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Abstract: This paper gives out an identity-based key agreement protocol and a modified proof 
model. The protocol can be proved secure in the proof model. The random oracle is never used in 
the model thanks to an encryption scheme proposed by Gentry in EuroCrypt 2006. Our main idea 
is the construction of a key agreement protocol from an encryption scheme, which is converse to 
the traditional construction of an ElGamal encryption scheme from Diffie-Hellman key agreement 
protocol. The modified model is based on the widely used model proposed by Bellare and 
Rogaway in 1993. The different is that the model here refines the ability of an adversary and the 
security goals of a protocol. The refinement captures more security properties and facilitates the 
proof of reduction to contradiction. 
Keywords: Identity-based Protocol, Key Agreement, Security Model, Random Oracle 
 

1. Introduction 

We explain some concepts about explicit authenticated key agreement protocol according to [1]. 
An explicit authenticated key agreement protocol is a key agreement protocol which provides 
explicit key authentication. A key agreement protocol or mechanism is a key establishment 
technique in which a shared secret is derived by two (or more) parties as a function of information 
contributed by, or associated with, each of these, (ideally) such that no party can predetermine the 
resulting value. And key establishment is a process or protocol whereby a shared secret becomes 
available to two or more parties, for subsequent cryptographic use. Explicit key authentication is 
the property obtained when both implicit key authentication and key confirmation hold. Implicit 
key authentication is the property whereby one party is assured that no other party aside from a 
specifically identified second party (and possibly additional identified trusted parties) may access 
to a particular secret key. And key confirmation is the property whereby one party is assured that a 
second party (possibly unidentified) actually has possession of a particular secret key. 

A key agreement protocol is said to be identity-based (ID-based) if identity information of the 
party involved is used as the party’s public key. ID-based protocols need no public key 
infrastructure, and can obtain explicit key authentication using only key indexed hash functions. 
After Shamir proposed the idea of identity-based asymmetric key pairs [2], a few identity-based 
key agreement protocols based on Shamir’s idea have been developed, such as [3], [4], [5] etc. 
However the practical ID-based protocols boomed after appeared the work of [6] and [7] based on 
paring techniques. Some of the protocols are [8], [9], [10], [11], [12], [13], [14], [15], and [16] etc. 
The practical protocols enjoy some security properties, such as partially forward security, key 
control resistance etc. 

Usually, some security properties are used to evaluate the security of key agreement protocols, 
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including known session key security, perfect forward secrecy, key-compromise impersonation 
resilience, unknown key-share resilience, and key control resilience etc. By known session key 
security, we mean that the compromise of one session key should not compromise the keys 
established in other sessions. Perfect forward security in the two-party case usually means that if 
their private keys are compromised, the secrecy of session keys previously established by the two 
parties should not be affected. If the condition is relaxed to only one principle, it is called partially 
forward security. If the condition is restricted by adding the loss of the third trusted party’s master 
key in the ID-based scenario, it is called master-key forward security [15]. By key-compromise 
impersonation resilience, we mean that the compromise of party A's long-term private key should 
not enable the adversary to impersonate other parties to A. Unknown key-share resilience means 
that party A should not be able to be coerced into sharing a key with party C when in fact A thinks 
that she/he is sharing the key with some party B. By key control resilience, we mean that one 
single party should not be able to decide the formation of the session key. It is desirable that the 
above security properties are captured in a security model, and that a protocol satisfies the security 
goals defined in the security model, so as to conclude a protocol enjoys the security properties. 

To the best of our knowledge, there are some models are used to prove ID-based protocols, at 
least including BR model [17], BRP model [18], BCP model [19], CK model [20] etc. Most 
ID-based protocols are proved in some variant models of BR model, such as protocols in [12], 
[13], [14], [15], and [16]. Usually, an adversary in a BR style model is powered by some kinds of 
queries, such as Send, Reveal, Corrupt queries etc. The execution of a protocol is described as 
oracle responses to the adversary’s queries. After polynomial bounded times queries, the adversary 
is expected to win a test game with a non-negligible probability. If the adversary cannot win the 
game and the transcript between oracles and adversary does satisfy some properties, it is believed 
that the protocol is secure in the defined model. Roughly all BR style models are defined and used 
in the above fashion.  

In a BR style model, a security property may be captured according to the definitions and 
usage of the model. For example, if the Reveal query in a model is defined as session key 
revealing to an adversary, then a secure protocol in the model enjoys the known session key 
security. Otherwise, if a key compromise of one session s can compromise another session t, the 
adversary can simply select the session t as the test session and reveal the session s to obtain the 
answer of the test query. Another example is about perfect forward security which is not captured 
by current used BR style models for ID-based protocols. If the Corrupt query in a model is defined 
as long term private key disclosure and the query is not allowed to corrupt the tested session even 
after the Test query, the model can not capture the perfect forward security. But if the adversary is 
relaxed to corrupt any session after the Test query provided the response to Corrupt query is only 
the long term private key, the perfect forward security property can be captured. 

Another interesting point about current BR style models are the use of random oracle. The 
random oracle are used in that the distribution of session key is defined as uniform distribution in 
{0,1}k, where k is related to the security parameter. Usually, a session key is an output of a hash 
function in a protocol, which is modeled as random oracle so as to satisfy the requirement of 
uniform distribution. Another reason to use random oracle is due to the public key generation 
phase of ID-based protocols. Usually, a hash function is used to derive public key from ID, which 
is modeled as random oracle. However random oracle model is criticized for its inability of 
instantiation. Canetti et al [21] provided a contrived example and Bellare et al [22] provided a 



more natural example to show that a secure scheme in ROM is not secure in real world. 
Our contributions include a security model and an ID-based protocol. The modified model is 

still a BR style model. However, we refined the model as follows. At first, Extract query is used 
for private key disclosure. Then Corrupt query serves as a method to obtain oracle’s internal 
variables. This ability reflects the adversary’s power to dump target’s memory. Next the Extract 
query can be use to query any session after Test query. And then an authentication condition 
similar with that in the original BR model served as one security goal. That goal assures that a 
secure protocol in our model enjoys authentication property. Finally, session key distribution is 
demanded uniformly only in the session key sample space. With these refinements, perfect 
forward security can be captured. Key-compromise impersonation resilience can be captured by 
the authentication security goal. Additionally, the direct usage of reduction to contradiction 
method is enabled, which opens the way to reduce the security of protocol directly to 
mathematical hard problems. 
 Our ID-based protocol is derived naturally. Gentry in EuroCrypt 2006 proposed an IND-CPA 
ID-based encryption scheme [23], which can be proved without random oracle with short public 
parameters. The IND-CPA scheme is similar with the famous ElGamal encryption scheme except 
that the random part is carried by two group elements. We notice that the random part in the 
original ElGamal encryption scheme is in fact a Diffie-Hellman public value. So we take the two 
group elements in Gentry’s scheme as a whole serving as a Diffie-Hellman public key. Then we 
obtain an ID-based Diffie-Hellman key agreement scheme with almost the same property of the 
original Diffie-Hellman scheme. Then advantage of the ID-based version over the original one is 
that the ID-based one does not need signature primitive to prevent man in the middle attack. The 
indexed hash function is enough. So a three pass ID-based protocol with explicit key 
authentication property can be obtained using only indexed hash functions and group operations. 
 The security model, introduction of bilinear maps, and complexity assumption of our 
protocol are placed in Section 2. Section 3 is our ID-EAKA protocol. The proof of the protocol is 
in the Section 4. The last is the Conclusion. 

2. Preliminaries 

Below, we give the security model for an ID-based key agreement protocol. We also review the 
definition of a bilinear map and discuss the complexity assumption on which the security of our 
protocol is based. 

2.1 Security Model 

Our security model is based on Bellare and Rogaway [17] security model for key agreement 
protocols with several modifications. In our model, the protocol determines how principles 
behave in response to input signals from their environment. Each principle may execute the 
protocol multiple times with the same or different partners. This is modeled by allowing each 

principle to have different instances that execute the protocol. An oracle ,
s
i jΠ  models the 

behavior of the principle IDi carrying out a protocol session in the belief that it is 



communicating with the principle IDj for the sth time. One instance is used only for one time, 
which maintains a variable view consisting of the protocol transcripts so far. 

The adversary is modeled by a probabilistic polynomial time Turing machine that is assumed 
to have complete control over all communication links in the network and to interact with the 

principles via oracle accesses to ,
s
i jΠ . The adversary A is allowed to execute any of the following 

queries: 
 Instantiate (i, j, s). The adversary A lets party i to communicate with party j in the sth session. 

The system will sets up a new oracle ,
s
i jΠ  as response.  

 Extract (i). This allows the adversary to get the long term private key for the principle whose 
identity string ID is i. 

 Send ( ,
s
i jΠ , X). The adversary sends message X to the oracle ,

s
i jΠ . The system will give the 

output of ,
s
i jΠ  to the adversary as response. If X = λ, the principle IDi is asked to initiate a 

session s with IDj, where λ is the empty string. 

 Reveal ( ,
s
i jΠ ). This asks the oracle ,

s
i jΠ  to reveal whatever session key it currently holds. 

 Corrupt ( ,
s
i jΠ ). This allows the adversary obtains all internal variables of the oracle ,

s
i jΠ , 

such as temporal keys of oracle ,
s
i jΠ . 

An oracle ,
s
i jΠ  exists in one of the following several possible states: 

 Accepted: an oracle has accepted if it decides to accept, holding a session key, after receipt of 
properly formulated messages. 

 Rejected: an oracle has rejected if it decides not to establish a session key and to abort the 
protocol. 

 Unsettled: an oracle is unsettled if it has not made any decision to accept or reject. 
 Opened: an oracle is opened if it has answered a reveal query. 
 Corrupted: an oracle is corrupted if it has answered in a corrupt query. 
 Extracted: an oracle is extracted if it has involved in a extract query 

 Fresh: an oracle ,
s
i jΠ  is fresh if it is accepted and not opened, not corrupted and not 

extracted, the matching oracle (if any) ,
s
j iΠ  not opened, not corrupted, and not 

extracted. 

By ,
s
j i
′Π , matching oracle of ,

s
i jΠ , we mean that every message that ,

s
i jΠ  sends out is 

subsequently delivered to ,
s
j i
′Π , with the response of ,

s
j i
′Π to this message being returned to 

the ,
s
i jΠ  as the next message. 



The adversary is allowed to make a Test query to receive a value to guess. 

 Test ( ,
s
i jΠ ). If the oracle ,

s
i jΠ  is fresh, the adversary can make a test query to it. The 

adversary receives either a real session key or a random value as the response with an 
equal priori probability.  
After the test query, the adversary can continue making Instantiation, Extract, Send, 

Reveal, Corrupt queries to the oracles, except that the adversary cannot corrupt the oracles 
involved in the test query. 

The adversary is demanded to output one bit to show its advantage in winning the game. 
 Output. The adversary output “0” to identify the real session key or “1” to identify the 

random value. The advantage of adversary in winning the game is 
AdvA = | Pr [0 | real session key ] − Pr [ 0 | random value ] |. 

 To define an explicit authenticated key agreement protocol, we should prove the protocol 
satisfying the following goals: 
1. If two oracles are matching, then both of them are accepted and have a same session key 

which is distributed uniformly in the session key sample space. 

2. If the oracle ,
s
I JΠ  accepts, there is only one oracle ,

s
J I
′Π  whose view is identical to the 

view of ,
s
I JΠ  just before the oracle ,

s
I JΠ  accepts. 

3. The AdvA in the defined model is negligible. 
Remark: Our model has some modifications comparing to the current BR style proof models. 

The adversary is more powerful and reasonable. Instantiate query shows the basic principle 
of passive players and positive adversary about the security model. Send query shows the 
adversary network control power. Extract query is specifically designed for ID-based system. And 
we relax the query to allow our adversary to use this power at any time. Corrupt query is modified 
to give the internal states to the adversary but not the long term private key because the Extract 
query has given the power of obtaining long term key to the adversary. If an oracle is corrupt, all 
outputs of the oracle are controlled by the adversary. The query gives a chance for an adversary to 
participant in a protocol. The reveal query will give the session key to the adversary. Note that 
even the session key has been computed before an oracle accepted, the reveal query may output 
nothing if the protocol sets the computed session key as a real session key in an oracle only after 
the oracle accepts. In this case, before an oracle accepts, the computed temporal session key can 
only be obtained by an adversary through the Corrupt query. 

The definition of Test query is more flexible. We do not define the detail method to produce 
response to our adversary but to restrict the two possible responses must be equal priori 
probability. This flexibility gives us a possible way to lay the security of a protocol directly on a 
decisional mathematical hard problem. The AdvA is defined according to the Test query, which 
is a normal definition for a distinguisher to distinguish two different distributions. 

The security model captures the perfect forward security notion. After the Test query, and 
before the last output of an adversary, the adversary can still make most queries, including the 
Extract query. The adversary can obtain the long term private keys related the tested oracle after 
the Test query. 

The security goals in our security model are more natural. The first goal captures that if a 



protocol is run as designed, both honest parties can accept and hold a same session key. The 
second goal is about authentication, which means that if the party I accepts with intended party J, 
then before that point, the party J must have executed the protocol with intended party I as 
designed. Note that there is no restriction on the role of party I or J in the second goal. The third 
goal is about session key secrecy. Apparently, key-compromise impersonation resilience is 

captured. Otherwise, an adversary can extract principle I, corrupt an oracle ,
s
J I
′Π  and make 

oracle ,
s
I JΠ  accepts, which does not satisfy the second security goal. 

2.2 Bilinear Maps 

Basic notations are as follows. 
1. G and GT are two (multiplicative) cyclic groups of prime order p; 
2. g is a generator of G; 
3. e: G × G → GT is a bilinear map. 

Let G and GT be two groups as above. A bilinear map is a map e: G×G → GT with the 
following properties: 
1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab; 
2. Non-degenerate: e(g, g) ≠ 1. 

We say that G is a bilinear group if the group action in G can be computed efficiently and 
there exists a group GT and an efficiently computable bilinear map e: G × G → GT as above. 
Note that e(, ) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga). 

2.3 Complexity Assumptions 

The security of our protocol is based on a complexity assumption that is called a truncated version 
of the decisional augmented bilinear Diffie-Hellman exponent assumption [23] (decisional 
ABDHE). The problem is defined as follows. 

Given a vector of q+3 elements 
2 2( ) ( ) ( )( , , , , ,..., )

q q qg g g g g g Gα α α α+ 3+′ ′ ∈  

as input, outputs . We use g
1( )( , )

q

Te g g Gα +

′ ∈ i and gi′ to denote ( )i

g α  and ( )i

g α′  below. An 

algorithm A has advantage ε in solving truncated q-ABDHE if 

2 1 1Pr[ ( , , , ,..., ) ( , )]q q qA g g g g g e g g ε+ +′ ′ ′= ≥  

where the probability is over the random choice of generators g, g′ in G, the random choice of α in 
Zp, and the random bits used by A. The assumption is that there is no such an probability 
polynomial time (p.p.t) algorithm A has a non-negligible advantage ε. 

The decisional version of truncated q-ABDHE is defined as one would expect. An algorithm 
A that outputs b ∈ {0, 1} has advantage ε in solving truncated decision q-ABDHE if 
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where the probability is over the random choice of generators g, g′ in G, the random choice of α 
in Zp, the random choice of Z ∈ GT , and the random bits consumed by A. 

The truncated (decision) (t, ε, q)-ABDHE assumption holds in G if no t-time algorithm has 
advantage at least ε in solving the truncated (decision) q-ABDHE problem in G. 

3. The ID-EAKA Protocol 

The message flow of our protocol is described in Fig.1. 
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Fig.1. Message flow of ID-EAKA protocol 
M23 and M3 in Fig.1 will be defined below. The detail of our protocol is defined as follow. 
Setup: The PKG picks random generators g, h ∈ G and random α ∈ Zp. It sets g1 = gα ∈ G and gT 
= e(g,g) ∈ GT. The public parameters and private master-key are given by 

parameters = (g, g1, h, gT, H)  master-key = α 
where H is a public hash function, H: GT ×G×GT×G×GT → {0,1}k, k is a security parameter. 
Extract: To generate a private key for identity ID ∈ Zp, the PKG generates random rID∈ Zp, and 
outputs the private key 

dID = (rID, hID), where hID = . 1/( )( )IDr IDhg α− −

If ID = α, the PKG aborts. 
Protocol flow: For two parties Alice and Bob whose identification strings are IDA and IDB, the 
algorithm proceeds as follows. 

B

)1. Alice selects x ∈R Zp, computes M11 = 1( BID xg g −  and M12 = x
Tg . Alice sends M1 = M11 || 

M12 to Bob, where symbol “||” denotes concatenation. 

2. Bob selects y ∈R Zp, computes M21 = 1( AID ) yg g − , M22 = y
Tg , KBA = e(g,h)xy, M23 = H(KBA|| 

M11|| M12|| M21|| M22). Alice sends M2 = M21 || M22 || M23 to Bob. KBA is computed as follows: 

KBA = 11 12(( ) , )(( ) ) IDB

B

ry y
IDe M h M  

3. Alice computes KAB = 21 22(( ) , )(( ) ) IDA

A

rx
IDe M h M x and V_M23 = H(KAB|| M11|| M12|| M21|| 

M22). If M23 ≠ V_M23, Alice rejects and aborts the protocol. Else if M23 = V_M23, Alice 
accepts, sets KAB as the session key, computes M3 = H(KAB|| M21|| M22||M11|| M12), and sends 
M31 to Bob. 

4. Bob computes V_M3 = H(KBA|| M21|| M22||M11|| M12). If M3 ≠ V_M3, Bob rejects and aborts the 
protocol. Else if M23 = V_M23,Bob accepts and sets KBA as the session key. 



4. Security analysis 

To prove security of the ID-EAKA protocol, we prove our protocol achieves the three security 
goals in the security model. The first goal is about correctness of protocol. The second goal is 
about authentication property. The last goal is about secrecy property. 

TH 1: If two oracles are matching, then both of them are accepted and have a same session 
key which is distributed uniformly at random on the session key space. 

Proof. Suppose two oracles ,
s
A BΠ  and ,

s
B A
′Π . Assume the oracle ,

s
A BΠ  receives the Send 

( ,
s
A BΠ , λ) query. Then the oracle ,

s
A BΠ  acts as initiator and ,

s
B A
′Π  as responder. Before the 

initiator accepts, the initiator has a view (M1, M2) which is identical to the view of responder 
because the initiator and responder are matching. At that point, 

KBA = 11 12(( ) , )(( ) ) IDB

B

ry y
IDe M h M = 1(( ) , )(( ) ) IDB B

B

rID x y xy
ID Te g g h g− = ( , )xye g h  

= 1(( ) , )(( ) ) IDA A

B

rID y x yx
ID Te g g h g− = 21 22(( ) , )(( ) ) IDA

A

rx x
IDe M h M  = KAB

 
and the initiator and responder has identical (M11|| M12|| M21|| M22), so the equality M23 = V_M23 
holds. The initiator will accept according to the protocol and give the last message to the 
responder. Before the responder accepts, the responder has a view (M1, M2, M3) which is identical 
to the view of initiator. Obviously, the responder will also accept. 
 The session key is e(g,h)xy, where e(g,h) can be determined by public parameters. The session 
key is distributed uniformly in GT since the exponent x and y are selected randomly during the 
protocol execution.                                                   

 TH 2: If an oracle ,
s
A BΠ  accepts, there is only one oracle ,

s
B A
′Π  whose view is identical 

to the view of ,
s
A BΠ  just before the oracle ,

s
A BΠ  accepts. 

 Proof. We divided the proof into two parts according to oracle roles. 

Case 1: Suppose oracle ,
s
A BΠ  receives the Send ( ,

s
A BΠ , λ) query as an initiator. If oracle 

,
s
A BΠ  accepts, according to the protocol, the equation M23 = V_M23 holds. Before computing 

V_M23, the initiator has a view of (M1, 2M ′ ), where M1 is produced by the initiator and 2M ′  is 

received by the initiator. V_M23 = H(KAB|| M1 || 21M ′ || 22M ′ ) is computed locally by the initiator 

after the 23M ′  is received. If 23M ′  is not computed as the same as V_M23, there is another p.p.t. 

algorithm to produce a target of the H function firstly, and a collision of the function secondly, 
which violates the collision resistance property of H function. This gives us the conclusion that 

23M ′  is computed as the same as V_M23, such that 23M ′  = H(KAB|| M1 || 21M ′ || 22M ′ ). So the 2M ′  



producer must have access to all the elements involved in the 23M ′  computing. Since IDA is 

included in the 2M ′ , the 2M ′  producer must have made its intended communication peer as A. 

since IDB is included in MB 1 and IDA is included in 2M ′ , we claim that the KAB can be computed 

only by A or B using their private keys. Suppose that there is a p.p.t. algorithm to produce KAB 
without private keys of A or B with input M1 and M21||M22 where IDA and IDBB is included as the 
protocol’s specification, then the algorithm can be used as a oracle to help an IND-CPA attacker to 
attack the IND-CPA encryption algorithm in [23]. The IND-CPA attacker can demand the 
encryption oracle in the IND-CPA game to encrypt a message for A or B. Then the IND-CPA 
attacker takes the first two elements of the challenge message as M1 or M21||M22. Next the 
IND-CPA attacker selects a random value y or x in Zp to produce another input M21||M22 or M1. 
Even more, the IND-CPA attacker can give the random selected value as an extra input for the 

algorithm. Now if the algorithm gives out KAB, the IND-CPA attacker can compute 
1x

ABK
−

or 

， using which the IND-CPA attacker can compute the encrypted message and win the game 

with the same advantage as the suppose algorithm. The 

1y
ABK
−

2M ′  producer has used the KAB before 

2M ′  is received by A. So the KAB is not computed using the private key of A when 2M ′  is 

created. So the 2M ′  producer must be B. Since the KAB involves random value y, the probability 

of another oracle  selecting the same value y is only 1/p. So if there is q,
t
B AΠ I times 

Instantiate queries, the maximal probability of y-collision is (qI −2)/p. So the lemma holds with a 
probability 1− ((qI −2)/p) at least. 

Case 2: Suppose oracle ,
s
B AΠ  acts as a responder. If oracle ,

s
B AΠ  accepts, according to 

the protocol, the equation 3M ′  = V_M3 holds. Before computing V_M3, the responder has a 

view of ( 1M ′ , M2, 3M ′ ), where M2 is produced by the responder and other messages are received 

by the responder. V_M3 = H(KBA || M21|| M22|| 1M ′ ) is computed locally by the responder after the 

3M ′  is received. As in case 1, 3M ′  must be computed as the same as V_M3, such that 3M ′  = 

H(KBA || M21|| M22|| 1M ′ ). So the 3M ′  producer must have access to all the elements involved in 

the 3M ′  computing. As in case 1, the KAB can be computed only by A or B using their private 

keys. The KAB involves random values x and y, where the value y is selected by the responder. But 

before 3M ′  is received, the responder only used the KAB in the M23 computation, which was 



equal to 3M ′  with probability less than 1/p (if IDA=IDB and x=y). For oracle  as imitator 

selecting x to produce

B ,
t
B XΠ

3M ′ , the probability of x = y is only 1/p for one Instantiate query. For 

oracle  as other responder selecting y to produce,
t
B XΠ 3M ′ , the probability is less than 1/p  

for one Instantiate query. So 

2

3M ′  is produced by A with probability 1−2/p−1/p  for one 

Instantiate query. We claim that oracle  that produced 

2

,
t
A XΠ 3M ′  must have selected the 

random value x appears in 1M ′ . Since the random value y is selected by the responder, the oracle 

 does not know the value y with probability 1−1/p. If the value x in ,
t
A XΠ 1M ′  is not selected 

by the oracle , then the probability of oracle  knowing value x is only 1/p. So with 

probability 1−2/p,  do not know x or y if x is not selected by . The oracle  

can access to A’s private key by default. It can also access public messages M

,
t
A XΠ ,

t
A XΠ

,
t
A XΠ ,

t
A XΠ ,

t
A XΠ

21|| M22|| 1M ′ . We 

enhance the ability of  by giving the private key of B to this oracle. Then  knows 

e(g,h) , e(g,h) . If  produced 

,
t
A XΠ ,

t
A XΠ

x y
,

t
A XΠ 3M ′ ,  knows e(g,h) . However,  does not 

know x or y with probability 1−2/p. This implies a contradiction to CDH problem in the G

,
t
A XΠ xy

,
t
A XΠ

T 

group. So the 3M ′  producer also produced 1M ′ . Since IDBB is included in 1M ′ ,  should 

be . If there is q

,
t
A XΠ

,
t
A BΠ I times Instantiate queries, the overall probability of the view ( 1M ′ , M2, 

3M ′ ) belonging to the oracle  is (1−(1+ q,
t
A BΠ I) /p − qI /p2)(1−2 /p) at least. 

To sum, the conclusion is that if an initiator oracle ,
s
A BΠ  accepts, there is only one 

responder oracle ,
s
B A
′Π  whose view was identical to the view of ,

s
A BΠ  just before the oracle 

,
s
A BΠ  accepts with a probability 1− ((qI −2)/p); if an responder oracle ,

s
B AΠ  accepts, there is 

only one initiator oracle ,
s
A B
′Π  whose view was identical to the view of ,

s
B AΠ  just before the 

oracle ,
s
B AΠ  accepts with a probability (1−(1+ qI) /p− qI /p2)(1−2 /p).                 

TH 3: The AdvA with (q−1) times Extract queries in the defined model is negligible if the 
truncated decision q-ABDHE problem is hard. 
Proof. Let A be an adversary who has non-negligible AdvA in the defined model. We construct 



an algorithm B solves the truncated decisional q-ABDHE problem. 
 B takes as input a random truncated decision q-ABDHE challenge (g′, g′q+2, g, g1 ,…, gq, 
Z), where Z is either e(gq+1, g′) or a random element of GT. Algorithm B proceeds as follows. 
Setup: B generates a random polynomial f(z) ∈ Zp[z] of degree q. It sets h=gf(α), computing h 
from (g, g1, … , gq). Other public parameters gT and H is defined as the protocol usual 
definition. The public parameters are (g, g1, h, gT, H). There is no master-key belonging to B. 
Queries: 

 Instantiate (i, j, s): B sets up a new oracle ,
s
i jΠ . 

 Extract (i): If i = α, B uses α to solve truncated decision q-ABDHE immediately. Else, let 
Fi(z) denote the (q −1) degree polynomial (f(z) − f(i))/(z −i). B computes (ri, hi) to be (f(i), 

( )iFg α ). This is a valid private key for i, since ( )iFg α = g(f(z) − f(i))/(z −i) = (hg−f(i))1/(α−i) as 

required. B gives (ri, hi) to the adversary as response. Since the number of Extract queries is 
less than (q −1) and f(z) is random selected, the generated private key has identical 
distribution as in a real protocol context. 

 Send ( ,
s
i jΠ , X). Suppose that B guesses the oracle ,

s
I JΠ  is to be tested. The matching 

oracle of ,
s
I JΠ  is ,

t
J IΠ  that receives the first message sent by ,

s
I JΠ  or sends the first 

message received by ,
s
I JΠ . Generally, suppose that ,

s
I JΠ  is the initiator. B will compute 

M1, M2 and M3 as follows for the two oracles when needed. 

Let f2(z) = zq+2 and let = (f2, ( )JF z 2(z) − f2(J))/(z − J), which is a polynomial of degree q +1. 

M11 = 2 2( ( ) ( ))f f J xg α −′ ⋅  and M12 = 2, ,

0

( , )
l

J l

q
Fx x

l

Z e g g α

=

′⋅ ∏  where random value x is selected 

as in our protocol definition. 

M21 = , M1( I yg g − ) 22 = , My
Tg 23 = H(KJI|| M11|| M12|| M21|| M22), where random value y is 

selected as in our protocol definition and KJI is calculated as follows: 

2, ,2 2

11 12

( ( ) ( )) ( ( ) ( )) /( ) ( )

0

(( ) , )(( ) )

      ( , ) ( ( , ))

J

l
J l

ry y
JI J

q
Ff f J f x f J x J xy xyf J

l

K e M h M

e g g Z e g g αα − − −

=

=

′ ′= ⋅ ∏
. 

M3 = H(KJI|| M21|| M22||M11|| M12) where KJI is obtained from the oracle ,
t
J IΠ .  

B will set the status of oracle ,
s
I JΠ  as accepted if B checks that the view of ,

s
I JΠ  is 

exactly the specially produced messages just before the special M3 is sent out. B will set the 

status of oracle ,
t
J IΠ  as accepted if B checks that the view of ,

t
J IΠ  is exactly the specially 

produced messages after the special M3 is received. For any other Send queries that are not 



related to the above two oracles, B will act exactly according to the protocol specification. 

 Reveal ( ,
s
i jΠ ). If the query is to reveal the session key of ,

s
I JΠ  or ,

t
J IΠ , the guessed 

oracle to be tested or its matching oracle if any, B will stop the game with a Fail output. Else, 

B gives the session key hold by the oracle ,
s
i jΠ . Note that our protocol sets session key 

after an accept decision is made. Before the accept decision, the Reveal query will be 
responded by a λ symbol. 

 Corrupt ( ,
s
i jΠ ). If the query is to corrupt ,

s
I JΠ  or ,

t
J IΠ , B will stop the game with a Fail 

output. Else, B gives all internal variables of ,
s
i jΠ  to the adversary. 

 Test ( ,
s
i jΠ ). If B made a wrong guess, B stops the game with a Fail output. Else, B gives the 

KJI to the adversary. 
Output: 
B will forward the output of our adversary to the truncated decision q-ABDHE challenger as a 
response. 
Analysis: 
If B does not stop before the output event, the simulation is indistinguishable. First, from the 
viewpoint of the adversary, the only chance to distinguish the simulation is to analyze the 
messages M1, M2 and M3. The reason is that the output of Extract query has identical 
distribution as in a real protocol context, and that the outputs of other queries are generated 
according to the protocol specification or the model rules. Next let’s focus on the doubtable 

messages. Assume 2,(log ) ( )g Js g F α′= , then M11 = ( )xs Jg α− . If Z = , M1( ,qe g g+ ′) 12 = 

xs
Tg  and ( , )xsy

JIK e g h= . So the messages M1, M2 and M3 have identical distribution as in a 

real protocol context in this case. If Z ≠ 1( ,qe g g+ )′ , then the distribution of M12, M23 and M3 are 

not the same as in a real protocol context. If the adversary can distinguish the two distributions, 

then the adversary can distinguish the value Z from 1( ,qe g g+ )′ , which contradicts the truncated 

decision q-ABDHE assumption. 
If the simulation is indistinguishable, the adversary should give a qualified output. So if B 

does not stop before the output event, the adversary will give “0” to identify the real session key 
or “1” to identify the random value. Since what the adversary obtained from the Test query is 

just KJI, which is a real session key if Z = 1( ,qe g g+ )′  or a random value if not, B can use 

adversary’s output to solve the truncated decision q-ABDHE problem with an identical advantage. 
Now we calculate the probability that B does not stop. If B made a right guess, then there is 

no stop event before output because a right guess means that the guessed oracle is fresh before the 
Test query and it is limited not to be revealed or corrupted before output and after test query. Due 
to the definition of fresh, we know that the adversary has not reveal, corrupt the guessed query or 



its matching oracle and that has not Extract the private key of I or J before Test. So the probability 
that B does not stop equals to the probability of right guess, which is at least 1/q.          

5. Conclusion 

 We proposed a modified BR style proof model and an ID-based protocol. The modified 
model can capture more security properties and facilitate the direct reduction to contradictions 
proof method in protocol security proof. The ID-based protocol is an explicit authenticated key 
agreement protocol without signatures and with a standard model proof. 
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