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Abstract

Transmission of voice communications as datagram packets over IP networks, commonly known
as Voice-over-IP (VoIP) telephony, is rapidly gaining wideacceptance. With private phone conversa-
tions being conducted on insecure public networks, security of VoIP communications is increasingly
important. We present a structured security analysis of theVoIP protocol stack, which consists of signal-
ing (SIP), session description (SDP), key establishment (SDES, MIKEY, and ZRTP) and secure media
transport (SRTP) protocols. Using a combination of manual and tool-supported formal analysis, we un-
cover several design flaws and attacks, most of which are caused by subtle inconsistencies between the
assumptions that protocols at different layers of the VoIP stack make about each other.

The most serious attack is a replay attack on SDES, which causes SRTP to repeat the keystream used
for media encryption, thus completely breaking transport-layer security. We also demonstrate a man-in-
the-middle attack on ZRTP which disables authentication and allows the attacker to impersonate a ZRTP
user and establish a shared key with another user. Finally, we show that the key derivation process used
in MIKEY cannot be used to prove security of the derived key inthe standard cryptographic model for
secure key exchange.

1 Introduction

Achieving end-to-end security in a voice-over-IP (VoIP) session is a challenging task. VoIP session estab-
lishment involves a jumble of different protocols, all of which must inter-operate correctly and securely. The
VoIP protocol stack is shown in figure 1. For the purposes of our analysis, we will divide it into four layers:
signaling, session description, key exchangeandsecure media (data) transport.

Signaling is an application-layer (from the viewpoint of the underlying communication network) con-
trol mechanism used for creating, modifying and terminating VoIP sessions with one or more participants.
Signaling protocols include Session Initiation Protocol (SIP) [23], H.323 and MGCP. Session description
protocols are used for describing multimedia and other sessions for the purposes of session announcement,
session invitation and other forms of multimedia session initiation. SDP [17] is an example of a session
description protocol. Key exchange protocols are intendedto provide a cryptographically secure way of es-
tablishing secret session keys between two or more participants in an untrusted environment. These session
keys are then used to set up cryptographically secure data channels.

From the security perspective, key exchange is the fundamental building block in secure session es-
tablishment. Security of the media transport layer — the layer in which actual voice datagrams are trans-
mitted — depends on thesecrecyof session keys andauthenticationof session participants. Since the
established key is typically used in a symmetric encryptionscheme, key secrecy requires that nobody other
than the legitimate session participants be able to distinguish it from a random bitstring. Authentication
requires that, after the key exchange protocol successfully completes, the participants’ respective views of
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Figure 1: Voice-over-IP protocol stack

sent and received messages mustmatch(e.g., see the notion of “matching conversations” in [6]). Exam-
ples of key exchange protocols for VoIP sessions include SDP’s Security DEscriptions for Media Streams
(SDES) [1], Multimedia Internet KEYing (MIKEY) [2] and ZRTP[27].

Secure media transport aims to provide confidentiality, message authentication and integrity, and replay
protection to the media (data) stream. In the case of VoIP, this stream typically carries voice datagrams.
Confidentiality means that the data under encryption is indistinguishable from random for anyone who does
not have the key. Message authentication implies that if Alice receives a datagram apparently sent by Bob,
then it was indeed sent by Bob. Data integrity implies that any modification of the data in transit will be
detected by the recipient. An example of a secure media transport protocol is Secure Real-time Transport
Protocol (SRTP) [5], which is a profile of Real-time Transport Protocol (RTP) [24].

Our contributions. We analyze security of VoIP protocols at all layers of the VoIP stack. In particular, we
focus at inter-operation between protocols at different layers. A protocol may be secure when executed in
isolation, but the composition of protocols in different layers may be insecure. Moreover, a protocol may
make assumptions about another protocol that the latter does not satisfy.

• We show how to cause SRTP protocol to repeat the keystream used for datagram encryption. This
enables the attacker to obtain thexor of plaintext datagrams or even completely decrypt them. The
SRTP keystream is generated by using AES in a stream cipher-like mode. The AES key is generated
by applying a pseudo-random function (PRF) to the session key. SRTP, however, does not add any
session-specific randomness to the PRF seed. Instead, SRTP assumes that the key exchange protocol,
executed as part of RTP session establishment, will ensure that session keys never repeat. Unfortu-
nately, S/MIME-protected SDES, which is one of the key exchange protocols that may be executed
prior to SRTP, does not provide any replay protection. As we show, a network-based attacker can
replay an old SDES key establishment message, which will cause SRTP to repeat a keystream that it
used before, with devastating consequences.

• We show an attack on the ZRTP key exchange protocol that allows the attacker to disable authentica-
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tion and thus completely break security of key establishment. ZID values, which are used by ZRTP
participants to retrieve previously established shared secrets, arenot authenticated as part of ZRTP.
Therefore, an attacker can initiate a session with some party A under the guise of another partyB,
with whomA previously established a shared secret. As part of session establishment,A is supposed
to verify thatB knows their shared secret. The attacker deliberately chooses values that cause verifi-
cation to fail, in which caseA decides — following ZRTP specification — thatB has “forgotten” the
shared secret and proceeds to execute key exchange without authentication. As a result, the attacker
shares a key withA, who thinks she shares this key withB. Our analysis of ZRTP is supported by the
AVISPA formal analysis tool [3].

• We show several minor weaknesses and potential vulnerabilities to denial of service in other protocols.
We also observe that the key derived as the result of MIKEY keyexchange cannot be used in a
standard cryptographic proof of key exchange security (e.g., [10]). Key secrecy requires that the key be
indistinguishable from a random bitstring. In MIKEY, however, the joint Diffie-Hellman value derived
as the result of the protocol is used directly as the key. Membership in many Diffie-Hellman groups
is easily checkable, thus this valuecan be distinguished from a random bitstring. (This observation
does not immediately lead to any attacks.)

The rest of the paper is organized as follows. In section 2, wedescribe the protocols, focusing on SIP
(signaling), SDES, ZRTP and MIKEY (key exchange), and SRTP (transport). In section 3, we describe the
attacks and vulnerabilities that we discovered. Related work is in section 4, conclusions are in section 5.

2 Protocols

2.1 Signaling: SIP

Session Initiation Protocol (SIP) [23] is an application-layer signaling protocol used for creating, modifying
and terminating sessions with one or more participants. A SIP network consists of the following entities:end
points, aproxyand/orredirect server, location server, and aregistrar. End points orUser Agentsrepresent
phone devices or software modems. SIP users are not bound to specific devices; they register themselves
with the registrar and use a special form of address resolution to identify other users. SIP user identification
is based on a special type of Uniform Resource Identifier (URI) called SIP URI, similar to email addresses.
A location server stores the address bindings of users when they register themselves with the registrar.

SIP servers can operate in aproxy modeor redirect mode. In proxy mode, the server intercepts messages
from the end points, inspects theirTo: field, contacts the location server to resolve the username into an
address and forwards the message to the appropriate end point or another server. In redirect mode, the
only difference is that instead of forwarding the packet along the actual route, the redirect server returns the
address to the end points and the onus of transmitting the packets is placed on the end points.

SIP uses a HTTP-like request-response mechanism for initiating a two-way communication session.
The protocol itself is modeled on the three-way TCP handshake. Figure 2 shows a SIP connection setup
with an intermediate proxy server between end points. In order to set up a connection between Alice’s and
Bob’s UAs, Alice’s SIP URI is first resolved into the IP address of the UA under which Alice is currently
registered. SIP address resolution and routing is usually not done by the UA itself, but rather delegated to
the proxy server for the UA’s domain. In our example, Bob’s proxy will make a DNS lookup to determine
the address of Alice’s proxy server. During the setup process, communication details are negotiated between
UAs using the Session Description Protocol (SDP), described in section 2.2.
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Figure 2: SIP protocol exchange

To place a call to Alice, Bob’s UA sends an INVITE request to the proxy server containing SDP info,
which is then forwarded to Alice’s UA, possibly via her proxyserver (after address resolution by Bob’s
proxy). If Alice wants to talk to Bob, she sends an OK message back to Bob containing her SDP preferences.
Bob then responds with an ACK. Media exchange takes place directly between Alice’s and Bob’s respective
UAs. From the network security point of view, this implies that both hops must be secured on a hop-by-hop
basis, and the direct path must be secured as well.

SIP messages can be transported over a TCP stream, provided the packet size is smaller than the Maxi-
mum Transmission Unit (MTU), or embedded into UDP datagram packets. Therefore, security mechanisms
used to encrypt and authenticate multimedia streams must support UDP as a transport layer protocol. This
requirement excludes several popular security mechanismssuch as the TCP-based Transport Layer Security
(TLS) [12], which also requires a Public Key Infrastructure(PKI). SIP also presents challenges for firewalls
and Network Address Translators (NATs), but those are outside the scope of this paper.

2.2 Session description: SDP

Session Description Protocol (SDP) is a format for describing multimedia session parameters for the purpose
of session announcement, session invitation, and so on. We omit the details, which can be found in [17]. A
multimediasessionis a set of multimedia senders and receivers and the data streams flowing between them.
Session announcementis a mechanism by which a session description is conveyed to users proactively,
before they request it. SDP carries the following information: media type (audio/video), transport protocol,
media format (MPEG,etc.), transport port and unicast/multicast address for media.A single session may
consist of multiple media streams. A session announcement consists of a session level description (details
that apply to all media streams) and, optionally, several media-level descriptions. Because SDP is purely a
format specification, it is independent of the transport layer and may be carried, for example, by SIP.
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2.3 Key exchange

SDES. SDES [1] defines a key transport extension of the Session Description Protocol for unicast media
streams. This provides a way to signal and negotiate cryptographic key(s) and other session parameters for
media streams in general, and for SRTP in particular. The attribute called “crypto” is limited to two-party
unicast media streams where each source has a unique cryptographic key. The crypto attribute for SRTP is
defined as:a = crypto : 〈tag〉〈crypto− suite〉〈key− params〉[〈session− params〉], wheretag is a
decimal number used as an attribute identifier;crypto − suite defines the encryption and authentication
algorithms to be used in SRTP. Thekey−params attribute specifies one or more cryptographic keys for the
crypto-suite as〈key− method〉 : 〈key− info〉. The only method supported for key exchange isinline :,
where the key itself must be included in plaintext.session−params (optional) are specific to the transport
used for SDP. Since the key is included directly in the SDP attachment of a SIP message, SIP must ensure
that the message is protected at the transport layer.

SIP security mechanisms are described in detail in appendixA. For our purposes, it is enough to observe
that transport-layer protection in SIP can be done using either TLS [12] (if the transport layer is TCP), or
S/MIME [21]. Use of TLS is deprecated because TLS provides does not provide end-to-end protection over
a chain of proxies. Moreover, it assumes that the next hop in the SIP proxy chain is trusted. S/MIME, by
contrast, provides end-to-end confidentiality and authentication for SDP payload encoded as MIME [15].

Note that S/MIME doesnot provide any replay protection. Hence, if S/MIME is used to protect SDP
payload, then the application must provide a separate defense against replay attacks. In general, most
applications have limited replay protection because it requires state maintenance and/or loose clock syn-
chronization. In section 3.2, we will show how the attacker can exploit the lack of replay protection in
S/MIME-protected SDES to completely break security of an SRTP session.

ZRTP. ZRTP [27] describes an extension header for Real-time Transport Protocol (RTP) to establish a
session key for SRTP sessions using Diffie-Hellman key exchange. An implementation of ZRTP is available
as Zfone [26]. The main distinguishing feature of ZRTP, as opposed to other key exchange protocols, is that
it does not require prior shared secrets or the existence of aseparate PKI infrastructure. This is an important
consideration since it eliminates the need for a trusted certificate server. The RFC states that the protocol
is resilient to man-in-the-middle attacks and provides confidentiality, and in the cases where a secret is
available from the signaling protocol, authentication. Since Diffie-Hellman (DH) key exchange is malleable
and does not provide protection against man-in-the-middleattacks, ZRTP uses aShort Authentication String
(SAS), which is essentially a cryptographic hash of two Diffie-Hellman values, for authentication. Instead
of PKI, users rely on cached Diffie-Hellman secrets for authentication in a series of key exchange sessions.

Figure 3 shows a ZRTP key exchange between users Alice and Bob. To start a ZRTP key exchange,
an end point sends a ZRTP HELLO message to the other end point.The HELLO message contains SRTP
configuration options and a unique ZID, which is generated once at installation time. This ZID will be used
by the recipient to retrieve cached shared secrets. On receiving a HELLO message, the other end point
determines the algorithms to be used for the ZRTP exchange and replies with a HELLOACK message (if
the protocol is supported). After both parties have exchanged HELLO and HELLOACK messages, key
exchange begins with a COMMIT message. The HELLO and HELLOACK messages are optional and an
end point can directly initiate a ZRTP session by sending a COMMIT message. The sender of the COMMIT
message (Bob in our example) is called theinitiator, Alice is theresponder.

We describe the Diffie-Hellman exchange in some detail, focusing only on the relevant message fields
and omitting the rest. Bob acts as the initiator by sending a COMMIT message.hash, cipher andpkt
describe the hash, encryption and public key algorithms, respectively, chosen by Bob from the intersection
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Figure 3: Establishment of SRTP session key using ZRTP

of algorithms in the sent and received HELLO messages. Bob chooses a random exponentsvi and computes
the valuepvi = gsvi mod p, whereg (generator of the Diffie-Hellman groupG) andp are determined by
thepkt value.hvi, called the hash commitment, is the hash of the Diffie-Hellman value generated by Bob
concatenated withhash, cipher, pkt andsas from Alice’s HELLO message.

Upon receipt of the COMMIT message, responder Alice generates her own Diffie-Hellman secretsvr
and computes the corresponding public valuepvr. The final shared secret is computed as the hash of the
Diffie-Hellman shared secret (DHSS) together with any othersecrets shared between Alice and Bob, sorted
by Bob’s shared secret IDs. For each shared secret, its ID isHMAC of the string “Responder” computed
using this secret as the key. Alice uses Bob’s ZID to retrievethe two shared secret values,rs1 andrs2, and
any other possible secrets. Bob’s behavior in response to the DHPART1 message is similar.

Upon receipt of the DHPART2 message, responder Alice checksthat Bob’s public DH value is not equal
to 1 or p − 1. RFC states that this check thwarts man-in-the-middle attacks. In section 3, however, we will
describe how an attacker can successfully launch a man-in-the-middle attack against the protocol without
the participants ever detecting the attack. If the check succeeds, Alice computes the hash of the received
value and checks whether it matcheshvi received in the COMMIT message. If not, Alice terminates the
protocol. Otherwise, she stores the shared secret IDs received from the DHPART2 message as setA.

Alice then computes the set of shared secret IDs that sheexpectsto receive from Bob. For each secret,
its ID is computed asHMAC of the string “Initiator”, keyed with the secret itself. LetB be the set of
these expected IDs. Alice then computes the intersection ofsetsA andB. Secrets corresponding to IDs
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in the intersection are stored as setD, sorted in ascending order. The final session key is computedas the
hash of the joint Diffie-Hellman secret concatenated with the set of secrets in setD. Finally, cached shared
secretsrs1 andrs2 are updated asrs2 = rs1 andrs1 = HMAC(session key, “known plaintext”) on both
sides. The master key and the salt for the SRTP session are computed asHMAC of known plaintexts using the
new session key. CONFIRM message also sends anHMAC of a known plaintext under the session key. The
sasflag specifies whether the end points supports verification of SAS.

Multimedia Internet KEYing. MIKEY [2] is another key exchange protocol for SRTP. It can operate in
three different modes: pre-shared key with key transport, public key with key transport, public key with
key exchange using authenticated Diffie-Hellman (DH). An advantage of MIKEY is that the key can be
negotiated using MIKEY as part of the SDP payload during the session setup phase in SIP. Thus, it requires
no extra communication overhead.

An obvious disadvantage of MIKEY is that it requires the existence of either prior shared secrets or a
separate PKI infrastructure, with all attendant problems such as certificate dispersal, revocation, and so on.
In the pre-shared key mode, the key is generated completely by the session initiator; session responder does
not participate in key derivation at all. A later extension [13] provides for a DH exchange in the pre-shared
key mode.

Before describing the three modes of MIKEY, we need some notation. Data security protocolis the
security protocol, such as SRTP, used to protect the media session. Data security association(Data SA)
comprises the session key (TEK) and a set of parameters.Crypto session(CS) is a uni- or bi-directional
media stream. A crypto session is protected by a unique instance of a data security protocol. Each crypto
session has a unique identifier known as the CS ID.Crypto session bundle(CSB) is a set of crypto sessions
which derive their session keys (TEKs) from a common TGK and aset of security parameters. CSB ID is a
unique identifier for the crypto session bundle.Traffic Generating Key(TGK) is a bitstring agreed upon by
two or more parties associated with a CSB. One or more TEKs canbe derived from the TGK and the unique
crypto session ID.

- Pre-Shared Key Transfer. In this mode, the key is generated by the initiator and transferred to the re-
sponder. The message is integrity-protected using a keyed MAC and encrypted. The respective keys
are derived from the shared secrets and a random value using a cryptographically secure hash function.
Let IDi andIDr be the identities of the initiator and responder, respectively. Messagem is defined as
m := HDR, T, RAND, [IDi], [IDr], {SP}, KEMAC, whereT is the timestamp (used for replay protection),RAND

is a random number used for generating encryption key (Encrk) and authentication key (Authk) from
the shared secrets, SP is a set of security policies andKEMAC = E(Encrk, {TGK})||MAC. E(key, text)
denotes the encryption oftext with the encryption keykey and|| denotes string concatenation.MAC is
a keyed message authentication code computed over the entire messagem using the authentication key
Authk. It is assumed thatTGK is a chosen uniformly at random by the initiator. For mutual authentication,
the initiator may request the responder to send a verification message which includes the message header
HDR, timestampT, the initiator and responder identitiesIDi, IDr, respectively, and a MAC.

- Public Key Transfer. As in the pre-shared key mode, the initiator’s message transfers or more TGKs and
set of media session security parameters the responder. Theinitiator’s message is

m := HDR, T, RAND, [IDi|CERTi], [IDr], {SP}, KEMAC, PKE, SIGNi

HereCERTi stands for the initiator’s certificate. In this mode, the encryption and authentication keys are
derived from anenvelope key(Envk) chosen by the initiator at random.PKE is the encryption ofEnvk
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under the responder’s public key. Note that this requires prior knowledge of the responder’s (properly
certified) public key.SIGNi is a signature over the entire messagem using the initiator’s private signing
key. As in the pre-shared key mode, the initiator may requesta verification message from the responder.

- Public Key with Diffie-Hellman Exchange. LetG denote a large cyclic multiplicative group with generator
g. Authenticated Diffie-Hellman key exchange is shown below:

Init→ Resp : HDR, T, RAND, [IDi|CERTi], SP, DHi, SIGNi
Init← Resp : HDR, T, [IDr|CERTr], IDi, DHr, DHi, SIGNr

HereDHi, DHr stand forgxi andgxr , wherexi, xr are randomly chosen by the initiator and responder,
respectively. The derived key isgxi.xr. DH group parameters are chosen by the initiator and signaled to
the responder.

2.4 Secure media transport: SRTP

SRTP [5] defines a profile of the Real-time Transport Protocol(RTP) which aims to provide confidentiality,
message authentication, and replay protection to RTP data and control traffic. SRTP uses a singlemaster key
to derive keying material via a cryptographically secure hash function. First, some notation. Amaster key
identifier is a tag used by the key management protocol to identify the master key from which session keys
are derived for the SRTP session. Anauthentication tagis a message authentication code computed over
the RTP header and the encrypted portion of the RTP payload using the authentication key. Acryptographic
contextrefers to the cryptographic state information maintained by the sender and receiver for the media
stream. This includes the master key, session keys, identifiers for encryption and message authentication
algorithms, lifetime of session keys, and a rollover counter (ROC).

Each RTP packet consists of a 16-bit sequence number (SEQ) which is monotonically increasing. The
rollover counter is maintained by the receiver and is incremented by1 every time the sequence number wraps
around. For a multicast stream with multiple senders, a synchronization source identifier (SSRC) uniquely
identifies a sender within a session. The only requirement onSSRC is that the SSRC must be unique for
every sender within a session. A cryptographic context for SRTP is identified uniquely by the triple (SSRC,
destination network address, destination port).

For data encryption, SRTP uses a single cipher, Advanced Encryption Standard (AES), in one of the
following two modes: (i) Segmented Integer Counter mode, or(ii) f-8 mode. The input to AES is the triple
(key,SSRC,SEQ), where “key” is the encryption key (explained below), SSRC is synchronization source
identifier and SEQ is the sequence number of the packet. Instead of using AES as a block cipher, SRTP uses
it as if it were a stream cipher and encrypts datagrams byxor’ing them with the output of AES applied to
(key,SSRC,SEQ).

SRTP key derivation. SRTP uses a cryptographically secure pseudo-random function (PRF) for generating
encryption and authentication session keys from the masterkey, master salt and the packet sequence number.
The sequence number of the packet is chosen by the sender. Both master key and master salt are derived
deterministicallyby applying HMAC, keyed with the material received during the key exchange protocol, to
a known plaintext (as defined by the key exchange protocol). Session key derivation is defined in terms of a
label (8-bit constant), master salt,ms and key derivation rate, as determined in the cryptographiccontext
and the index (48-bit ROC||SEQ). Let|| denote string concatenation. Letx = (〈label〉||r) xor ms, where
r is the integer quotient obtained by dividing index by the keyderivation rate. Letmk denote the master key
andPRF(k, x) denote a pseudorandom function family such that for the secret random keyk, givenm-bit x,
the output is ann-bit string computationally indistinguishable from random n-bit string. The session keys
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are generated asPRF(mk, x) by substituting different labels for encryption, authentication and salting keys,
respectively.

An important point to note is that there isno receiver-generated randomnessin the session key derivation
process. This is a potential weakness because security of the stream cipher-like encryption used in SRTP
depends critically on the keystream never repeating.

For the keystream never to repeat, the PRF output (used as input into AES) must never repeat, and this
means that thePRF input must be unique for every session. Uniqueness of SSRC and SEQ is not guaranteed.
Moreover, both values are public and can be eavesdropped by the attacker. Therefore, the master key and
master salt combination must be unique for each session. Both are derived deterministically from the key
material received during the key exchange protocol. If the attacker ever succeeds in tricking an SRTP session
into re-using previously used key material, the keystream will repeat. In section 3.2, we will describe how
the attacker can force a VoIP server implementing SRTP in conjunction with SDES key exchange to repeat
the keystream, completely breaking encryption of the data stream.

3 Attacks and Vulnerabilities

3.1 Attacks on SIP

Denial of service.A denial of service attack focuses on rendering a network of service unavailable, usually
by directing a high volume of traffic towards the service thereby denying it to legitimate clients. A distributed
denial of service allows a single network user to cause multiple network hosts to flood the target host. SIP
architecture makes it particularly easy to launch a distributed denial of service attack. Attackers can launch
bogus requests with a spoofed source IP address of the identified victim and send it to large number of SIP
elements (or proxies), thereby causing unknowing SIP UAs and proxies to generate denial of service traffic
aimed at the target. Similarly, attackers can use spoofedRoute header fields in a request that identify the
target host and send such messages to forking proxies who will amplify messages sent to the target. A wide
variety of denial of service attacks become possible if REGISTER requests are not properly authenticated
and authorized by registrars. If a malicious user is able to de-register some or all other users in the network
and register his own device on their behalf then he can easilydeny access to any of those users/services.
Attackers can also try to deplete storage resources of the registrar by creating a huge number of bindings.

Authentication.Authentication is particularly difficult to achieve in SIP,since there are a number of inter-
mediate elements such as proxies which possibly modify the contents of a message before it reaches the
desired destination. All such intermediate elements must be trusted. Also, registration requests must be
authenticated by the registrar, or else they open the door tomany attacks, including denial of service.

SIP registration does not require theFrom field of a message to be the same asTo header field of
the request, allowing third parties to change address-of-record bindings on behalf of another user. If the
attacker can successfully impersonate a party authorized to change contacts on behalf of a user, he can arbi-
trarily modify the address-of-record bindings for the associatedTo address. Since SIP authentication relies
implicitly on authenticity of the server and intermediate proxies, the attacker who is able to successfully
impersonate a server or a proxy can do arbitrary damage including denying service to the client or launching
a (distributed) denial of service attack. This requires theexistence of some methodology for the client to
authenticate the server and/or the proxy. Unfortunately, no such mechanism is specified in the SIP RFC.

Another important security vulnerability in SIP is that BYErequests to terminate sessions are not au-
thenticated since they are not acknowledged. Instead, a BYErequest is implicitly authenticated if it is
received from the same network element (on the same path) as aprevious INVITE. A third-party attacker
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can thus observe the parameters of an eavesdropped INVITE message, and then insert a BYE request into
the session. Once the BYE request is received by the target, the session would be torn down permanently.
Similar attacks can be launched on re-INVITE messages used to change session parameters.

3.2 Attack on SDES/SRTP

Figure 4 shows an attack on SRTP when used in combination withSDES key exchange. Suppose two
legitimate users, Alice and Bob, previously carried out a successful VoIP session, which the attacker was
able to passively eavesdrop, without learning the session key and thus not being able to decrypt the data
streams. Suppose Bob was the initiator in this session, and SDES was used to transport SRTP key material.
To provide confidentiality for the SDES message, S/MIME was used to encrypt the payload. S/MIME,
in general, is preferred over TLS for protecting SDP messages because (i) S/MIME provides end-to-end
integrity and confidentiality protection, and (ii) S/MIME does not require the intermediate proxies to be
trusted.

S/MIME does not provide any anti-replay protection. After the original session has been torn down,
the attacker can replay Bob’s original INVITE message to Alice, containing an S/MIME-encrypted SDP
attachment with the SDES key transfer message. Since Alice does not maintain any state for SDP, she
will not be able to detect the replay. Using the old session’skey material as her HMAC key, she will derive
exactly the same master key and master salt as in the originalsession. Since SSRC and sequence number are
the same, the resulting session encryption key will be the same as in the previous session, and the keystream
generated by applying AES to the (key,SSRC,SEQ) triple willbe the same as in the original session.

Encryption in SRTP is simply thexor of the data stream with the keystream. If Alice now sends a
datagram in the new session that she thinks she is establishing with Bob, the attacker canxor the encrypted
data stream with the data stream he eavesdropped in the original session. The keystream will cancel out, and
the result will be thexor of two data streams. If data streams contain enough redundancy or the attacker can
guess parts of either stream, he will be able to completely orpartially reconstruct the data of both streams.
In any case, encryption has been completely removed. This issimilar to the famous attack on 802.11b
WEP [9], where the keystream was re-used due to exhaustion ofinitialization vectors for the stream cipher.

The most important observation underlying our attack is that SRTP does not use any randomness on
the responder side when the responder derives session keys.Instead, SRTP completely relies on the key ex-
change protocol to ensure that the key material is fresh for every session. Some key exchange protocols, such
as MIKEY, do provide anti-replay defenses to prevent re-useof old key transfer messages. Unfortunately,
SRTP is designed to be used with a wide variety of key exchangeprotocols, including S/MIME-encrypted
SDES, which doesnot ensure key material freshness, leading to a devastating attack.

To prevent keystream re-use, SRTP responder should use its own fresh randomness as part of the key
derivation process,e.g., as input to HMAC used in session key derivation. This randomness need not be
secret. It can be publicly communicated to the sender as partof SRTP session establishment to ensure that
the sender derives the same set of session keys.

3.3 Attacks on ZRTP

Denial of service. ZRTP is potentially vulnerable to denial of service attacks caused by attackers simply
sending spurious HELLO messages to end points and forcing the latter to keep state for every half-open
connection. Eventually, end points will run out of storage or memory, and subsequent requests from legiti-
mate clients will be refused.
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Attacker

keystream repeats

OK from Alice

OK from Alice

ACK Alice
SRTP stream

SRTP stream
BYE

INVITE Alice@domain1.com

(with key)with SDP attachment

Copy of INVITE from Bob

ACK Alice

BYE

(SDES with S/MIME protection)
(impersonating Bob)Bob Alice

Figure 4: Attack on SRTP using SDES key exchange

Authentication.The main advantage of ZRTP is that it avoids the need for global trust associated with a
PKI infrastructure. ZRTP aims to achieve this with the help of Short Authentication String (SAS), which is
essentially a (keyed) cryptographic hash of Diffie-Hellmanvalues along with other pre-shared secrets. After
shared secrets have been used for authentication in one session, they are updated as described in section 2.3
and kept by participants to be used for authentication in thenext session.

To authenticate the party on the other end of a VoIP session, the SAS value is read aloud over the voice
connection. However, authentication based on SAS requiresthat some sort of GUI or display be available to
the user. This is a serious problem for many secure VoIP devices,e.g., those that implement VoIP via a local
network proxy and lack a display. Therefore, we will focus upon security of ZRTP in the situation where
the user cannot explicitly verify SAS over the voice connection.

Authentication in ZRTP is based on the assumption that, in order to launch a successful man-in-the-
middle attack on a pair of participants who already conducted several sessions, the attacker must be present
on every session starting from the very first one. The reasoning goes as follows. Each ZRTP user retains
shared secretsrs1 andrs2 (see section 2.3) for users with whom he previously communicated. When
initiating a new session, the user sends his ZID, which is used by the recipient to retrieve the set of shared
secrets associated with this ZID. The session key is computed by hashing the joint Diffie-Hellman value
concatenated with the shared secrets. Therefore, even if the DH exchange is compromised, the attacker still
cannot compute the session key because he does not know the shared secrets. Because the shared secrets
are re-computed after each session, the attacker must be present in every session starting from the very first
one, in which there was no shared secret.

Unfortunately, this reasoning is fallacious. The main problem with the protocol is that ZIDs, which are
used by recipients to look up shared secrets, are not authenticated early enough in the protocol exchange.
Consider a passive attacker who eavesdrops on a session between Alice and Bob and learns Bob’s ZID. He
then stages a man-in-the-middle attack as shown in figure 5.
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Alice Attacker Bob

COMMIT(Bob’s ZID,hash,cipher,pkt,hvi)

DHPART1(x,r1,r2,...)

DHPART2(pvi,rs1IDi,rs2IDi,...)

DHPART1(pvr,rs1IDr,rs2IDr,...)

DHPART2(y,r1’,r2’, ...)

COMMIT(Bobs ZID,hash,cipher,pkt,z)

Figure 5: A man in the middle attack on the ZRTP protocol

The attacker chooses random exponentsx′, y′ and computesx = gx
′

mod p andy = gy
′

mod p, re-
spectively.z is the hash ofx concatenated with the set of algorithms chosen by Bob for theZRTP session.
The attacker also replaces all shared-secret IDs with random numbers. When Alice receives the DHPART2
message from Bob, she retrieves the set of secrets that she shares with Bob and computes the set of expected
IDs. Since the attacker has replaced all IDs with random numbers, they will not match.

According to the protocol specification, Alice should now assume that Bob has forgotten their shared
secrets. She computes the joint Diffie-Hellman value asysvr mod p (= gy

′.svr mod p). The session key is
now computed as the hash of the joint Diffie-Hellman valuealonebecause Alice believes that she doesn’t
have any shared secrets with Bob anymore.

Similarly, Bob computes the session key as the hash of the Diffie-Hellman valuegx
′.svi mod p. The

attacker knows both values. Therefore, he can compute SRTP master key and salt, and completely break
SRTP encryption.

A possible fix to this protocol design flaw is to have Alice reject messages from Bob if the shared-secret
IDs it contains do not match those expected by Alice. This is apoor solution, however, because it is not
clear how parties can re-establish communication after they have truly lost their shared secrets.

Formal analysis of ZRTP in AVISPA. To support our analysis of ZRTP, we constructed a formal model
of the protocol in the High Level Protocol Specification Language HLPSL [11] and used the automated
AVISPA model checker [3] to carry out formal analysis.

Formal verification of ZRTP with AVISPA presents an interesting challenge because the model must
capture the “multi-session” nature of authentication in ZRTP. Authentication in a ZRTP session depends on
information exchanged inprevioussessions. HLPSL, however, does not allow state to be retained across
sessions.

To get our model to work, we had to assume that, for a given session, initiator and responder agree on
the value of their shared secrets at the start of the session.This allows us to model the protocol by passing
the shared secrets as arguments to the role specification of the initiator and responder roles. Also, we assume
that there are no other shared secrets between the participants. The protocol specification in HLPSL is given
in appendix B. We only model the relevant fields in message bodies. To simply presentation, we show the
specification in the “Alice-Bob” notation:
Init→ Resp : H(gx)

Init← Resp : gy, rs1IDr, rs2IDr | Diffie-Hellman exchange
Init→ Resp : gx, rs1IDi, rs2IDi

Init← Resp : MAC(K, c1) | K is shared key
Init→ Resp : MAC(K, c2) | Authentication part
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HereK is the shared session key calculated as described in section2.3,H() is a cryptographic hash function
andMAC(k, text) is a keyed message authentication code computed overtext using authentication key
k. rs1IDi, rs2IDi (rs1IDr, rs2IDr) are the keyed HMACs of the strings “Initiator” and “Responder”
computed using the shared secretsrs1, rs2, respectively.c1, c2 are public constants.

Our specification of the authentication property is based on[6]. Intuitively, authentication holds for
a particular session between Alice and Bob if the following condition holds: at the end of a successfully
completed session, if Alice believes that she is talking to Bob, then she is indeed talking to Bob and their
respective records of messages sent and received during theprotocol execution “match.” The condition for
Bob is similar.

The attack on authentication described above was successfully discovered by the AVISPA tool. The
attack is shown in appendix C.

3.4 Analysis of MIKEY

Secrecy.The goal of a cryptographically secure key exchange protocol is to establish a session key which
is indistinguishable from a random bitstring by anyone other than the participants [10]. It is easy to see
that MIKEY does not satisfy this requirement when executed in the Diffie-Hellman mode. The shared
key is derived asgxi.xr , i.e., the joint Diffie-Hellman value is used directly as the key. In many Diffie-
Hellman groups,e.g., in the group of squares modulo a large prime, testing group membership is not a
computationally hard problem. Therefore, it is easy to tellthe difference between a random bitstring and the
key.

This does not necessarily lead to any exploitable weaknesses, although it does preclude a rigorous proof
of security from going through. Moreover, encryption schemes in which the derived key is intended to be
used typically require that the key be indistinguishable from a random value. This yet another example of
how assumptions made by one layer of the VoIP protocol stack (transport layer in this case) are not met by
the other layer (key exchange layer in this case).

There is a simple, standard solution. To derive the key from the joint Diffie-Hellman value, MIKEY
participants should use arandomness extractor, e.g., a universal hash function [20] with public randomness
generated by one of the participants.

Finally, we observe that MIKEY in the pre-shared key mode obviously doesn’t satisfy perfect forward
secrecy because the compromise of the pre-shared secret leads to the compromise of all previous sessions.

Denial of service.MIKEY offers very limited protection against DoS attacks. In the public-key DH mode,
the responder only performs CPU-intensive modular exponentiation after verifying the message digest of
the initiator’s message. The attacker can still flood the responder with multiple copies of the same message.
This will cause the responder to perform digest verifications and may exhaust memory resources.

4 Related work

The two VoIP protocols that have attracted most attention inthe research literature are SIP and Skype. SIP, in
particular, has been the subject of several comprehensive studies [19, 22, 16, 25]. All of them focused solely
on the signaling layer. Skype, which is a closed-end system based on a proprietary peer-to-peer protocol,
has been the subject of several analyses [7, 4] and reverse engineering attempts [8].

To the best of our knowledge, the VoIP protocol stack, including key exchange and transport layer
security protocols, has not been analyzed before in its entirety. We’d like to emphasize the need to analyze
not only individual layers in isolation, but also assumptions and guarantees made by layers when interacting
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with each other. As our study shows, “misunderstanding” between protocols at different layers is a common
source of security vulnerabilities. We hope that this work will serve as the first step towards developing a
comprehensive security assessment of the entire VoIP protocol stack.

5 Conclusions

We have presented a structured security analysis of the entire Voice-over-IP protocol stack, including sig-
naling protocols such as SIP, key exchange protocols such asSDES, ZRTP and MIKEY, and transport-layer
security protocols such as SRTP. Our analysis uncovered several serious vulnerabilities. The first is a replay
attack on SDES key exchange which causes SRTP to use the same keystream in multiple sessions, thus
allowing the attacker to remove encryption from SRTP-protected data streams. The second is an attack on
ZRTP caused by unauthenticated user IDs, which allows the attacker to disable authentication mechanisms
and trick a ZRTP participant into establishing a shared key with the attacker.

Our study illustrates the importance of thorough analysis of protocol specifications. This is especially
critical in applications such as Voice-over-IP, where multiple protocols, operating at different layers in the
protocol stack, have to make assumptions about each other toachieve end-to-end security. When these
assumptions are not justified — such as the assumption made bySRTP that the key exchange protocol
always ensures freshness of the key material — the result is asecurity vulnerability.
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A SIP security mechanisms

SIP security mechanisms can be broadly divided into those devoted to authentication, data integrity, and
confidentiality.

Authentication.SIP supportsHTTP basic authenticationandHTTP digest authentication[14]. HTTP basic
authentication requires username and matching password tobe sent in plaintext as part of the HTTP header
request. This has serious security risks, and HTTP basic authentication has been deprecated in SIP version
2 (SIPv2) [23].

HTTP digest authentication is based on a simple challenge-response paradigm. The digest authentication
scheme challenges the remote user with a randomnonce. A valid response consists of an MD5 or SHA-
1 digestof the secret password, the nonce value and some other parameters including the requested URI.
Although HTTP digest authentication improves upon the basic authentication by not sending the password
in the clear, it is still prone to offline dictionary attacks based on intercepted hash values if short or weak
passwords are used. The digest authentication scheme is also prone to computational denial-of-service
attacks since it requires the challenger to compute the digest for any received hash value.

Confidentiality. SIP itself does not provide confidentiality for media data.SIP messages include MIME
bodies and the MTME standard provides mechanisms for ensuring data integrity and confidentiality [15].
SIP may use Secure MIME (S/MIME) [21] for distribution of certificates, authentication, confidentiality
and data integrity. Distribution of S/MIME certificates, however, requires the existence of a trusted server.
Authenticating MIME payloads is not a problem since each endpoint has its own private signing key and
certificates may be forwarded along with the signature. Confidentiality, on the other hand, poses a serious
problem since it requires prior knowledge of the recipient’s public key. This key must be fetched from a
central authority or obtained from a peer via special SIP messages. To be able to protect SIP headers as
well, tunneling of SIP messages inside MIME bodies is supported. Tunnelled packets may be large, and it
is suggested to use TCP as the transport layer protocol to avoid problems with UDP fragmentation.

Another option is to use secure SIP (SIPS) URI, which is very similar to secure http (https) and employs
Transport Layer Security (SSL/TLS). Since we wish to protect SIP headers and each hop may add routing
information to the SIP message header, protection is on a hop-by-hop basis along each segment of the path.
The use of TLS also requires the use of TCP as a transport protocol and depends on the existence of a PKI
infrastructure.

The third option is IPSec. IPsec provides two mechanisms forauthentication and, in the case of ESP,
confidentiality: Authentication Header (AH) and Encapsulating Security Payload (ESP). Since each proxy
server on the path may add or change information in the SIP header, both ESP and AH must be applied on
a hop-by-hop basis. IPsec security mechanisms can also be established on a permanent basis between the
end points without active involvement of the UAs themselves. SIP RFC does not specify which IPsec ser-
vice may be used or how key management is realized. One commonly accepted key establishment protocol
for IPSec Internet Key Exchange (IKE) [18]. IKE may be used with pre-shared secrets or PKI infrastruc-
ture. Since the UAs are mostly dynamic, IKE Main Mode will notwork with pre-shared secrets and IKE
Aggressive Mode is fraught with problems such as man in the middle attacks, offline dictionary attacks,etc..

Data integrity. For data integrity, either S/MIME or SIPS URI or IPSec may beused.

B Formalization of ZRTP in HLPSL

role zrtp_Init (A,B: agent,
G: nat,
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Hash: hash_func,
RS1,RS2: nat,
Snd,Rcv: channel(dy))

played_by A
def=

local State : nat,
X : text,
DH, T : nat,
K : symmetric_key,
ID : nat,
Confirm1 : nat,
Confirm2 : nat,
EY : nat,
RS1IDr,RS2IDr : nat,
C,Init,Resp : nat

const sec_k1 : protocol_id

init State := 0
/\ ID := 1
/\ Confirm1 := 2
/\ Confirm2 := 3
/\ Init := 4
/\ Resp := 5

transition
1. State = 0

/\ Rcv(start)
=|>
State’ := 1
/\ X’ := new()
/\ Snd(Init.Hash(exp(G,X’)))

2. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ not(RS1IDr’ = Hash(RS1.Resp))
/\ not(RS2IDr’ = Hash(RS2.Resp))
=|>
State’ := 2
/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’))

3. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ RS1IDr’ = Hash(RS1.Resp)
/\ not(RS2IDr’ = Hash(RS2.Resp))
=|>
State’ := 2
/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’).RS1)

4. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ not(RS1IDr’ = Hash(RS1.Resp))
/\ RS2IDr’ = Hash(RS2.Resp)

=|>
State’ := 2
/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’).RS2)

5. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ RS1IDr’ = Hash(RS1.Resp)
/\ RS2IDr’ = Hash(RS2.Resp)
=|>
State’ := 2
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/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’).RS1.RS2)

6. State = 2
/\ Rcv(C’)
/\ C’ = Hash(K.Confirm2)
=|>
State’ := 3
/\ RS2’ := RS1
/\ RS1’ := Hash(K.ID)
/\ Snd(Hash(K.Confirm1))
/\ secret(K,sec_k1,{A,B})
/\ witness(A,B,na,Hash(K.Confirm1))
/\ request(A,B,nb,C’)

end role
——————————————————————————————————————————
role zrtp_Resp (A,B: agent,

G: nat,
Hash: hash_func,
RS1,RS2: nat,
Snd,Rcv: channel(dy))

played_by B
def=

local State : nat,
Y : text,
DH, T : nat,
K : symmetric_key,
HVI : nat,
ID : nat,
Confirm1 : nat,
Confirm2 : nat,
EX : nat,
RS1IDi,RS2IDi : nat,
C,Init,Resp : nat

const sec_k2 : protocol_id

init State := 0
/\ ID := 1
/\ Confirm1 := 2
/\ Confirm2 := 3
/\ Init := 4
/\ Resp := 5

transition
1. State = 0

/\ Rcv(Init.HVI’)
=|>
State’ := 1
/\ Y’ := new()
/\ Snd(exp(G,Y’).Hash(RS1.Resp).Hash(RS2.Resp))

2. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ not(RS1IDi’ = Hash(RS1.Init))
/\ not(RS2IDi’ = Hash(RS2.Init))
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’))
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

3. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ RS1IDi’ = Hash(RS1.Init)
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/\ not(RS2IDi’ = Hash(RS2.Init))
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’).RS1)
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

4. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ not(RS1IDi’ = Hash(RS1.Init))
/\ RS2IDi’ = Hash(RS2.Init)
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’).RS2)
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

5. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ RS1IDi’ = Hash(RS1.Init)
/\ RS2IDi’ = Hash(RS2.Init)
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’).RS1.RS2)
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

6. State = 2
/\ Rcv(C’)
/\ C’ = Hash(K.Confirm1)
=|>
State’ := 3
/\ RS2’ := RS1
/\ RS1’ := Hash(K.ID)
/\ secret(K,sec_k2,{A,B})
/\ request(B,A,na,C’)

end role
——————————————————————————————————————————
role session(A,B: agent,

G: nat,
H: hash_func,
RS1, RS2: nat)

def=
local SA, RA, SB, RB: channel (dy)

composition
zrtp_Init(A,B,G,H,RS1,RS2,SA,RA)

/\ zrtp_Resp(A,B,G,H,RS1,RS2,SB,RB)

end role
——————————————————————————————————————————
role environment()
def=

const a, b : agent,
rs1,rs2 : nat,
na, nb : protocol_id,
g : nat,
h : hash_func

intruder_knowledge={a,b,g,h}

composition
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session(a,b,g,h,rs1,rs2)
/\ session(b,a,g,h,rs1,rs2)

end role
——————————————————————————————————————————
goal

% Confidentiality
secrecy_of sec_k1, sec_k2

% Message authentication
authentication_on na

% Message authentication
authentication_on nb

end goal
——————————————————————————————————————————
environment()

NOTE: We useHash instead ofHMAC since AVISPA does not support keyed MAC’s.

C AVISPA trace of ZRTP attack

SUMMARY
UNSAFE

DETAILS
ATTACK_FOUND
UNTYPED_MODEL

PROTOCOL
./ZRTP.if

GOAL
Authentication attack on (b,a,nb,{{{exp(g,n19(Y)*n37(X))}_h.rs1.rs2}_h.3}_h)

BACKEND
CL-AtSe

STATISTICS

Analysed : 451 states
Reachable : 115 states
Translation: 0.21 seconds
Computation: 0.25 seconds

ATTACK TRACE
i -> (a,3): start
(a,3) -> i: 4.{exp(g,n1(X))}_h

i -> (a,3): EY(2).RS1IDr(2).RS2IDr(2)
& RS2IDr(2)<>{rs2.5}_Hash(2); RS1IDr(2)<>{rs1.5}_Hash(2);

(a,3) -> i: exp(g,n1(X)).{rs1.4}_h.{rs2.4}_h

i -> (a,7): 4.{EX(68)}_h
(a,7) -> i: exp(g,n55(Y)).{rs1.5}_h.{rs2.5}_h

i -> (a,7): EX(68)
(a,7) -> i: {{{exp(EX(68),n55(Y))}_h.rs1.rs2}_h.3}_h

& Witness(a,b,nb,{{{exp(EX(68),n55(Y))}_h.rs1.rs2}_h.3}_h);
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i -> (b,6): start
(b,6) -> i: 4.{exp(g,n37(X))}_h

i -> (b,4): 4.{exp(g,n37(X))}_h
(b,4) -> i: exp(g,n19(Y)).{rs1.5}_h.{rs2.5}_h

i -> (b,6): exp(g,n19(Y)).{rs1.5}_h.{rs2.5}_h
(b,6) -> i: exp(g,n37(X)).{rs1.4}_h.{rs2.4}_h

i -> (b,4): exp(g,n37(X))
(b,4) -> i: {{{exp(g,n19(Y)*n37(X))}_h.rs1.rs2}_h.3}_h

& Witness(b,a,nb,{{{exp(g,n19(Y)*n37(X))}_h.rs1.rs2}_h.3}_h);

i -> (b,6): {{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.3}_h
(b,6) -> i: {{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.2}_h

& Secret({{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h,set_119);
& Witness(b,a,na,{{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.2}_h);
& Request(b,a,nb,{{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.3}_h);
& Add b to set_119; Add a to set_119;
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