-party case, it is easy

to adapt our results to authenticated channels, if one adapts the definitions of the functionalities
accordingly (e.g., the commitment functionality would then send the value of an unveil to the adversary
as well as to the adversary). However, we cannot expect to use a key exchange protocol to make the
authenticated channels secure, since such an approach would not be long-term secure.
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if one is willing to accept stand-alone security (i.e., simulation-based security without
an environment, see e.g. [Gol04]), with the extra requirement that the outputs of the
parties and the adversary/simulator are statistically indistinguishable in real and ideal
model (long-term stand-alone security), as a minimal security notion, we can argue as
follows: If we want this minimal security and composability simultaneously, the proof
from [Lin03]10 states that the minimal security notion satisfying these two requirements
is a security notion similar to Definition 1, with the only difference that the simulator
is allowed to depend on the environment (specialised-simulator long-term UC). Since all
our impossibility results also apply for this weaker notion (we never use the fact that the
simulator does not depend on the environment), we see that we cannot find an essen-
tially more lenient security notion than Definition 1 if we accept long-term stand-alone
security as a minimal security notion.

2.2 Functionalities

In this section, we define some commonly used functionalities that we will investigate in
the course of this paper.

We assume the following conventions in specifying functionalities:

We always assume that the adversary is informed of every invocation of the function-
ality, and the functionality only delivers its output when the adversary has triggered that
delivery. So a phrase like “upon input x from P1, F sends y to P2” should be understood
as “upon input y from P1, F sends (i-th input from P1) to the adversary, and upon a
message (deliver i) from the adversary, F sends y to P2”. For better readability, we use
the shorter formulation.

Most of the functionalities defined here are parametrised by a function m giving the
length of their input and outputs. We will often omit explicitly stating this m if it is
clear from the context.

When a functionality receives an invalid input from some party, it simply forwards
that input to the adversary.

The first functionality used in this paper is the common reference string (CRS).
Intuitively, the CRS denotes a random string that has been chosen by some trusted
party or by some natural process, and that is known to all parties prior to the start of
the protocol.

Definition 2 (Common Reference String (CRS)). Let Dk (k ∈ N) be an efficiently
samplable distribution on {0, 1}∗. At its first activation the functionality FD

CRS chooses
a value r according to the distribution Dk (k being the security parameter). Upon any
input from Pi, send r to the adversary and to Pi (in particular, all parties Pi get the
same r).

If Dk is the uniform distribution on {0, 1}m(k) for any k, we speak of a uniform CRS
of length m. We then write Fm

CRS instead of FDk

CRS.

10 With minor modifications: simply replace computational indistinguishability by statistical indistin-
guishability.
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The second functionality is the coin toss. At a first glance, the coin toss looks very
similar to the CRS, since also the coin toss consists of a random string that is given to
both parties involved (and to the adversary). However, the coin toss guarantees that no
party can learn the coin toss before both parties agree to toss the coin.11 As we will see
below, a coin toss is more powerful than a CRS in the context of long-term UC.12

Definition 3 (Coin Toss (CT)). When both P1 and P2 have given some input, the
functionality Fm

CT chooses a uniformly distributed r ∈ {0, 1}m(k) and sends r to the
adversary, to P1, and to P2.

The next functionality models the setup assumption, that there is a trusted (pre-
distributed) public key infrastructure, which provides each party with a secret key and
attests the corresponding public key to any interested party.

Definition 4 (Public Key Infrastructure (PKI)). Let G be a PPT-algorithm that
upon input 1k outputs two string sk and pk.13 When FG

PKI runs with parties P1, . . . , Pn,
upon its first activation it chooses independent key pairs (sk i, pk i) ← G(1k) for i =
1, . . . , n and sends (pk 1, . . . , pkn) to the adversary. When receiving any input from Pi,
send (sk i, pk 1, . . . , pkn) to Pi.

The next two functionalities are well-known cryptographic building blocks that find
application in the construction of many protocols.

Definition 5 (Commitment (COM)). Let C and R be two parties. The function-
ality FC→R,m

COM behaves as follows: Upon (the first) input x ∈ {0, 1}m(k) from C send
(committed) to R. Upon input (unveil) from C send x to R.

We call C the sender and R the recipient.

Definition 6 (Zero-Knowledge (ZK)). Let R be a MA-relation, and let P and V
be two parties. The functionality FR,P→V,m

ZK behaves as follows: Upon the first input of
(x,w) from P satisfying xRw and |x| ≤ m(k), send x to V .14

We call P the prover and V the verifier.

11 This can be illustrated by the following example: Alice and Bob want to know which of them pays
the bill. So Alice and Bob agree: “We toss a coin, if the outcome is 1, Bob pays, otherwise Alice pays.”
Of course, if they were to use a CRS instead of a coin toss they could not use this simple protocol,
because the outcome of the CRS is known before the start of the protocol.

12 Although, in contrast, a UC secure (without long-term) coin toss can be realised using a CRS under
reasonable complexity assumptions, see [CF01].

13 I.e., G is a key generation algorithm.
14 The resulting functionality FZK is not polynomial-time if R is not an NP-relation. However, in that

case FZK can be replaced by an efficient implementation that uses a BPP-algorithm for checking xRw

and errs only with negligible probability. The resulting functionality is then indistinguishable from
FZK.
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3 Commitment

In this section we will examine the possibility of long-term-UC realising commitments.
It will turn out, that commitment cannot be long-term-UC realised using CRS or coin-
toss, nor with an arbitrary PKI. In particular unconditionally hiding UC commitments,
which are possible with a CRS [DN02], are not necessarily long-term UC.15 Note that the
incompleteness of the CRS stands in stark contrast to the situation of (non-long-term)
UC. In [CLOS02] it was shown that given a CRS, any functionality has a UC secure
realisation. Furthermore, in [BCNP04] it was shown that the same holds for a PKI.16

However, given a ZK functionality, commitments can be realised even with respect to
long-term UC.

To state the impossibility results in a more general fashion, we first need the following
definition:

Definition 7 (Only temporarily secret). We say a functionality F is only temporar-
ily secret (OTS) for party P , if the following holds in any protocol: Let trans denote the
transcript of all communication between F and the other machines (including the ad-
versary). Let trans \ P denote the transcript of all communication between F and all
machines except P . Then there is a deterministic function f (not necessarily efficiently
computable) s.t. with overwhelming probability we have trans = f(k, trans \ P ).

The intuition behind this definition is that if F is only temporarily secret (OTS) for
P , then any secrets that P and F share may eventually become public. The following
lemma gives some examples:

Lemma 8. Coin toss (FCT) and CRS (FD
CRS with any D) are OTS for all parties.

Commitment (FCOM) and ZK (FZK) are OTS for the recipient/verifier. If G is a key
generation algorithm, s.t. the secret key depends deterministically on the public key (e.g.,
RSA, ElGamal17), the PKI FG

PKI is OTS for all parties.

Proof. In the case of coin toss and CRS the adversary learns the random value r when
if some party learns it, so all communication can be deduced from the communication
with the adversary. In the case of commitment and ZK the communication with the
recipient/verifier can be deduced from the communication with the sender. (In these
cases, the function f is even efficiently computable.) All secret keys chosen by FG

PKI can
be calculated from the public keys pk1, . . . , pkn sent to the adversary. ut

Using this definition, we can prove that using a CRS, coin-toss or other functionalities
that are OTS for the sender, one cannot long-term-UC realise a commitment:

15 The intuitive reason being that the simulator may choose a value for the CRS which is only compu-
tationally indistinguishable from the uniform distribution without loosing the unconditional hiding
property.

16 Their definition Fkrk of a PKI is somewhat different to ours. However, their proof directly carries over
to FPKI.

17 Under the condition, that in the secret key, group elements are always given using a unique represen-
tative (e.g., the secret exponent e in RSA is chosen smaller than ϕ(n)). See also Section 4.3.
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Theorem 9 (Impossibility of commitment with OTS functionalities). Let F
be a functionality that is OTS for party C. Then there is no nontrivial protocol that
long-term-UC realises commitment with sender C (FC→R

COM ) in the F-hybrid model.

If one is willing to assume NP 6⊆ P/poly, this theorem is an immediate consequence
of Lemma 18 stating that FSAT,C→R

ZK (ZK for SAT with the sender C being the prover) is

possible from FC→R
COM , and Corollary 15 stating that FSAT,C→R

ZK cannot be realised using
F (both shown in Section 4). However, in Appendix B.1 we give a direct proof (similar
in spirit to that of Theorem 14) for this theorem that does not depend on NP 6⊆ P/poly.

An interesting corollary from this theorem is that long-term-UC commitments cannot
be turned around, i.e. using one (or many) long-term-UC commitments from A to B,
one cannot long-term-UC realise a commitment from B to A.

Corollary 10 (Commitments cannot be turned around). There is no nontrivial
protocol long-term-UC realising FA→B

COM using any number of instances of FB→A
COM .

Proof. Immediate from Lemma 8 and Theorem 9. ut
In contrast to the impossibility results above, it is possible to get long-term-UC secure

commitments using a ZK functionality:

Lemma 11 (Commitment from ZK). Assume that a one-way permutation exists.
Then there is a nontrivial protocol π that long-term-UC realises FC→R

COM (commitment

with sender C) and that uses two instances of FSAT,C→R
ZK (ZK for SAT with the sender

C being the prover).

The protocol π looks as follows:

– To commit to v, the sender C first commits to v using an unconditionally hiding
commitment scheme.

– Then C proves (using the first instance of FZK) that he knows v and matching
unveil information u.18

– To unveil, the sender C sends v to the recipient and proves (using the second
instance of FZK) that he knows matching unveil information u.

The long-term-UC security of this protocol stems from the following two facts. Equiv-
ocability: the simulator can unveil to any value v′ since he controls the second instance
of FZK. Extractability: Since the sender cannot (efficiently) compute different unveil in-
formations u and u′, the message v given to the first instance of FZK must be the same
as that used in the unveil phase. Since the simulator controls the first instance of FZK,
he learns that message v during the commit phase.

The actual proof is given in Appendix B.2.

4 Zero-Knowledge

In the present section we examine to what extend long-term-UC secure zero-knowledge
proofs can be implemented using various functionalities. Besides several impossibility
results, we also have a quite surprising possibility result (Theorem 16).

18 I.e., unveil information that would convince the verifier.
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4.1 Using OTS functionalities

First, analogous to our investigations concerning commitments in Section 3, we are now
going to examine whether long-term-UC secure ZK can be realised using functionalities
that are OTS for one of the parties.

Whether long-term-UC realising ZK for some relation R is possible strongly depends
on the relation R under consideration. The following definition specifies a class of rela-
tions which is going to play an important role in our results:

Definition 12 (Essentially unique witnesses). A MA-relation R has essentially
unique witnesses if there is a PPT-algorithm UR (the witness unifier), that has the
following properties:

– If w is a witness for x, UR(1k, x, w) outputs a witness for x with over-
whelming probability, formally: for sequences wk, xk with xkRwk the probability
P (xkRUR(1k, xk, wk)) is overwhelming in k.

– If w is a witness for x, the output of UR(1k, x, w) is almost independent of w, formally:
for sequences w1

k, w
2
k, xk with xkRw1

k and xkRw2
k, the families of random variables

UR(1k, xk, w1
k) and UR(1k, xk, w

2
k) are statistically indistinguishable.

A possible way to interpret the witness unifier is as a statistically witness indistin-
guishable proof, that simply sends a witness in the clear.

It is most likely that relations without essentially unique witnesses exist:

Lemma 13. If one-way-functions (secure against uniform adversaries) exist, or if NP 6⊆
P/poly, then SAT does not have essentially unique witnesses.

The proof is given in Appendix B.3.

We are now ready to present the first impossibility result concerning long-term-UC
secure ZK:

Theorem 14 (Impossibility of ZK with OTS functionalities). Let R be a MA-
relation without essentially unique witnesses. Let F be a functionality that is OTS for
party P . Then there is no nontrivial protocol that long-term-UC realises ZK for the
relation R with prover P (FR,P→V

ZK ) in the F-hybrid model.

The rough idea of the proof is as follows: Clearly, if π was to be long-term-UC
secure, the interaction between prover P and verifier V must be (almost) statistically
independent from the witness V received from the environment. Further, a simulator that
is able to simulate convincingly in the case of a corrupted prover must be able to extract
a witness w̃ from the communication with that prover, which is (almost) statistically
independent from the witness w. So in particular, w̃ is (almost) statistically independent
from w. Therefore, combining the prover and the simulator into one algorithm, we get
an algorithm that given one witness w returns another almost independent one, in other
words, a witness unifier in the sense of Definition 12. Therefore R must have essentially
unique witnesses, which gives the desired contradiction.

The proof is given in Appendix B.4.
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Note that we cannot expect an analogous result in the case that F is OTS for
the verifier V , since commitments are OTS for the recipient and Lemma 18 show that
FR,P→V

ZK can be long-term-UC implemented using commitments with the verifier V as
recipient.

Combining the results in this section, we get the impossibility of long-term-UC secure
ZK for SAT:

Corollary 15. Let F be a functionality that is OTS for party P . If one-way-functions
(secure against uniform adversaries) exist, or if NP 6⊆ P/poly, there is no nontrivial
long-term-UC secure protocol for ZK with prover P for SAT in the F-hybrid model.

Proof. Immediate from Lemma 13 and Theorem 14. ut

At this point one might ask why our impossibility result needs the restriction to rela-
tions without essentially unique witnesses. Would not the following argumentation show
that given a, say, coin-toss, there is no long-term-UC ZK protocol π for any nontrivial re-
lation: The simulator is able to extract a witness w from the interaction with the prover.
Therefore w must information-theoretically already be “contained” in the interaction. On
the other hand, in an interaction between simulator and verifier, the witness w cannot be
“contained” in the interaction, since the simulator does not know w. However, since the
interaction in both cases must be statistically indistinguishable from the interaction in
the uncorrupted case, that latter both“contains” and does not“contain”w, which gives a
contradiction. Surprisingly, this intuition is not sound as shows the following possibility
result:

Theorem 16 (ZK for Blum-Integers using coin toss). Assume that a one-way
permutation exists. Let nR(p, q) if n = pq, p, q prime and p ≡ q ≡ 3 mod 4. There is
a nontrivial protocol using two instances of FCT that long-term-UC realises FR

ZK in the
coin toss hybrid model.

To construct such a protocol, we have to achieve two seemingly contradictory goals
simultaneously. If the prover or verifier is corrupted, the simulator may choose the value
r the coin-toss functionality returns. First, since the simulator should be able to extract
a witness (p, q) (i.e., a factorisation of n in this case) in case of the corrupted prover, the
simulator should be able to choose r having a trapdoor X s.t. it is possible to extract
(p, q) under knowledge of that trapdoor. However, in the case of long-term-UC the value
r should be statistically indistinguishable from uniform randomness. So the trapdoor
should be present (but possibly unknown) even if r is chosen randomly. Further, if the
verifier is corrupted, the simulator should be able to simulate the proof without knowing
a witness. However, since also in this case r is almost uniformly distributed, the trapdoor
X is also present. So by finding that trapdoor X we could extract a witness from the
proof although the simulator never used that witness in constructing the proof. This can
only be realised, if finding the witness can be reduced to finding the trapdoor.

In the case of factoring n, an example for such a trapdoor is the knowledge of random
square roots modulo n. Given an oracle that finds square roots modulo n, we can factor
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n. So if the trapdoor X consists of the square roots of r (when we consider r as a
sequence of integers modulo n) finding the trapdoor is as hard as factoring n, so there is
no contradiction in the fact that by finding the trapdoor we can extract a witness (p, q)
from an interaction that was produced without knowledge of (p, q).

This leads us to the following simplified version of our protocol:

– The prover sends n to the verifier.
– Prover and verifier invoke the coin-toss. The result r of that coin-toss is considered

as a sequence r1, . . . , rk of integers modulo n.
– For each i, the prover chooses a random si with s2

i = ri. It sets si := ⊥ if ri does
not have a square root.19

– The prover sends s1, . . . , sk to the verifier.
– The verifier checks, whether s2

i = ri for all si 6= ⊥, and whether at least 1
5 of all

si 6= ⊥.

This protocol is not yet a long-term-UC realisation of FR
ZK, since it fails if n is not a

Blum-integer, but it will demonstrate the main point. So why is this protocol long-term-
UC secure if we guarantee that n is a Blum-integer? First, we see that if prover and
verifier are both honest, the verifier will always accept. This is due to the fact that for a
Blum-integer n, a random residue is a square with probability at least 1

4 .
Now we consider the case that the verifier is corrupted. In this case, the simulator

has to produce coin-toss values r1, . . . , rn that are indistinguishable from the uniform
distribution, and a proof that is statistically indistinguishable from the proof given by the
prover. In other words, the simulator needs to simultaneously produce (almost) uniformly
distributed r1, . . . , rn, and for each ri a random square root si modulo n if such si exists.
Fortunately, if n is a Blum-integer, there is an efficient algorithm Q for choosing such
ri and si (Lemma 32). So the simulator can successfully simulate by simply choosing
the ri and si using Q. Note that for this, it is vital that the simulator knows n before
having to send the coin-toss result r1, . . . , rn to the environment. This is why we let the
prover send n to the verifier before they invoke the coin-toss. In particular, we could
not use a CRS here, because then the simulator might have to choose the ri before the
environment sends n to the prover.

Now for the case that the prover is corrupted. In this case, the simulator needs
to interact with the environment incorporating the prover and to extract the witness
(p, q) if the prover’s proof would convince the honest verifier. To do this, the simulator
again chooses the coin-toss r1, . . . , rn using the algorithm Q and therefore knows random
square roots s̃i of all ri that are quadratic residues. Now the environment sends si to
the simulator. The uncorrupted verifier would only accept if at least k/5 of these si

satisfy s2
i = ri. Therefore after receiving the si from the environment, the simulator

knows k/5 independently chosen pairs (si, s̃i) of square roots of ri. For each such pair
the probability of si 6≡ s̃i mod n is 1

2 (we ignore the finer detail of non-invertible ri at this
point), and in this case we get a factor of n by evaluating gcd(si ± s̃i, n). This happens
with overwhelming probability, so the simulator is successful in extracting a factor and
therefore the witness (p, q).

19 This is feasible given the factorisation of n.
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However, the protocol as described so far has a major flaw: If n is not a Blum-
integer, the above security proof does not work. So we must ensure that n is in fact
a Blum-integer. If the verifier is corrupted, the simulator gets n from the functionality
FR

ZK which ensures (by definition of R) that n is a Blum-integer. So in this case there
is no problem. However, if the prover is corrupted, the simulator will have to choose
the coin-toss r1, . . . , rn. If n is not a Blum-integer, he might learn this later on (since
he learns (p, q) in case of a successful proof), but then it might already be too late,
because the simulator sends the ri to the environment before the end of the proof (the
algorithm Q does not guarantee r1, . . . , rn to be (almost) uniformly distributed if n is not
a Blum-integer). To overcome this difficulty, we add an additional step to the beginning
of the protocol. Before the coin-toss is invoked, the prover proves that n is indeed a
Blum-integer. If the prover succeeds in this proof, the simulator can use the algorithm Q
without danger, otherwise the simulator may abort (since the verifier would have done
so, too). However, this introduces the additional difficulty that in case of a corrupted
verifier, the simulator has to perform that proof, too, and without knowledge of the
witness. To achieve this, we make use of the FLS-technique [FLS99]: Prover and verifier
first invoke another instance of the coin-toss functionality (in this case, a CRS would be
sufficient, too) and then the prover proves using a statistically witness indistinguishable
argument of knowledge to the verifier that either n is a Blum-integer or that he knows a
the preimage of the coin-toss t under a one-way permutation f . Then the simulator can
simulate this proof by simply choosing t = f(u) for uniform u. Since f(u) is uniformly
distributed, this is indistinguishable from what an honest prover knowing the witness
would produce. After having successfully performed this first step, prover and verifier
proceed with the protocol as described above.

The actual proof for Theorem 16 is given in Appendix B.5.
Actually, we can somewhat strengthen this result and get a long-term-UC secure ZK

that does not only show the existence of a factorisation of n, but can also show that the
factorisation satisfies some predicate:

Corollary 17. Assume that a one-way permutation exists. Let X be any predicate that
is in BPP. Let R be as in Theorem 16. Let (p, q)R′(n, x) if (p, q)Rn and X(p, q, n, x)
evaluates to true. Then there is a protocol using two instanced of FCT that realises FR′

ZK

in the coin toss hybrid model.

Proof. This protocol construction is almost identical to that of Theorem 16. The only
difference is the following: Instead of proving that n is a Blum-integer (using the statis-
tically witness indistinguishable argument of knowledge), the prover proves that n = pq
is a Blum-integer and that X(p, q, n, x) evaluates to true. The rest of the protocol is
unmodified. The security proof is completely analogous. ut

Furthermore, given a commitment, long-term-UC secure ZK for any NP-relation is
(unsurprisingly) possible:

Lemma 18 (ZK from commitment). Let R be a NP-relation. Then there is a long-
term-UC secure protocol π for ZK with relation R (i.e., FR,P→V

ZK ) using a polynomial
number of commitments from prover P to verifier V (i.e., FP→V

COM ).
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Proof. [CF01] gives a UC secure protocol that realises FR,P→V
ZK using FP→V

COM where R
is the relation for the Hamilton cycle problem. Their result even holds unconditionally
(i.e., even when the environment is unlimited during the execution of the protocol) and
therefore in particular with respect to long-term UC. Since the Hamilton cycle problem
is NP-complete, the lemma follows. ut

Note that we cannot expect a similar result using commitments from verifier to prover,
since FCOM is OTS for the recipient and thus Theorem 14 applies.

4.2 Using offline functionalities

In the preceding section, we saw that using a coin toss, long-term-UC secure ZK for the
factorisation of Blum-integer can be realised. It is therefore a natural question to ask
whether something similar is also possible using a CRS, which can be seen as the offline
variant of a coin-toss. Unfortunately, the answer is no. To state this result in greater
generality, let us first formalise what we mean by an offline functionality.

Definition 19 (Offline functionalities). We call a functionality F offline, if it has the
following form: When F runs with parties P1, . . . , Pn, upon its first activation, it chooses
values (c, cP1 , . . . , cPn) according to a fixed distribution and sends c to the adversary.
When receiving any input from Pi, send cPi

to Pi.

Lemma 20. CRS and PKI are offline functionalities.

Proof. For FCRS, set c := ci := r (cf. Definition 2), and for FPKI, set c := (pk1, . . . , pkn)
and ci := (sk i, pk1, . . . , pkn) (cf. Definition 4). ut

The following result shows that a CRS as well as a PKI where the secret key is
information-theoretically determined by the public key (cf. Lemma 8) cannot be used for
long-term-UC secure ZK for any relation R unless that relation is trivial for nonuniform
algorithms anyway.

Theorem 21 (Impossibility of ZK with OTS offline functionalities). Let R be
a nonuniformly deterministically nontrivial MA-relation.20 Let F be an offline function-
ality that is OTS for party P and for party V . Then there is no nontrivial protocol that
long-term-UC realises ZK for relation R with prover P and verifier V (i.e., FR,P→V

ZK ) in
the F-hybrid model.

To understand the proof idea, assume that F is a CRS. Assume that there is a
protocol π for FR

ZK. Then there is a simulator S1 that is able to choose the CRS r1

and calculate a corresponding trapdoor T1, s.t. he can simulate the prover and convince
the verifier using this trapdoor (without knowledge of a witness). Furthermore, there is
another simulator S2 that is able to choose the CRS r2 and calculate a corresponding
trapdoor T2, s.t. he can simulate the verifier and — if the verifier accepts — extract

20 I.e., there is no nonuniform deterministic polynomial-time algorithm that finds witnesses for R.
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a witness w. Since both r1 and r2 are statistically indistinguishable from an honestly
chosen CRS, it follows that an honestly chosen CRS always already “contains” such
trapdoors T1 and T2 (however, given a CRS it can be infeasible to find these trapdoors).
Therefore, if we provide S1 and S2 with a CRS and with trapdoors T1 and T2, S1 will
be able to produce a convincing proof (due to trapdoor T1), and S2 will be able to
extract a witness from this convincing proof. Since S1 and S2 are polynomial-time, and
CRS and trapdoors can be given as an auxiliary input, it follows that a nonuniform
polynomial-time algorithm can find witnesses for R in contradiction to the nontriviality
of R. Functionalities other than a CRS are handled almost identically, see the full proof.

The full proof is given in Appendix B.6.

A natural question arising in this context is whether this impossibility result can be
made stronger. In particular, one might ask whether such an impossibility result already
holds if F is OTS for P or for V . This however is refuted by Corollary 24 below. Further
one might ask, whether the theorem can be strengthened to state impossibility of ZK
for uniformly nontrivial relations. The following gives strong evidence that this cannot
be done without new results about integer-factorisation.

Corollary 22. Let γ be an efficiently computable function from Σ∗ to N∪{⊥}, s.t. γ(x)
depends only on the length of x, and γ(x) is a Blum-Integer or ⊥ for all x. Let R be
as in Theorem 16. Let (n, x)Rγ(p, q) iff nR(p, q) and γ(x) = n. Then there is a protocol

that long-term-UC realises FRγ

ZK with prover P in the CRS-hybrid model.

It is not an unreasonable (although strong) assumption that such an γ exists, s.t. Rγ

is uniformly nontrivial. So to strengthen Theorem 21 one would have to disprove the
existence of such a γ.

The rough proof idea for Corollary 22 is the following: Recall, why protocol π from
Theorem 16 needs a coin-toss instead of a CRS. The simulator had to choose the value
r = (r1, . . . , rk) of the second invocation of the coin-toss functionality in a manner so that
it new the square roots of ri modulo n. Therefore, it was necessary for the simulator to
know n before choosing r. In the case of Rγ however, there are only polynomially many
n = γ(x) since γ(x) depends only on the length of x. So we can modify the protocol π as

follows: Instead of using coin-toss, we use a different CRS r(|x|) = (r
|x|
1 , . . . , r

|x|
k ) for each

length |x|. Then the simulator can choose the CRS r(|x|) before the start of the protocol,
since the n for which the CRS r(|x|) is to be used is already known (n = γ(0|x|)).

The proof is given in Appendix B.7.

4.3 Using a PKI

Lemma 8 tells us that at least for some commonly used encryption schemes, FG
PKI

is OTS for all parties (here and in the following G denotes the key generation algo-
rithm) and therefore cannot be used for long-term-UC realising commitment or zero-
knowledge21. However, in general this is not necessarily the case. So the question arises

21 Except for nonuniformly trivial relations, see Theorem 21.
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whether there are encryption schemes so that FG
PKI can be used to realise, say, a com-

mitment. In this section, we specify an encryption scheme (or more to the point, its key
generator G) and give a protocol that using FG

PKI implements a commitment. Surpris-
ingly, the encryption scheme we use is not a pathological construction, but a relatively
natural variant of ElGamal in the RSA group. So we cannot expect a generalisation of
Theorems 9 and 21 that covers all PKIs with “natural” encryption schemes.

The ElGamal-Variant we consider has the following key generation algorithm Gamal :
Upon input 1k, Gamal chooses a random n of length k as the product of two safe primes.
Further it chooses a random x ∈ {0, . . . , 22k},22 and a random invertible g ∈ Zn (note
that then with overwhelming probability g has high order). Then it outputs the secret
key (n, g, x) and the public key (n, g, gx).

Lemma 23. Assume that factoring the product of two random safe primes is hard
(w.r.t. nonuniform adversaries). Then there is a protocol π using one instance of FGamal

PKI

that long-term-UC realises FC→R,1
COM (a 1-bit commitment from C to R).

The protocol π is quite simple:

– Let (n, g, x) be C’s secret key and (n, h, x) the corresponding public key (as provided
by FGamal

PKI ).
– To commit to a bit b ∈ {0, 1}, the sender C sends c := x + b mod 3 to the recipient

R.
– To unveil b, the sender C sends (b, x) to the recipient R. The recipient R checks,

that x + b ≡ c mod 3 and that h ≡ gx mod n.

The rough intuition behind this protocol is the following: The protocol is binding,
because it is hard to find an x′ 6= x satisfying h = gx′

mod n without knowledge of
the factorisation of n. The protocol is unconditionally hiding, because there are many
different x′ with length 2k satisfying h = gx′

mod n, and for a random such x′, x′ mod 3
is almost equally distributed on {0, 1, 2} (note that this does not hold modulo 2, since
2 | ϕ(n)). The scheme is equivocable (i.e., the simulator can choose b after committing),
since the simulator knows the factorisation of n, and therefore can choose a random x′

with gx′ ≡ h mod n and b + x′ ≡ c mod 3. The scheme is extractable (i.e., the simulator
can learn the bit b before unveil), since the simulator knows the x that will be sent by
C and thus calculates b := c− x mod 3.

That the protocol actually long-term-UC realises F1
COM is proven in Appendix B.8.

Note that the protocol given here only shows that we cannot expect a generalisation
of Theorem 9 to general PKIs, it does not show that it is practicable to use PKIs for
implementing long-term-UC secure commitments. The reason for this is that during the
unveil phase, the secret key is transmitted and the PKI thus rendered useless for further
use. In contrast, the next section presents functionalities that can be used for an arbitrary
number of commitments/ZK-proofs.

We additionally get the following:

22 This is probably the most uncanonical choice in our construction, since an x of length |n| would be
fully sufficient.
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Corollary 24. Assume that factoring the product of two random safe primes is hard
(w.r.t. nonuniform adversaries), and let A and B be two parties. Then there is an offline
functionality F that is OTS for B, s.t. there are long-term-UC protocols using F for:
commitment with recipient B (FA→B,m

COM ), zero-knowledge for any NP-relation R with
prover A (FA→B

ZK ), m-bit coin-toss (Fm
CT) and zero-knowledge for some nonuniformly

nontrivial NP-relation R with prover B (FR,B→A
ZK ).

Proof. Let F consist of m copies of FGamal

PKI .23 Since the protocol π from Lemma 23 does
not uses the recipient’s secret key, we can assume that F chooses a public/secret key
pair only for A, so that F is OTS for B. Then using π we can implement m instances
of FA→B,1

COM . From this, FA→B,m
COM can be trivially realised. Further, by Lemma 18 we

get FA→B
ZK from sufficiently many instances of FA→B,1

COM . From FA→B,m
COM we easily get

Fm
CT.24 By Theorem 16 we get FR,B→A

ZK for the NP-relation R from Theorem 16. Since
by assumption factoring the product of two random safe primes is hard, R is nonuniformly
nontrivial. ut

5 Other setup-assumptions

As the preceding sections have shown, trying to design long-term-UC secure protocols
using a CRS, coin toss or PKI is a futile endeavour. Therefore, in the following sections
we will investigate alternative setup-assumptions that are more fruitful in the context of
long-term-UC.

5.1 Trusted devices implementing a random oracle

A very powerful assumption in the context of universally composable security is the
random oracle. It may therefore seem worthwhile to investigate whether a random oracle
can be used to realise long-term-UC secure commitment and ZK. However, a closer look
shows that in the context of long-term-UC security the random oracle is a very unrealistic
assumption due to the following fact: Real-life implementations of the random oracle have
to be done via some efficiently computable function (e.g., using trusted hardware that
calculates some pseudorandom function with a secret seed). In the context of long-term-
UC, this function could be “broken” by an unlimited adversary after protocol execution.
In contrast, a random oracle functionality ensures, that even for an unlimited adversary,
the function looks completely random. Therefore, we advocate that in the context of
long-term-UC, instead of a random oracle one should use a functionality that evaluates
a pseudorandom function with a secret seed (representing e.g. a (temporarily) trusted
device).

We now give a definition of such a functionality FTPF. Note however, that all possi-
bility results given in this section also hold (with identical proofs) when using a random
oracle instead of FTPF.

23 I.e., m public/secret key pairs are generated for each party.
24 A commits to a random string r′ of length m. B sends a random string r′′ to A. A unveils. r′ ⊕ r′′ is

the result of the coin-toss.

17



Definition 25 (Trusted pseudorandom function (TPF)). Let fs be an efficiently
computable family of deterministic functions fs : {0, 1}l(|s|) → {0, 1}l(|s|) with polynomi-
ally bounded l.

Then, the functionality trusted pseudorandom function (TPF) Ff
TPF is defined as

follows: Upon its first activation, it chooses a uniformly random s ∈ {0, 1}k. When
receiving a message x ∈ {0, 1}l(k) from a party P or the adversary, it sends fs(x) to P
or the adversary, respectively.

At this point, one should note that the UC definition (and therefore our variant, too)
implicitly assumes that when using a TPF, that TPF is accessed only by the protocol
(and the adversary), but that it cannot be directly accessed by the environment. This in
particular rules out that different protocols share a single TPF. A more detailed analysis
of the consequences of this assumption can be found in [HMQU05, CDPW07]. However,
we show that using a single TPF we can perform an arbitrary number of zero knowledge
arguments or commitments, so that at least we do not need a large number of TPFs
when constructing a larger protocol that performs many ZK arguments or commitments.

Theorem 26 (ZK from TPF). Assume that a one-way permutation exists. Let fs be a
pseudorandom function (as in [Gol01]), and R an NP-relation. Then there is a nontrivial

protocol π using one instance of Ff
TPF that long-term-UC realises unlimited number of

instances of FR
ZK (i.e., ZK for the relation R).

We give the proof idea first. First a commitment scheme is constructed which is compu-
tationally binding, unconditionally hiding and extractable (however, this commitment
is not necessarily UC). The extractable commitment is constructed from a given com-
mitment which is unconditionally hiding. To commit to a value v one first commits to
v, fs(v). Then one commits to u, fs(u) where u is the unveil information for the first com-
mitment. As the function fs(.) can only be evaluated by using the functionality FTPF a
simulator can extract the committed value v from the calls which are placed to FTPF.

Using this extractable commitment we modify the zero knowledge protocol for graph-
3-colourability of [GMW91]. Instead of letting the prover commit to a colouring and then
let the verifier choose a random edge e for which the colours are unveiled and checked
we let the verifier commit to e before the prover commits to the colouring.

In this protocol the simulator can, if the prover is corrupted, extract a witness from
the commitments of the simulated real adversary or the protocol will fail and is then
easily simulated. In the case of a corrupted verifier the simulator can extract the edge
which will later be investigated before committing to the colouring. So the simulator can
easily commit to a fake colouring and still pass the test at the edge in question.

In both cases the communication between the parties, the adversary and the environ-
ment are statistically indistinguishable in the real protocol and in this simulation and
we achieve a long-term-UC zero knowledge argument for graph-3-colouring and hence
for all NP-statements. The complete proof can be found in Appendix B.9.

According to Lemma 11 one commitment can be obtained from two invocations of a
zero knowledge scheme and we can hence conclude:
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Corollary 27 (Commitments from TPF). Assume that a one-way permutation ex-
ists. Let fs be a pseudorandom function. Then there is a nontrivial protocol π using one
instance of Ff

TPF that long-term-UC realises an unlimited number of instances of FCOM

(i.e., commitments).

Proof. Immediate from Lemma 11 and Theorem 26. ut

5.2 Signature cards

One disadvantage of the TPF-assumption from the foregoing section is that trusted hard-
ware implementing a pseudorandom function are unlikely to be available for practical
use.25 However, another kind of trusted device is already available commercially today:
the signature card. A signature card is a tamperproof device with an built-in secret key.
Upon request, this card signs an arbitrary document, but never reveals the secret key.
The corresponding public key can be obtained from some certification authority. These
properties are required e.g. from the German signature law [Sig01].

These properties are captured by the following ideal functionality (based
on [HMQU05]):

Definition 28 (Signature Card (SC)). Let S = (KeyGen ,Sign,Verify) be a signa-

ture scheme. Let H be a party. Then the functionality FH,S
SC (signature card for scheme S

with holder H) behaves as follows: Upon the first activation, FH,S
SC chooses a public/secret

key pair (pk , sk) using the key generation algorithm KeyGen(1k). Upon a message (pk )
from a party P or the adversary, send pk to that party or the adversary, resp. Upon a
message (sign ,m) from the holder H, produce a signature σ for m using the secret key
sk and send σ to H.26

As was the case with TPFs, our definition implicitly assumes that the environment
has no direct access to the signature card. See the discussion after Definition 25. However,
in [HMQU05] techniques where introduced that allow to share a single signature card in
different protocols. It would be interesting to explore whether their approach can also
be applied to our scenario.

It was shown in [HMQU05] that signature cards are powerful assumptions in the
context of universal composability. Using an adaption of their technique, we can show
that these signature cards are also very useful for long-term-UC security:

Theorem 29 (ZK from a signature card). Assume that a one-way permutation ex-
ists. Let S be an EF-CMA secure signature scheme. Let R be any MA-relation. Then
there is a nontrivial protocol π that long-term-UC realises an unbounded number of in-
stances of FR,P→V

ZK (i.e., ZK for the relation R with prover P ) using a single instance

of FS,P
SC (i.e., a signature card for S with P as the holder).

25 Not because of technical difficulties, but simply and plainly due to the forces of supply and demand.
26 The definition from [HMQU05] additionally provides the possibility of locking the card (called seize

and release there). These however are not needed in our protocols, so we omit them.

19



The idea of the proof is as follows: To prove the existence of a witness w for some
statement x, the prover P signs x using his signature card (resulting in a signature σ)
and then performs a statistically witness indistinguishable argument of knowledge that
one of the following holds: (i) he knows a w and a σ, so that xRw and σ is a valid
signature for w, or (ii) he knows a secret key sk ′ matching the public key pk provided
by the signature card functionality.

Consider the case of a corrupted prover. Since S is EF-CMA secure, it is infeasible to
get a secret key sk ′ matching the public key pk chosen by the signature card (since the
signature card allows only black-box access to the signing algorithm). So the prover has
to show the knowledge of a signature σ of the witness w. The only way to obtain such
a signature σ is to sign the witness w using the signature card. Since in the ideal model,
the signature card FSC is simulated by the simulator, the simulator learns that witness
w. So the simulator is able to extract w while honestly simulating verifier and FSC.

In case the verifier is corrupted, the simulator knows the secret key sk matching the
public key pk . So the simulator can prove (ii) instead of (i). Since the proof system
we use is statistically witness indistinguishable, the resulting interaction is statistically
indistinguishable.

The full proof is given in Appendix B.10.

Corollary 30 (Commitments from a signature card). Assume that a one-way
permutation exists. Let S be an EF-CMA secure signature scheme. Then there is a
nontrivial protocol π that long-term-UC realises an unbounded number of instances of
FC→R

COM (i.e., commitment with sender C) using a single instance of FS,P
SC (i.e., a signature

card for S with P as the holder).

Proof. This is an immediate consequence of Theorem 29 and Lemma 11. ut

6 Conclusions

We have examined the notion of long-term UC which allows to combine the advantages of
long-term security (i.e., security that allow for unlimited adversaries after protocol end)
and Universal Composability. We saw that the usual set-up assumptions used for UC
protocols (e.g., CRS) are not sufficient any more in the case of long-term UC. However,
we could show that there are other practical alternatives to these setup-assumptions
(e.g., signature cards) that allow to implement the important primitives commitments
and zero-knowledge proofs.

Further research in this directions might include the following:
– Which protocol tasks can or cannot be long-term-UC realised using commitments

and zero-knowledge proofs.
– What other setup-assumptions might be useful in the context of long-term UC. In

particular, under which assumptions can OT (and therefore any functionality) be
realised?

– Our investigations were in the secure-channels communication-model. If only au-
thenticated channels are present, the important issue of key exchange occurs. What
setup-assumptions are necessary to implement the latter?
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– The protocols presented here were not optimised for efficiency. To what extend can
efficient protocols be found for the tasks discussed in this work?

– In [HMQU05] techniques were presented that allow to share a single signature card
between different protocols. Can these techniques be applied to our setting, too?

– Much work on unconditional and long-term security has been done in the field of
quantum cryptography. How does long-term UC behave in the presence of quantum
communication. Can some of the impossibility results given in this work be avoided?
In particular, quantum communication could solve the problem of key exchange men-
tioned above.
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A Auxiliary lemmas

Lemma 31. Let R be a MA-relation. Let A be an PPT-algorithm, and Dk a family of
distributions over strings of polynomial length (not necessarily an efficiently samplable
one). Let P > 0. Assume that for sufficiently large x ∈ LR, A(x,D|x|) outputs some
witness w with xRw with probability at least P .

Then there is a nonuniform deterministic polynomial-time algorithm Ã that upon
input x outputs a witness w with xRw.

Proof. W.l.o.g. we assume that all x ∈ {0, 1}∗.
From A, we can construct a deterministic polynomial-time algorithm that takes its

random tape as input, i.e., for sufficiently long x ∈ LR, A(x,D|x|,T ) outputs a witness
with probability at least P if T is the uniform distribution on strings polynomial in |x|.
Further, since there are only finitely many x that are not solved with probability at least
P , we can assume that A′ solves these by table-lookup.

We can amplify the probability of yielding a witness by repeating A′, so there is an
deterministic polynomial-time algorithm Ã and a family of distributions Ek of strings
of polynomial length p(k) (constructed as sufficiently many copies of Dk,T , padded
to length p(k)), s.t. Ã(x, E|x|) outputs a witness w for x with probability greater than

1− 2−|x|.

Let G(x, e) := 1 iff xRÃ(x, e). Let Lk := LR ∩ {0, 1}k. For each k, let ek ∈ {0, 1}p(k)

be the string maximising P (G(x, ek) = 1) for randomly chosen x ∈ Lk. For contradiction,
we assume that there is an xk ∈ Lk, s.t. G(xk, ek) 6= 1. Then for random x ∈ Lk and
e← Ek we would have

2−n > P (G(x, e) 6= 1)

=
∑

e′∈{0,1}p(k)

P (e = e′)P (G(x, e′) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′)P (G(x, ek) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′)P (x = xk)P (G(xk, ek) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′) · 2−#Lk · 1

= 2−#Lk ≥ 2−n.

So for all x ∈ Lk, G(x, ek) = 1, i.e., for all x ∈ Lk, Ã(x, ek) gives a witness for x. But
Ã(·, ek) is a deterministic nonuniform polynomial-time algorithm with auxiliary input
ek, which concludes the proof. ut

Lemma 32. There is a PPT-algorithm Q s.t. U(1k, n) outputs two values r ∈
{0, . . . , 2k|n|− 1}, s ∈ {0, . . . , n− 1}∪{⊥}, s.t. the following holds if n is a Blum-integer
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– The distribution of r is almost uniformly distributed on {0, . . . , 2k|n| − 1}.27
– If r is a quadratic residue mod n, then s is a almost uniformly distributed root of r

modulo n (and s = ⊥ otherwise).

Proof (of Lemma 32). First, we remember some facts: The Legendre-symbol
(

a
p

)

for

prime p is defined as
(

a
p

)

= +1 if a is a quadratic residue modulo p,
(

a
p

)

= −1 if a is a

quadratic non-residue modulo p, and
(

a
p

)

= 0 if a ≡ 0 mod p. The Jacobi-symbol
(

a
pq

)

for

different primes p, q is defined as
(

a
pq

)

:=
(

a
p

)(

a
q

)

. If n = pq is a Blum-integer and not a
square, −1 is a quadratic non-residue modulo p, modulo q and modulo n. There is an
efficient algorithm R, so that R(p, q, r) returns a random square root of r modulo pq (or
⊥ if r is not a square) if p, q are primes.

We now define an auxiliary algorithm Q′ as follows:

– Input: a Blum-integer n = pq with p 6= q, and an r0 ∈ Zn.
– Calculate the Jacobi symbol J :=

(

r0
n

)

.
– If J = −1, output (r0,⊥).
– If J = 0 and r0 6= 0, factor n.28 Output (r0, R(p, q, r0)).
– If r0 = 0, return (0, 0).
– If J = +1, choose a uniformly random invertible s ∈ Zn,29 and with probability 1

2 ,
output (s2, s), otherwise (−s2,⊥).

Let n = pq with p 6= q.

Let S1 ⊆ Zn be the set of all r0 with
(

r0
n

)

∈ {−1, 0}. Then given a Blum-integer n, for
uniformly chosen r0 ∈ S1 and (r, s)← Q′(n, r0), we have that r is uniformly distributed
on S1 (since r = r0 for r0 ∈ S1). If r0 is not a square, s = ⊥ (since 0 is a square, and by
the definition of R). If r0 is a square, s is a uniformly distributed root of r (since 0 has
only one root, and by the definition of R).

Let S2 ⊆ Zn be the set of all r0 with
(

r0
n

)

= +1. All elements of S2 are invertible.
Let further Q be the set of all invertible squares in Zn. Then Q ⊆ S2, and S2 \Q is the
set of all invertible elements that are neither quadratic residues modulo p nor modulo q.
For a uniformly random invertible s ∈ Zn, s2 is uniformly distributed over Q, and s is a
uniformly random root of s2. Since also −1 has that property (see above), multiplying
an element of Q with −1 gives an element of S2 \Q and vice versa. So #Q = #(S2 \Q)
and −s2 is uniformly distributed on S2 \Q.

Therefore for any r0 ∈ S2, Q′(n, r0) outputs (r, s), s.t. r is uniformly distributed on
S2, and if r is a square, s is a uniformly chosen root (and s = ⊥ otherwise).

It follows that for uniformly chosen r0 ∈ Zn, Q′(n, r0) outputs (r, s), s.t. r is uniformly
distributed on Zn, and if r is a square, s is a uniformly chosen root (and s = ⊥ otherwise).

Now we define algorithm Q′′:

27 I.e., the distribution of r is statistically indistinguishable (in k) from the uniform distribution on
{0, . . . , 2k|n| − 1}.

28 This can be done efficiently, since if
�

r0

n

�
= 0, gcd(r0, n) is a factor of n.

29 How to do this is discussed later.
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– Input: a Blum-integer n.
– Check whether n is a square. If so, let p, q :=

√
n, choose a random r ∈ Zn and

output (r,R(p, q, r)).
– Otherwise, choose a random r0 ∈ Zn, let (r, s)← Q′(n, r0) and output (r, s).

Obviously, if n is a Blum-integer (possibly with identical prime factors), Q′′(n) out-
puts (r, s), s.t. r is uniformly distributed on Zn, and if r is a square, s is a uniformly
chosen root (and s = ⊥ otherwise).

Now, consider the following algorithm Q:

– Input: a parameter 1k and a Blum-integer n.
– Let (r, s)← Q′′(n).
– Let r̄ ∈ {0, . . . , n− 1} be a representative of r ∈ Zn.
– Let d := b2k|n|/nc, and choose a uniformly random e ∈ {0, . . . , d− 1}.
– Return (r̄ + en, s).

Obviously, for uniform r ∈ Zn, r̄+en is almost uniformly distributed on {0, . . . , 2k|n|−
1}. So if n is a Blum-integer, Q(k, n) outputs (r, s), s.t. r is almost uniformly distributed
on {0, . . . , 2k|n| − 1}, and if r is a square, s is a uniformly chosen root (and s = ⊥
otherwise), so Q has the properties stated in the lemma.

However, algorithm Q′ (which again is called by Q) contains the instruction“choose a
uniformly random invertible s ∈ Zn”. We have to check whether we can do this efficiently
(with some error probability negligible in k). If n is a Blum-integer with different prime
factors p, q, a random element s is invertible if it is nonzero modulo p and modulo q.
Since p, q ≥ 3, the probability for this is at least (2

3 )2. So we can choose an invertible
s ∈ Zn by choosing random s ∈ Zn and check whether it is invertible (e.g., using Euclid’s
algorithm). If we repeat this up to k times, the probability of failure is negligible. ut

Lemma 33. Let U , Ũ , L, B̃ be interactive machines that send only a polynomially-
bounded number of messages. Let 〈U,L〉k,z denote the transcript of the communication
in interaction of U and L where both machines get input k, z. Assume

〈U,L〉k,z ≈ 〈Ũ , L〉k,z ≈ 〈U, L̃〉k,z

where ≈ denotes statistical indistinguishability (in k). Then

〈U,L〉k,z ≈ 〈Ũ , L̃〉k,z.

Proof. In the following, we omit k, z for readability. W.l.o.g. we can assume, that in
a run of 〈U,L〉 the machines alternatingly send messages to each other, with the first
message sent by U . Analogously for the other networks. Let U(vi) denote the distribution
of message sent by machine U under the condition that the communication has been
vi so far. Note that this distribution does not depend on which other machine U is
communicating with. Define L, Ũ , L̃ analogously. Let 〈U,L〉i denote the communication
of U and L up to the i-th message. Then if e.g., i is odd, U(〈U,L〉i−1) has the same
distribution as 〈U,L〉i. If i is even, the same holds for L (since U sends the odd and L
the even messages). Let p(k) be the polynomial upper bound on the number of messages
sent by the machines.
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Let ∆ denote the statistical distance of random variables, and let

ui := ∆(〈U,L〉i, 〈Ũ , L〉i), li := ∆(〈U,L〉i, 〈U, L̃〉i) and di := ∆(〈U,L〉i, 〈Ũ , L̃〉i)

Further, δ := max{up(k), lp(k)}. By assumption, δ is negligible in k. To show the lemma,
it is sufficient to show that dp(k) is negligible, too. Assume that i is odd (i.e. it is the U ’s

or Ũ ’s turn to send a message).

di = ∆
(

U(〈U,L〉i−1), Ũ (〈Ũ , L̃〉i−1)
)

≤ ∆
(

U(〈U,L〉i−1), Ũ (〈Ũ , L〉i−1)
)

+ ∆
(

Ũ(〈Ũ , L〉i−1), Ũ(〈U,L〉i−1)
)

+ ∆
(

Ũ(〈U,L〉i−1), Ũ (〈Ũ , L̃〉i−1)
)

≤ ∆
(

〈U,L〉i), 〈Ũ , L〉i
)

+ ∆
(

〈Ũ , L〉i−1, 〈U,L〉i−1

)

+ ∆
(

〈U,L〉i−1, 〈Ũ , L̃〉i−1

)

= ui + ui−1 + di−1 ≤ 2δ + di−1.

An analogous calculation (with L(. . . ) and L̃(. . . ) instead of U(. . . ) and Ũ(. . . ), and with
〈U, L̃〉 instead of 〈Ũ , L〉) gives di ≤ li + li−1 + di−1 ≤ 2δ + di−1. Since obviously d0 = 0,
we have dp(k) ≤ 2p(k)δ which is negligible, since δ is negligible and p polynomial. ut

B Postponed proofs

B.1 Proof of Theorem 9

Proof (of Theorem 9). For this proof, let us first introduce some notation. If Ak,z and Bk,z

are families of random variables, we write A C B, if there is some probabilistic function
G (not necessarily an efficiently computable one) s.t. Ak,z and G(k,Bk,z) are statistically
indistinguishable. Note that G knows k, but does not have direct access to z. (Intuitively
ACB means, that A does not contain (noticeably) more information about z than B). Ob-
viously, C is transitive. We will investigate different networks of machines (cf. Figure 1).

To facilitate calculation, we use the following notation: comk,z
X (AB,CD, . . . ) denotes the

transcript of the communication between machines A and B, between machines C and
D etc. in a run of the network X on security parameter k when the environment gets
auxiliary input z. E.g., comk,z

II (RZC , RÃC , RF) denotes all communication of party R
in network II.

To produce a contradiction, we assume that there is a nontrivial protocol π that
long-term-UC realises FC→R,1

COM (i.e., one-bit commitment with sender C and recipient
R). First, consider the following network I (depicted in Figure 1, the adversary Ã has
been omitted for simplicity): The uncorrupted sender C and recipient R run together
with the environment Z0 and the dummy-adversary Ã.30 The environment Z0 behaves
as follows: It takes an auxiliary input of the form b or (b, unveil) where b ∈ {0, 1}. Then it
sends b to the sender C (i.e., instructs C to commit to b) and waits for the (committed )-
message from the recipient R. If the auxiliary input was of the form (b, unveil), it then

30 A dummy-adversary is an adversary, that forwards all messages to the environment, and follows all
instructions given by that environment.
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Fig. 1. Networks from the proof of Theorem 9.

sends (unveil) to C and waits for the bit b̃ sent by the recipient. During the protocol
run, it instructs the dummy-adversary Ã to deliver all messages. We assume that all
environments constructed in this proof simply output their view (i.e., the transcript of
all messages they sent or got and of all their internal states).

Since π is long-term-UC secure, for auxiliary input b (i.e., in the case that Z0 does not
instruct C to unveil) the communication observed by the adversary Ã and the recipient
R is statistically indistinguishable in the cases b = 0 and b = 1, i.e.,

comk,0
I (Z0Ã, CR,RF) ≈ comk,1

I (Z0Ã, CR,RF) (1)

where ≈ means statistical indistinguishability. (To see this, let the environment corrupt
and honestly simulate the recipient R. Then all communication of R and Ã is known to
the environment.)

We now make use of the fact that F is OTS for C. So, by Definition 7, the communi-
cation of F with C can be (inefficiently) calculated from the communication of F with
R and with the dummy-adversary Ã. The communication of F with Ã again can be cal-
culated from the communication between Ã and Z0 (since Ã simply forwards messages
for Z0). Summarising these facts, we have

comk,z
I (Z0Ã, CR,CF) C comk,z

I (Z0Ã, CR,RF).

Now we corrupt C and simulate it honestly, i.e., we construct an environment ZC

that simulates Z0 and C, and forwards all messages C generates through the dummy-
adversary ÃC . The resulting network II is given in Figure 1. Then the communication
between ZC and AC consists of the following: (i) the communication of the simulated
C with V and F and (ii) the communication of the simulated Z0 with the adversary.
Therefore

comk,z
II (ZCÃC) C comk,z

I (Z0Ã, CR,CF).

Now, since π is long-term-UC secure, there is a simulator SC , s.t. in the network III

depicted in Figure 1 the environment ZC has a statistically indistinguishable output from
ZC in network II. Since the communication between ZC and the adversary/simulator is
output by ZC , we get

comk,z
III (ZCSC) C comk,z

II (ZCÃC).
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Since Z0 gets the (committed ) from R in network I, it also gets that message from FCOM

in network III (since the view of Z0 is indistinguishable in all three networks). Further-
more, if the auxiliary input is (b, unveil), Z0 receives b with overwhelming probability
from the FCOM after having sent (unveil) to C. So the bit b̃ that SC sends to FCOM in
network III fulfils b̃ = b with overwhelming probability. This even holds if the auxiliary
input had the form b (not (b, unveil)), since SC cannot learn whether (unveil) is going
to be sent until after it has sent b̃ (since Z0 waits until it receives (committed ) before
sending (unveil)). Therefore, if Bk,z denotes the bit b̃ the simulator SC sends in a run
of network III with security parameter k and auxiliary input z, we have Bk,b = b with
overwhelming probability (for b ∈ {0, 1}).

Note however, that in network III, the bit b̃ sent from SC to FCOM depends on b only
through the communication between ZC and SC . So

Bk,z
C comk,z

III (ZCSC).

Combining all C-inequalities above, we get

Bk,b
C comk,z

I (Z0Ã, CR,RF).

By definition of C and (1), there is a probabilistic function G s.t.

Bk,0 ≈ G
(

comk,0
I (Z0Ã, CR,RF)

)

≈ G
(

comk,1
I (Z0Ã, CR,RF)

)

≈ Bk,1,

which is a contradiction to Bk,b = b. ut

B.2 Proof of Lemma 11

Proof (of Lemma 11).
Given one-way permutations exist there is a computationally binding and uncondi-

tionally hiding bit commitment for which the unveil information can deterministically
be verified(see Section 1.1). We will use the FSAT

ZK functionality to turn this commitment
into a commitment protocol π which is long-term-UC.

The protocol π looks as follows:

– To commit to v, the sender C first commits to v using the unconditionally hiding
commitment scheme.

– Then C proves (using the first instance of FSAT
ZK ) that he knows v and matching

unveil information u.31

– To unveil, the sender C sends v to the recipient and proves (using the second
instance of FSAT

ZK ) that he knows matching unveil information u.

To use the FSAT
ZK functionality the statement to be proven must be an NP statement.

This is the case for both usages of FSAT
ZK in the protocol as the unveil information can

deterministically be verified.
Next we prove that π is a long-term-UC commitment. To do this we have to look at

three cases:
31 I.e., unveil information that would convince the verifier.
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No party is corrupted : It is easy to see that given all messages are delivered then
commit and unveil will be successful with overwhelming probability so the protocol is
nontrivial.

The sender C is corrupted : We construct a simulator S as follows:

– The simulator S runs a simulated copy of the real adversary A (playing the role of
the corrupted sender C) which he connects
• to the environment Z,
• to a simulated copy of an honest real recipient R, and
• to two simulated instances of the functionality FSAT

ZK (of which all witnesses are
stored).

– IF the recipient R accepts the commit phase THEN extract the witness u, v from
the the call A places to FSAT

ZK .
– S sends (commit, v) to the ideal functionality FCOM.
– IF the recipient R accepts the unveil THEN S sends (unveil) to the ideal function-

ality FCOM.

The interaction of the simulator with the environment is statistically indistinguish-
able from the interaction Z has with the real adversary in the real model as S runs a
faithful simulation of the real adversary A. It remains to be proven that the interaction
of (a computationally limited) Z with the adversary and the recipient is statistically
indistinguishable in the real and in the ideal model. The ideal recipient accepts a com-
mitment iff the simulated real recipient accepts it, which itself is a faithful simulation
of the real recipient, hence we have indistinguishability in the commit phase. To prove
indistinguishability also for the unveil phase we additionally have to show that a success-
fully unveiled value in the real model equals the witness used in the first instance of the
FZK functionality. As the bit commitment is binding the real adversary can know only
one value v with corresponding unveil information v so the values v and u in the first
instance of FSAT

ZK must equal the v and u used in the unveil. This concludes the proof of
long-term-UC in the case of a corrupted sender.

The recipient R is corrupted : We will see that the protocol is statistically secure in
this case and hence especially long-term-UC for a corrupted recipient.

We construct a simulator S as follows:
– The simulator S runs a simulated copy of the real adversary A which he connects
• to the environment Z,
• to a simulated copy of an honest real sender C, and
• to two simulated instances of the functionality FSAT

ZK .
– IF S receives a value (commit) from FCOM THEN S lets C commit to 0.
– IF S receives a value (unveil, v) from FCOM THEN
• S sends v in the name of C to A and then
• S sends a fake message in the name of the simulated 2nd instance of FSAT

ZK to
A indicating that the unveil information u corresponding to v is known to C.

As the commitment scheme used in the protocol is statistically hiding the commu-
nication of Z with the protocol in the commit phase is statistically indistinguishable in
the real and in the ideal model.
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In the unveil phase the communication the simulated A receives is statistically in-
distinguishable from an honest unveil to the value v. Hence the communication of the
environment with the protocol in the unveil phase is also indistinguishable in the real and
in the ideal model. This implies long-term-UC for the case of a corrupted recipient. ut

B.3 Proof of Lemma 13

Proof (of Lemma 13). Assume that SAT has essentially unique witnesses. Let R be the
following relation: For two circuits f1, f2, it is (f1, f2)Rw iff f1(w) = 1 or f2(w) = 1.
Since SAT has essentially unique witnesses, so has R. Then let UR be as in Definition 12.

We first assume that there is a one-way-function h (secure against uniform adver-
saries). Consider the following algorithm A that, upon input (1n, y), behaves as follows:

– Choose a random w′ ∈ {0, 1}n and let y′ := h(w′).
– Let f be the circuit that upon input w outputs 1 iff h(w) = y.
– Let f ′ be the circuit that upon input w outputs 1 iff h(w) = y′.
– Let w be the result of evaluating UR(1n, f , w′) where f is (f, f ′) or (f ′, f) (randomly

chosen).
– If h(w) = y, output w.

By the properties of UR, w is a witness for f with overwhelming probability (in n).
This w is a witness of f or of f ′. Further, when the input of A is h(w̃) for a uniformly
chosen w̃ ∈ {0, 1}n, f and f ′ will have the same distribution. Therefore, again by the
properties of UR, the probability that w is indeed a witness for f is negligibly far from
1
2 . So A(1n, h(w̃)) returns a preimage of h(w̃) for random w̃ ∈ {0, 1}n with noticeable
probability, in contradiction to the fact that h is a one-way-function.

We come to the second part of the statement and assume that NP 6⊆ P/poly. Let R
and UR be as above. Let Lk be the set of all satisfiable circuits of length k and L the set
of all satisfiable circuits. For any M ⊆ Lk let Ū(M) be a distribution, that returns a pair
(f,w), s.t. f is uniformly chosen from M and f(w) = 1. Note that these distributions
are not necessarily efficiently samplable.

Consider the (non-efficient) algorithm A that upon input of a circuit f and a set M
behaves as follows:
– Choose (f ′, w′)← Ū(M).
– Let w be the result of evaluating UR(|f |, f , w′) where f is (f, f ′) or (f ′, f) (randomly

chosen).
– If f(w) = 1, output w.

Analogously to the reasoning in the case of one-way-functions, we see that for any
M ∈ Lk, the probability that A(f,M) outputs a w with f(w) = 1 for w uniformly chosen
from M is negligibly close to 1

2 (in the length of f). In particular, for sufficiently large f
that probability is greater than 7

16 . Then, for at least 1
4 of all f ∈M the output A(f,M)

satisfies f with probability at least 1
4 , since otherwise the probability for a random x ∈M

to be solved would be bounded by 1
4 · 1 + 3

4 · 1
4 = 7

16 .

29



Let S(M) be the set of the f ∈M , s.t. f(A(f,M)) = 1 with probability less than 1
4 .

By the above, #S(M) ≤ 3
4#M . We then define inductively: M0

k := Lk, M i+1
k := S(M i

k).
Then #M3k ≤ (3

4 )3k#Ln ≤ (3
4)3k2k < 1, so M3k

n = ∅.
Consider the (inefficient) algorithm A∗ that upon input of a circuit f of length k

behaves as follows:
– For each i = 0, . . . , 3k − 1, let wi ← A(Mk, f).
– If one of the wi fulfils f(wi) = 1, output w := wi.

Since any f lies in some M i
k \S(M i

k) with i < 3k, this algorithm outputs a satisfying
w with probability at least 1

4 .

Let now Ū∗
k be the distribution Ū(M0

k )× · · · × Ū(M3k−1
k ). Then A∗ can be rewritten

as (with k := |f |):
– Let (f ′

0, w
′
0, . . . , f

′
3k−1, w

′
3k−1)← Ū∗

k .
– For each i = 0, . . . , 3k−1, let w ← UR(k, f , w′

i) where f is (f, f ′
i) or (f ′

i , f) (randomly
chosen).

– If f(wi) = 1 for some i, output w := wi.

Since the only inefficient step of that algorithm is sampling Ū∗
k , there is a PPT-

algorithm A∗∗ s.t. for sufficiently long f ∈ Lk, A(f, Ū∗
k ) outputs some w satisfying f

with probability at least 1
4 . Then, by Lemma 31 there is a nonuniform deterministic

polynomial-time algorithm Ã that finds witnesses for SAT, so SAT ∈ P/poly and there-
fore NP ⊆ P/poly, which stands in contradiction to our assumption. ut

B.4 Proof of Theorem 14

Proof. In this proof, we again use the C-notation and the comk,z
X (. . . )-notation presented

in the proof of Theorem 9 in Appendix B.1: If Ak,z and Bk,z are families of random
variables, we write A C B, if there is some probabilistic function G (not necessarily an
efficiently computable one) s.t. Ak,z and G(k,Bk,z) are statistically indistinguishable.
Note that G knows k, but does not have direct access to z. (Intuitively A C B means,
that A does not contain (noticeably) more information about z than B). Obviously, C is
transitive. We will investigate different networks of machines (cf. Figure 2). To facilitate

calculation, we use the following notation: comk,z
X (AB,CD, . . . ) denotes the transcript

of the communication between machines A and B, between machines C and D etc. in
a run of the network X on security parameter k when the environment gets auxiliary
input z. E.g., comk,z

II (RZC , RÃC , RF) denotes all communication of party R in network
II.

To produce a contradiction, we assume that there is a nontrivial protocol π that
long-term-UC realises FR,P→V,m

ZK for some polynomially-bounded m(k) ≥ k (i.e. ZK for
the relation R with prover P and Verifier V and with support for statements of length
≤ m(k)). First consider the following network I (depicted in Figure 2, the adversary Ã
has been omitted for simplicity): The uncorrupted prover P and verifier V run together
with the environment Z0 and the dummy-adversary Ã.32 The environment Z0 behaves

32 A dummy-adversary is an adversary, that forwards all messages to the environment, and follows all
instructions given by that environment.
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Fig. 2. Networks from the proof of Theorem 14.

as follows: It takes its auxiliary input (x,w) an sends that auxiliary input to P . Then it
instructs the dummy-adversary Ã to deliver all messages. A message x from V is simply
recorded. We assume that all environments constructed in this proof simply output their
view (i.e., the transcript of all messages it sent or got and of all its internal states).

We will from now on assume that the auxiliary input of the environment is always
of the form (x,w) with xRw and |x| ≤ m(k). Then, since the protocol π is nontrivial, V
will eventually send some x̃ to Z0 with overwhelming probability.

We now corrupt P and simulate it honestly. That is, we consider an environment ZP

that simulates Z0 and P , and forwards all messages P generates through the dummy-
adversary ÃP . The resulting network II is shown in Figure 2. Then the communication
between ZP and AP consists of the following: (i) the communication of the simulated
P with V and F and (ii) the communication of the simulated Z0 with the adversary.
Therefore

comk,x,w
II (ZP ÃP ) C comk,x,w

I (Z0Ã, PV, PF).

Now, since π is long-term-UC secure, there is a simulator SP , s.t. in the network III

depicted in Figure 2 the environment ZP has a statistically indistinguishable output from
ZP in network II. Since the communication between ZP and the adversary/simulator is
output by ZP , we get

comk,x,w
III (ZPSP ) C comk,x,w

II (ZP ÃP ).

Note that the following fact hold with overwhelming probability in network III (since
otherwise Z0 would not have indistinguishable view in networks I, II and III): A statement
x̃ is sent from FZK to ZP that is equal to the x from ZP ’s auxiliary input. Therefore,
by definition of FZK, the w̃ sent from SP to FZK is a witness for x (but not necessarily
w = w̃).

Let W̃ k,x,w be the random variable denoting the distribution of w̃ in a run of network
III. Since all machines in network III are polynomially-bounded, there is a PPT-algorithm
Ū , so that Ū(k, x,w) has the same distribution as W̃ k,x,w. That algorithm has the prop-
erty, that for xRw and |x| ≤ m(k), its output is a witness for x with overwhelming
probability. To show that R has essentially unique witnesses, we have to show further
that Ū ’s output is almost independent of w.
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Note that in network III, the witness w̃ sent from SP to FZK depends on w only
through the communication between ZP and SP . In other words,

W k,x,w
C comk,x,w

III (ZPSP ).

To show that W k,x,w is almost independent of w, we have to got back to network I and
make use of the fact that F is OTS for P . Then, by Definition 7, the communication
of F with P can be (inefficiently) calculated from the communication of F with V and
with the dummy-adversary Ã. The communication of F with Ã again can be calculated
from the communication between Ã and Z0 (since Ã simply forwards messages for Z0).
Summarising these facts, we have

comk,x,w
I (Z0Ã, PV, PF) C comk,x,w

I (Z0Ã, PV, V F).

Now, let us consider yet another network. Assume that V is corrupted and simulated
honestly by the environment ZV , i.e. ZV simulates both Z0 and V . V ’s communication
is routed through ÃV . The resulting network IV is depicted in Figure 2. Since the com-
munication of the simulated V with P and F is routed through ÃV and therefore part
of the latter’s communication, we get

comk,x,w
I (Z0Ã, PV, V F) C comk,x,w

IV (ZV ÃV ).

Finally, since π is long-term-UC secure, there is a simulator SV , s.t. the output of ZV in
networks IVand V(cf. Figure 2) are statistically indistinguishable. It follows

comk,x,w
IV (ZV ÃV ) C comk,x,w

V (ZV SV ).

Combining all C-inequalities so far, we get

W k,x,w
C comk,x,w

V (ZV SV ). (2)

Let now xk, w
1
k, w

2
k be sequences with xkRw1

k and xkRw2
k. Assume further that |xk| ≤

m(k). Since in network V for such x,w the functionality FZK behaves independently of
w (it only checks, whether w is indeed a witness), the communication between ZV and
SV is independent of w. More formally,

com
k,xk,w1

k

V (ZV SV ) and com
k,xk,w2

k

V (ZV SV )

are identically distributed. By definition of C and (2), there is a probabilistic function
G s.t.

W k,xk,w1
k ≈ G

(

com
k,xk,w1

k

V (ZV SV )
)

≈ G
(

com
k,xk,w2

k

V (ZV SV )
)

≈W k,xk,w2
k ,

where ≈ denotes statistical indistinguishability. So W k,x,w and therefore also Ū(k, x,w)
is independent of w in the sense of Definition 12. However, Ū does not completely fulfil
the conditions for a witness unifier, since we have shown the above only for xk with
|xk| ≤ m(k). But by defining UR(k, x,w) := Ū(max{k, |x|}, x, w) we get a witness unifier
in the sense of Definition 12 (since m(k) ≥ k and thus |xk| ≤ m(max{|xk|, k})). So R
has essentially unique witnesses, which leads to a contradiction and therefore shows the
Theorem. ut
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B.5 Proof of Theorem 16

Proof (of Theorem 16). Let fk be a one-way permutation on {0, 1}k. Let SWIAOK be a
system for statistically witness indistinguishable arguments of knowledge (such systems
exist for any MA-relation under the assumptions of the theorem, cf. Section 1.1). By R
we denote the relation specified in the theorem. Then the protocol π between P and V
using two instances of FCT is defined as follows:

1. P is invoked with input (p, q, n).
2. P checks whether nR(p, q). Otherwise he aborts.
3. P and V invoke the first instance of FCT and receive a random k bit string r̄.
4. P sends n to V .
5. P proves using the SWIAOK the knowledge of p, q, r̄∗, s.t. nR(p, q) or fk(r̄

∗) = r̄.
6. P and V invoke the second instance of FCT and receive a random bit string r of

length k · (|n|+ k). They split r into strings r1, . . . , rk of length |n|+ k.
7. For each ri, the prover selects a random square root si of ri modulo n, i.e. a uniformly

distributed si ∈ {si ∈ {0, . . . , n−1} : s2
i ≡ ri mod n}. If for some i no such si exists,

let si := ⊥.33

8. P sends s1, . . . , sn to V .
9. V checks whether s2

i ≡ ri mod n for all si 6= ⊥, and whether #{i : si 6= ⊥} > k/5.
If so, V outputs n.

To show that this protocol π long-term-UC realises FR
ZK for the relation R given in

the theorem, we have to prove the following three claims:

– The protocol is nontrivial, i.e., on input (p, q, n) with nR(p, q) for the prover, the
verifier outputs n if all messages are scheduled and both parties are uncorrupted
(this roughly corresponds to the completeness of the proof-system)

– There is a simulator for the case that the prover P is corrupted (this roughly corre-
sponds to the knowledge-soundness of the proof-system).

– There is a simulator for the case that the verifier V is corrupted (this roughly corre-
sponds to the zero-knowledge-property of the proof-system).

We start by showing, that if the prover gets input (p, q, n) with nR(p, q), the verifier
outputs n (in the uncorrupted case). The protocol contains only two steps in which the
verifier might abort, during the SWIAOK (Step 5) and during the checks at the end
(Step 9). Because of the completeness of the SWIAOK, and since indeed nR(p, q), the
verifier will abort only with negligible probability during Step 5. To see that the verifier
accepts in Step 9, it is necessary to see that with overwhelming probability, more than
k/5 of the ri are squares modulo n. Since n = pq is a Blum-integer, we have p, q ≥ 3.
For random r′ ∈ Zn, r′ mod p and r′ mod q are independently uniformly distributed. At
least 1/2 of all r′ mod p ∈ Zp are squares (because 0 and half of the invertible elements
are squares), the same holds for q. Since r′ is a square modulo n if and only if it is a
square modulo p and modulo q, it follows that r′ is a square with probability at least
1/4. Further, for random ri of length |n|+k, ri mod n is almost uniformly distributed onZn. So the probability that ri is a square modulo n is at least 1

4 − µ for some negligible

33 This can easily be done efficiently using the factorisation of n.
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µ. Therefore the probability, that at least k/5 of k independently chosen ri are squares
is overwhelming. This concludes the proof of the nontriviality of π.

W.l.o.g., we can assume a dummy-adversary.34

We now consider the case that the prover P is corrupted. Then we have to find a
simulator SP , s.t. the interaction between the environment (posing as the prover and
relaying through the dummy-adversary) and the simulator SP is indistinguishable from
the interaction between the environment and the verifier. Furthermore, when the verifier
would output n, the simulator has to send (p, q, n) to the ideal functionality FR

ZK so that
it will output n.

We construct the simulator SP as follows:

– SP simulates an honest and unmodified instance of the verifier V .
– When prover and verifier invoke the first coin-toss, the resulting value r̄ is chosen

uniformly from {0, 1}k (as would FCT is the real model).
– When prover and verifier invoke the second coin-toss, the resulting value r is chosen

as the concatenation of r1, . . . , rn. To chose the ri, the algorithm Q from Lemma 32
is invoked and returns (ri, s̃i) where si is a random root of ri if ri is a square modulo
n.

– When the verifier V outputs n in Step 9, the simulator checks the following:
• Is n a square. Then

√
n is a nontrivial factor of n.

• Is ri not invertible modulo n for some i? Then gcd(ri, n) is a nontrivial factor
of n.

• Is gcd(si − s̃i, n) a nontrivial factor of n for some i with si 6= ⊥?
If one these tests succeed, the simulator knows a nontrivial factor of n and can send
(p, q, n) to FZK (which fulfil nR(p, q) if n is a Blum-integer).

By the knowledge-soundness of the SWIAOK and using the fact that no polynomially-
bound machine can find an r̄∗ = f−1

k (r̄), for polynomially-bounded environments, we can
assume that if the simulator verifier does not abort in Step 5, n is a Blum-integer. So, by
Lemma 32, the ri are almost uniformly distributed on {0, 1}|n|+k. So r (as chosen by the
simulator) is statistically indistinguishable from a uniform r of length k(|n| + k). Since
the verifier behaves as would an honest verifier, it follows that the interaction with the
real V is statistically indistinguishable from that with the simulator.

It is left to show that with overwhelming probability the simulator SP sends (p, q, n)
with nR(p, q) to FZK when the simulated verifier V outputs n. By the soundness of the
SWIAOK, we can assume that n is a Blum-integer. Therefore it is left to show that the
probability is negligible that the three tests performed by SP fail. This would mean that
all ri are invertible modulo n, and that n is not a square. Since n is a Blum-integer,
each ri then has four roots, and since the s̃i are chosen (almost) independently of si

(Lemma 32 guarantees that s̃i is an almost uniformly distributed root of ri), for each
si 6= ⊥ with probability 1

2 it is si 6= ±s̃i. So with overwhelming probability for at least
one si we have si 6= ±s̃i, and in consequence gcd(si, s̃i) is a nontrivial factor of n. So the
simulator SP successfully simulates.

34 I.e., an adversary, that simply follows the instructions of the environment, cf. [Can05].
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We now come to the case that the verifier V is corrupted. In this case, the simulator
SV gets an n from the functionality FZK which is guaranteed to be a Blum-integer,
but the simulator does not get the factorisation of n. Now the simulator SV has to
interact with the environment in a way that is statistically indistinguishable from the
interaction of the honest verifier with the environment (through the dummy-adversary).
We construct the simulator SV as follows:

– When the first coin-toss is requested, the simulator chooses its value r̄ as r̄ := fk(r̄
∗)

for uniformly chosen r̄∗ ∈ {0, 1}k .
– When the second coin-toss is requested, the simulator invokes the algorithm Q from

Lemma 32 k times and gets r1, . . . , rk and s1, . . . , sk. The value r of the second coin-
toss is then the concatenation of the ri.

– SV simulates the prover P with the following modifications:
• When performing the SWIAOK in Step 5 of the protocol, instead of using p, q

as the witness (which is unknown), we use r̄∗ as chosen above as a witness (for
the rhs r̄ = fk(r̄

∗) of the statement to be proven).
• Instead of trying to find square roots of the ri in Step 7 (which is infeasible

without the factorisation of n) we use the si returned by the algorithm Q.

Since n is always a Blum-integer, Lemma 32 guarantees, that the ri and si have an
indistinguishable distribution from that in an interaction with the real prover (since in
the latter case the ri would be uniformly distributed and the si would be random roots
of the ri or si = ⊥ if no such root exists). Further, since the SWIAOK is statistically
witness indistinguishable, the proof of the honest prover (which uses witness p, q) and the
proof of the simulated prover (which uses witness r̄∗) are statistically indistinguishable.
Combining these facts, it is straightforward to see that the interaction between with the
real and with the simulated prover are statistically indistinguishable.

So π long-term-UC realises FR
ZK. ut

B.6 Proof of Theorem 21

Proof (of Theorem 21). To show the Theorem, we assume that there is a protocol π
consisting of prover P and verifier V that nontrivially long-term-UC realises FR,P→V,m

ZK

with m(k) ≥ k using the offline functionality F , and that F is OTS for party P and for
party V .

Since F is an offline functionality, we can assume w.l.o.g. that each party accesses
F only once, and that this is done upon its first activation. We call the value P gets
cP and the value V gets cV . W.l.o.g. we can assume that the value c that the adversary
gets is always the empty string (since if the protocol is secure and nontrivial using an
F that gives some information to the adversary, it certainly is so, if that information is
not given to the adversary).

Consider the following network I (shown in Figure 3, the dummy-adversary is omitted
for simplicity): The parties P and V run uncorrupted with an environment Z0 and the
dummy-adversary Ã. The environment Z0 takes its auxiliary input (x,w) and sends
(x,w) to the prover P . Then it instructs the dummy-adversary Ã to deliver all messages.
We assume that all environments constructed in this proof simply output their view (i.e.,
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Fig. 3. Networks from the proof of Theorem 21.

the transcript of all messages they sent or got and of all their internal states). Since the
protocol is nontrivial, the verifier V eventually gives output if xRw and |x| ≤ m(k).

Now we corrupt P and simulate it honestly, i.e., we construct an environment ZP

that simulates Z0 and P and routes all messages from and to P through the dummy-
adversary. The resulting network II is depicted in Figure 3. Since π is long-term-UC
secure, there is a simulator SP , s.t. the output of ZP is statistically indistinguishable in
networks II and III (cf. Figure 3). Call the machines in the upper half of network I U ,
those in the lower half L. The upper half of network III consists of the same machines as
that of network I, so we also call it U . The lower half of III we call L̃. Since ZP consists
of the machines U , the communication between U and L̃ is contained in ZP ’s output, so
the communication between U and L is statistically indistinguishable from that between
U and L̃.

We can consider U , L and L̃ as single machines with security parameter k and
auxiliary input x,w. Let then 〈U,L〉k,x,w denote the transcript of the communication
between these machines. Then

〈U,L〉k,x,w ≈ 〈U, L̃〉k,x,w,

where ≈ means statistical indistinguishability.

Now we go back to network I, corrupt V and simulate it honestly, i.e., we con-
struct an environment ZV simulating Z0 and V , and routing the communication through
the dummy-adversary ÃV . W.l.o.g., we assume that ZV queries the value cV from the
dummy-adversary ÃV in its first activation, i.e., before invoking Z0 and in particular
before using its auxiliary input. Then we construct the corresponding simulator SV . So
we get the network IV shown in Figure 3. The communication of V and Z0 with the rest
of the network is statistically indistinguishable for networks I and IV.

The simulator SV has to provide the value cV at its first activation, i.e., the choice of
cV and the internal state t of the simulator SV after that step are chosen independently of
the environment’s auxiliary input x,w. So there is a family of probability distributions

36



Dk s.t. the (t, cV ) are distributed according to Dk. Let Ek denote the distribution of
(cP , cV ) as chosen by F . Since cV is part of the communication observed by ZV , the
distributions of cV in as chosen by Ek and by Dk are statistically indistinguishable.
Therefore, there is a probabilistic function Dk (not necessarily efficiently computable)
s.t. when choosing (cP , cV )← Ek, the pair (Dk(cV ), cV ) has statistically indistinguishable
distribution from Ek. Further, since F is OTS for V , there is a function f s.t. cV = f(cP ).
Therefore, (Dk(f(cP )), cV ) is statistically indistinguishable from Dk. So instead of using
a simulator SV that chooses (t, cV ) according to Dk and then sends cV to V and keeps
t for itself, we can use a modified simulator S̄V that instead receives cP as chosen by an
instance F and calculates t := Dk(f(cP )). The machine V gets cV from F . The resulting
network V is depicted in Figure 3. The communication of V and Z0 with the rest of the
network is statistically indistinguishable for networks IV and V (and I, as seen above).
Note that S̄V is not necessarily a polynomial-time machine.

When cV and cP are chosen by F , cP can be deterministically calculated from cV ,
since F is OTS for P . Therefore the communication of V , Z0 and F with the rest of the
network is statistically indistinguishable for networks I and V. So if we call the upper
half of V Ũ , and the lower half L (it consists of the same machines as the lower half L
of network I), we get

〈U,L〉k,x,w ≈ 〈Ũ , L〉k,x,w.

Since all machines send only a polynomial number of messages, by Lemma 33 it
follows that

〈U,L〉k,x,w ≈ 〈Ũ , L̃〉k,x,w.

Let network VI be the network consisting of Ũ and L̃ (i.e., the upper half of network V

and the lower half of network III). Since in network I the statement x̃ send from V to
Z0 fulfils x̃ = x with overwhelming probability, the same holds for network VI. So the
w̃ sent from SP to FZK in network VI is a witness for x with overwhelming probability
(i.e., x̃Rw) as long as xRw and |x| ≤ m(k). So the following algorithm finds witnesses
for x with overwhelming probability (assuming x has a witness).

1. Simulate network VI up to the point where S̄V has evaluated t := Dk(f(cP )) with
security parameter k := |x|. Call the state of the network s0. (This step is not efficient.
Note that the auxiliary input of Z0 has not been used so far, so this step depends
only on the length of x but not on its value.)

2. Continue the simulation of network VI from state s0 using (x,w) as auxiliary input
for Z0 where w is some witness for x. (Note that for this simulation, we do not need
to explicitly find such a w, since the FZK in the upper half of network VI will not use
the value of w as long as it fulfils xRw. So this step can be performed efficiently.)

3. Extract the w̃ sent by SV to FZK from this simulation and output w̃.

Obviously, the output of this algorithm is a witness for x with overwhelming probability.
However, Step 1 is not efficient. But since the auxiliary input of Z0 is not used in that
step, the distribution Gk of s0 only depends on k := |x|. So there is an algorithm A
taking inputs x, s0 (consisting simply of Steps 2 and 3) that has the following property:
A(x,G|x|) is a witness for x with overwhelming probability. So by Lemma 31 witnesses
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for R can be found by a nonuniform deterministic polynomial-time algorithm, so R is
nonuniformly deterministically trivial, which gives us a contradiction and proves the
theorem. ut

B.7 Proof of Corollary 22

Proof (of Corollary 22). To implement FR,P→V,m
ZK using a CRS we use the following

protocol π (notation is as in the proof of Theorem 16 in Appendix B.5):

1. A CRS r = (r̄, r(0), . . . , r(m(k))) is provided by the functionality FCRS, where r̄ has
length k, and r(i) has length k · (|γ(0i)|+ k) (and |r(i)| := 0 for γ(0i) = ⊥).

2. P is invoked with input (p, q, n, x).
3. P checks whether (n, x)R(p, q). Otherwise he aborts.
4. P sends (n, x) to V .
5. P proves using the SWIAOK the knowledge of p, q, r̄∗, s.t. (n, x)R(p, q) or fk(r̄

∗) =
r̄.

6. r(|x|) is split into r1, . . . , rk, each of length |n|+k (note that the lengths match, since
|r(|x|)| = k · (|γ(0|x|)|+ k) = k · (|n|+ k)).

7. For each ri, the prover selects a random square root si of ri modulo n, i.e. a uniformly
distributed si ∈ {si ∈ {0, . . . , n−1} : s2

i ≡ ri mod n}. If for some i no such si exists,
let si := ⊥.35

8. P sends s1, . . . , sn to V .
9. V checks whether s2

i ≡ ri mod n for all si 6= ⊥, and whether #{i : si 6= ⊥} > k/5.
If so, V outputs n.

We only describe how the simulator chooses the CRS r: Like in the proof of Theo-
rem 16, r̄ is chosen randomly if P is corrupted, and r̄ = fk(r̄

∗) for random r̄∗ if V is
corrupted.

For µ = 0, . . . ,m(k), the simulator (both in case of a corrupted V and of a corrupted
P ) invokes the algorithm Q from Lemma 32 on input n := γ(0µ). Then Q outputs
r1, . . . , rk of length |n| + k together with random square roots s1, . . . , sk (or si = ⊥, if
no root exists). Then r(i) is chosen as the concatenation of r1, . . . , rk. The si are stored.

Aside from this modification, the simulators are constructed analogously to the sim-
ulators in the proof of Theorem 16, and the proof of security is analogous to that of
Theorem 16 (note that for any (n, x) ∈ LR, the r(|x|) used in the protocol will have been
constructed using Q with argument ñ := γ(0|x|), which satisfies n = ñ, since γ depends
only on the length of its argument). ut

B.8 Proof of Lemma 23

Proof (of Lemma 23). The protocol π is as follows:

35 This can easily be done efficiently using the factorisation of n.
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– Let (n, g, x) be C’s secret key and (n, h, x) the corresponding public key (as provided
by FGamal

PKI ).
– To commit to a bit b ∈ {0, 1}, the sender C sends c := x + b mod 3 to the recipient

R. Upon receipt of that message the recipient outputs (committed ).
– To unveil b, the sender C sends (b, x) to the recipient R. The recipient R checks,

that x + b ≡ c mod 3 and that h ≡ gx mod n. If that check succeeds, the verifier
outputs b.

Obviously, an honest C always succeeds in unveiling with an honest R. So the protocol
is nontrivial.

Consider the case that the sender C is corrupted. In this case, the simulator SC has
to interact with the environment in such a way that the interaction with the simula-
tor is indistinguishable from an interaction with the honest recipient R. Further, when
the verifier accepts the commit-phase, the simulator has to enter a bit b̃ into the ideal
functionality F1

COM. When the verifier accepts the unveil-phase and outputs bit b, the
simulator SC has to unveil b̃ using F1

COM. In order for SC to be successful, it must be
b̃ = b with overwhelming probability. We achieve this as follows: The simulator honestly
simulates the recipient R and the PKI FGamal

PKI . In particular, SC learns x and c (as defined
in the description of the protocol).

When the recipient R outputs (committed ), the simulator sets b̃ := c− x mod 3 and
uses this value to commit using F1

COM.
Obviously, the interaction with SV and with the real recipient R are statistically

indistinguishable (since SV performs an honest simulation). It remains to check that
b = b̃ with overwhelming probability. If b 6= b̃, the value x′ received from the sender C
during unveil fulfils x′ 6= x, but x′ ≡ x mod ϕ(n) (otherwise h 6= gx′

and the recipient
would not have accepted). But then 4(x′ − x) is a multiple of 4 ord g, which again is
a multiple of ϕ(n) with high probability.36 Since g, x and gx can be chosen without
knowledge of the factorisation of n, this implies that there is a PPT-algorithm that finds
a multiple of ϕ(n) given n. By [Bon99, Fact 1] this implies the possibility to factor n
and thus contradicts the complexity assumption in the lemma.

Now, we come to the case where the recipient R is corrupted. In this case, the sim-
ulator SR has to interact with the environment in a way that its communication is
indistinguishable from an interaction with the honest sender C. However, the simulator
learns the bit b to be unveiled only at the beginning of the unveil phase (in contrast to
the sender that knows b already during commit, because it has to commit to b).

We construct this simulator SR as follows:

– The PKI FGamal

PKI is simulated honestly. However, the simulator stores the factorisa-
tion n = pq.

– To commit, the simulator sends a random c′ ∈ {0, 1, 2}.
– To unveil to b, the simulator chooses a random x′ ∈ {0, . . . , 22k − 1} subject to the

conditions x′ + b ≡ c′ mod 3 and x′ ≡ x mod ord g (here x is part of the secret key
chosen by FGamal

PKI , and ord g can be efficiently calculated using p, q).

36 Here we use that n is a product of safe primes: In this case, ϕ(n) = 4p′q′ for large primes p′, q′, and
the probability that ord g | 4 or that only one of p′, q′ is a factor of ord g is negligible.
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Since n is a safe prime, ϕ(n) = 2p′q′ where p′, q′ are primes greater 3 with overwhelm-
ing probability. So 3 - ϕ(n). Therefore for a random solution x of h ≡ gx mod n it holds
that x mod 3 is almost uniformly distributed over {0, 1, 2} (since x is chosen from a set
of size at least 2kn). So also the c chosen by the honest sender C is almost uniformly
distributed on {0, 1, 2}. It follows that c and c′ have statistically indistinguishable dis-
tributions. So, given some fixed value of c, x is a uniformly random element subject to
x + b ≡ c′ mod 3 and gx ≡ h mod n. But this is exactly how the simulator chooses x′, so
the distribution of (c, x) and of (c′, x′) are statistically indistinguishable (given only the
public key). So SR is successful in presenting an indistinguishable interaction.

Summarising, we have that π long-term-UC realises F1
COM. ut

B.9 Proof of Theorem 26

Proof (of Theorem 26).

The proof proceeds in two steps. First we construct from FTPF a (not necessarily long-
term-UC secure) commitment which is computationally binding, unconditionally hiding,
and extractable. In the second step we construct a simple zero knowledge protocol using
this extractable commitment.

Constructing an extractable commitment. Given the prerequisite that one-way
permutations exist there also exists a bit commitment scheme COM0 which is com-
putationally binding, unconditionally hiding, and where the unveil information can
deterministically be verified, see Subsection 1.1. Partially following the construction
from [HMQ04] we turn this commitment scheme into a commitment scheme COM1

which has the additional property of extractability, i.e., if an uncorrupted recipient ac-
cepts the commit phase then the simulator can extract a value v from the information
the environment gives to the adversary and the probability that a value different from v
can later be unveiled is negligible. (Note that the newly constructed commitment need
not be long-term-UC secure as it may not be equivocable).

The protocol COM1 looks as follows:

– To commit to v, the sender C calls FTPF with value v and receives fs(v) then C
commits to v, fs(v) using COM0 and obtains unveil information u. Next C calls
FTPF with value u and commits to u, fs(u).

– The recipient outputs (commit) after having received two commitments.
– To unveil the sender sends v, u and the unveil information for the second commit-

ment.
– The recipient checks if u is the correct unveil information for v, fs(v) and verifies if

the second commitment was correctly unveiled to (unveil, v).

To extract the value v from a valid commitment the simulator keeps a list of all calls
placed to the FTPF functionality. The values v and u must be in this list, because it is
infeasible to generate a commitment (which can be unveiled) without querying FTPF.
As all machines are polynomially limited during the protocol execution there are only
polynomially many candidates for v and u. By trying to unveil the first instance of
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COM0 with all possible candidates for u the simulator can identify the value v or the
commitment cannot be unveiled.

Long-term UC zero knowledge based on extractable commitments. It is suf-
ficient to prove the existence of a long-term UC ZK protocol for graph-3-colourability,
which we will construct using the above computationally binding, unconditionally hid-
ing, and extractable commitment. We modify the zero knowledge protocol for graph-
3-colourability from [GMW91] to obtain the following long-term-UC protocol π (one
instance of that protocol is run for each instance of FR

ZK).

– The prover P gets as input a graph with m edges and a colouring and aborts if it
is not a valid 3-colouring.

– The prover sends the graph to the verifier V .
– DO m · k times in parallel
• The verifier commits (using COM1) to a randomly chosen edge (v1, v2) of the

graph.
• The prover chooses a random permutation π of the three colours in his witness

and commits (using COM1) to (v, π(cv)) for each vertex v with colour cv.
• The verifier unveils the edge (v1, v2).
• The prover unveils the two corresponding vertices (v1, π(cv1)), (v2, π(cv2)).
• The verifier checks if π(cv1) 6= π(cv2).

– The verifier outputs (accept) if all m · k parallel checks were successful.

The protocol always works for uncorrupted parties and is hence nontrivial. Next we
consider the two cases of a corrupted verifier and of a corrupted prover.

The verifier V is corrupted : We construct a simulator S as follows:

– The simulator S runs a simulated copy of the real adversary A which he connects
• to the environment Z,
• to a simulated honest prover P (one for each instance of π) with a modification

as detailed below, and
• to a simulated functionality FTPF.

– When S receives a message from (an instance of) FZK that a graph G is 3-colourable
then S starts the simulation of the corresponding honest prover P .

– In each of the m · k parallel executions
• Whenever the simulated prover accepted a commitment from A the simulator
S extracts (if possible) the edge (v1, v2) from this commitment.

• The simulated prover is modified to commit to a random colouring (not neces-
sarily a 3-colouring) with cv1 6= cv2 (if an edge could be extracted).

In case the environment does not give a valid witness to the uncorrupted prover the
simulation is clearly statistically indistinguishable from the real protocol. We can in the
following assume that the graph in question is 3-colourable.

As the commitment scheme used in the protocol is extractable the simulator can ei-
ther extract an edge (v1, v2) from the commitment of the simulated real adversary or the
commitment cannot (can only with negligible probability) be unveiled to an edge. So far
the communication of the environment with the protocol is statistically indistinguishable
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for the real and the ideal model. Next the prover commits to a random colouring instead
of a true 3-colouring, but still the communication with the environment remains statisti-
cally indistinguishable for the real and the ideal model, because the commitment scheme
is unconditionally hiding. If the simulated real adversary fails to unveil the commitment
then the protocol will abort and the simulation is statistically indistinguishable from
the real protocol. Else the extracted edge (v1, v2) must equal the unveiled edge (v′1, v

′
2),

because of the extractability of the commitment. Then the simulated prover will unveil
(v1, cv1), (v2, cv2) with the colours being random, but unequal and hence statistically
indistinguishable from what is unveiled by the uncorrupted real prover.

The prover is corrupted : We construct a simulator S as follows:

– The simulator S runs a simulated copy of the real adversary A which he connects
• to the environment Z,
• to a simulated unmodified honest verifier V (one for each instance of π), and
• to a simulated functionality FTPF.

– Whenever the simulated verifier V accepts a commit phase the simulator extracts
the values of the commitments of the simulated real adversary.

– As soon as the simulated honest verifier accepts the zero knowledge argument the
simulator enters a witness for the 3-colouring into (the corresponding instance of)
the functionality FZK if one of the m ·k colourings extracted from the commitments
is a 3-colouring.

The communication of the environment Z with the adversary is clearly statistically
indistinguishable in the real and in the ideal model, as the simulator runs a faithful
simulation of the real model. It remains only to be proven that the simulator can enter
(with overwhelming probability) a witness to the ideal zero knowledge functionality if
the simulated honest verifier accepts the proof. Lets assume no proper 3-colouring could
be extracted, then (with overwhelming probability) there exists at least one edge in
each of the m · k parallel executions where the colours cannot be unveiled to be unequal,
because it is infeasible to unveil something different from the extractable value. Then the
probability that the protocol will not abort is negligible, namely at most (1−1/m)m·k ∈
O(e−k). Hence the probability that the simulator can extract a witness if the simulated
verifier accepted is overwhelming and the protocol is proven long-term-UC for a corrupted
prover. ut

B.10 Proof of Theorem 29

Proof (of Theorem 29). Let S = (KeyGen,Sign,Verify), where Sign(sk ,m) returns
a signature for m using secret-key sk , and Verify(pk ,m, σ) returns 1 if σ is a valid
signature for m with public key pk . By SWIAOK, we mean the statistically witness
indistinguishable argument of knowledge described in Section 1.1 (which exists under
the assumptions of the theorem).

We first describe the protocol π for implementing FR
ZK (one instance of that protocol

is run for each instance of FR
ZK):
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– The prover P is activated with input (x,w).
– P checks, whether xRw. Otherwise, he aborts.
– P sends x to V .
– P obtains a signature σ for w from FP,S

SC .
– P proves using the SWIAOK the knowledge of strings σ,w, sk ′, s.t. one of the

following holds:
(i) Verify(pk , w, σ) = 1 and xRw, or
(ii) For random m ∈ {0, 1}k, it is Verify(pk ,m,Sign(sk ,m)) = 1.

The prover P can perform this proof using σ and w as obtained above.
– If the verifier V accepts the SWIAOK, it outputs x.

Obviously, if no-one is corrupted and xRw, and all messages are delivered, the verifier
V outputs x with overwhelming probability, so the protocol is nontrivial.

W.l.o.g., we can assume a dummy-adversary.37

Let us first consider the case that the verifier V is corrupted. In this case, the simula-
tor SV has to interact with the environment in a way that is statistically indistinguishable
from the interaction of the honest prover with the environment (through the dummy-
adversary). However, in contrast to the prover, the simulator does not have access to a
witness. The simulator SV is constructed as follows:

– Simulate FS

SC honestly.
– For each protocol instance, upon input x from the ideal functionality FR

ZK (i.e., the
environment sent (x,w) to the functionality with xRw), simulate an honest prover
P with input (x, 0) with the following modification:

– As witness for the SWIAOK, the simulated prover P uses sk ′ := sk where sk is the
secret key used by the simulator FS

SC (i.e., the prover proves (ii) instead of (i)).

Since the SWIAOK is statistically witness indistinguishable, the resulting interaction
(even if several instances of P are simulated in parallel) is statistically indistinguishable
from an interaction with an honest prover.

Now we consider the case that the prover P is corrupted. In this case, the simulator
SP has to interact with the environment in a way that is statistically indistinguishable
from the interaction of an honest verifier with the environment (through the dummy-
adversary). Additionally however, if the honest verifier would output x, the simulator
has to send (x,w) with xRw to the ideal functionality FR

ZK. We construct the simulator
SP as follows:

– Simulate FS

SC honestly. However, whenever a string m is signed, store m in a list
M .

– For each instance of the protocol, simulate the verifier V honestly.
– When the simulated verifier V outputs x, check whether xRw for some w ∈ M . If

so, send (x,w) to FR
ZK. Otherwise, fail, abort and panic.

Obviously, as long as SV does not fail, this interaction is indistinguishable from an
interaction with the real verifier. We therefore only have to show that SV fails with

37 I.e., an adversary, that simply follows the instructions of the environment, cf. [Can05].
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negligible probability. Therefore, assume that for some environment, SV fails with non-
negligible probability. In this case, the environment can be transformed into a nonuniform
polynomial-time algorithm that, given an (x,w) ∈ R as input and access to a public key
pk and a signing oracle (the simulated FS

SC) succeeds with non-negligible probability in
performing the SWIAOK without signing a witness for x. By the argument-of-knowledge-
property, using the knowledge extractor we get a nonuniform polynomial-time algorithm
that, given access to a public key pk and a signing oracle, has the following properties:38

– It never signs any w′ with xRw′.
– With non-negligible probability it outputs σ,w, sk ′ s.t. (i) or (ii) (from the definition

of π) holds.

However, finding an sk ′ s.t. (ii) holds (even with non-negligible probability) contradicts
the EF-CMA security of S. Furthermore, finding a signature σ for some w′ that has not
been signed using the oracle (even with non-negligible probability) also contradicts the
EF-CMA security, (i) cannot be fulfilled by an nonuniform polynomial-time algorithm
either. So by contradiction, the simulator SP fails only with negligible probability. ut
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