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Abstract. In this paper, we demonstrate that the construction proposed by Lan
Nguyen at CT-RSA’05 does lead to a cryptographic accumulator which isnot
collision resistant.
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1 Introduction

A cryptographic accumulator is an algorithm allowing the aggregation of a large set
of elements into a single value of constant size. Accumulators were introduced by Be-
lanoh and de Mare [2] in order to design distributed protocols without the presence of
a trusted central authority. Such constructions are used intime-stamping [2], fail-stop
signatures [1], ring signatures [4] and multicast stream authentication [5] for instance.
Camenisch and Lysyanskaya introduced the notion of dynamicaccumulators which al-
low the addition and deletion of values from the original setof elements [3]. In2005,
Nguyen proposed a dynamic accumulator based on bilinear pairings to design ID-based
ad-hoc anonymous identification schemes and identity escrow protocols with member-
ship revocation.

In this article we demonstrate that the accumulator suggested by Nguyen is not col-
lision resistant which constitutes a main weakness for the different constructions relying
on its security.

The rest of this paper is organized as follows. In the next section, we will recall the
definitions and results from the original paper by Nguyen [7]. In Sect. 3, we will design
our attack against the collision resistance of Nguyen’s accumulator.



2 Preliminaries

In this section, we recall the definitions and constructionsas they appear in Nguyen’s
article [7].

2.1 Notations and Terminology

Definition 1. A functionf : IN→ IR+ is said to benegligibleif:

∀α > 0∃`0 ∈ IN : ∀` > `0 f(`) < `−α

Definition 2. A functionf : IN→ IR+ is said to bepolynomially boundedif:

∃α0 > 0 : ∀` ∈ IN f(`) < `α0

We denoteZZp the set of residues{0, . . . , p − 1} modulop. We consider two additive
cyclic groupsG1 =< P1 > andG2 =< P2 > as well as a cyclic multiplicative group
GM . These three groups are assumed to have the same prime orderp. We assume that
we have a bilinear pairinge : G1 ×G2 → GM such that:
1.∀(P,Q) ∈ G1 ×G2 ∀(a, b) ∈ ZZp× ZZp e(aP, bQ) = e(P,Q)

a b

2. e(·, ·) is not degenerated:e(P1, P2) 6= 1
3. There exists a computationally efficient algorithm to computee(P,Q) for every cou-
ple (P,Q) from G1 ×G2.

As in [7], we considerG1 = G2 (and thusP1 = P2) in the remaining of this article.
We have the following definition:

Definition 3. A bilinear pairing instance generatoris a probabilistic polynomial-time
(PPT)algorithmG taking as input a security parameter1` and returning a uniformly
random tuplet = (p, G1, GM, e(·, ·), P ) of bilinear pairing parameters defined as be-
fore wherè represents the length of the prime numberp andG1 =< P >.

We now present the definition of accumulators and the collision resistance property as
set by Nguyen in [7].

Definition 4. Anaccumulatoris a tuple({X`}`∈IN
, {F`}`∈IN

), where{X`}`∈IN
is called

thevalue domainof the accumulator and{F`}`∈IN
is a sequence of pairs of functions

such that each(f, g) ∈ F` is defined asf : Uf × Xext
f → Uf for someXext

f ⊃ X` and
g : Uf → Ug is a bijective function. In addition the following properties are satisfied:

(Efficient Generation)There exists an efficient algorithmG taking as input a security
parameter1` and outputting a random element(f, g) from F` possibly together with
some auxiliary informationaf .

(Quasi-commutativity)∀` ∈ IN ∀(f, g) ∈ F` ∀u ∈ Uf ∀(x1, x2) ∈ X` × X`

f(f(u, x1), x2) = f(f(u, x2), x1). For any` ∈ IN, (f, g) ∈ F` andX := {x1, . . . , xq}
⊂ X`, we callg(· · · f(u, x1) · · · , xq) theaccumulated valueof the setX overu. It does
not depend on the order of the elements to be evaluated and is denotedf(u, X).

(Efficient Evaluation)For any (f, g) ∈ F`, u ∈ Uf and X ⊂ X` with polynomially
bounded size (as a function of`), g(f(u, X)) is computable in time polynomial iǹ
even without the knowledge ofaf .



Nguyen set the previous definition to generalize the accumulator constructions by Ca-
menisch and Lysyanskaya [3] and Dodis et al. [4] whereUf = Ug and the bijective
functiong is the identity function.

Definition 5 (Collision Resistant Accumulator).An accumulator is said to becolli-
sion resistantif for every PPT algorithmA, the function:

Advcol.acc
A (`) := Prob

(

(f, g)
R
← F`;u

R
← Uf ; (x,w, X)← A(f, g, Uf , u) |

(X ⊂ X`) ∧ (w ∈ Ug) ∧ (x ∈ Xext
f \ X) ∧ (f(g−1(w), x) = f(u, X))

)

is negligible as a function of̀. We say thatw is a witnessfor the fact thatx ∈ X` has
been accumulated inv ∈ Ug wheneverg(f(g−1(w), x)) = v.

We now introduce theq−Strong Diffie Hellman (q−SDH) assumption as it was used
by Nguyen to prove the security of his construction.

Definition 6. Theq−SDHassumption states that for every PPT algorithmA, the func-
tion:

Advq-SDH
A

(`) := Prob
((

A(t, P, s P, . . . , sq P ) =
(

c, 1

s+c
P
))

∧ (c ∈ ZZp)
)

is negligible as a function of̀wheret = (p, G1, GM, e(·, ·), P )← G(1`) ands
R
← ZZ∗

p.

2.2 Construction of the Accumulator

To generate an instance of the accumulator from the securityparameter̀ , we run the
algorithmG on input1` to obtain a tuplet and a uniformly chosen elements fromZZ∗

p as
in Definition 6. We construct a tuplet′ := (P, s P, . . . , sq P ) whereq is an upper bound
on the number of elements to be accumulated. The corresponding functions(f, g) for
this instance(t, t′) are defined as:

f : ZZp× ZZp −→ ZZp g : ZZp −→ G1

(u, x) 7−→ (x + s)u u 7−→ uP

This construction involves that we have: we have:

Uf = Xext
f = ZZp Ug = G1 X` = ZZp \ {−s}

It is clear thatf is quasi-commutative. In addition foru ∈ ZZp and a setX = {x1, . . . , xk}

⊂ ZZp \ {−s} wherek ≤ q, the accumulated valueg(f(u, X)) =

(

k
∏

i=1

(xi + s)u

)

P

is computable in time polynomial iǹ from the tuplet′ and without the knowledge of
the auxiliary informations [7].

We now recall the security theorem demonstrated by Nguyen:

Theorem 1 ([7]). The accumulator related to the pair(f, g) defined above provides
collision resistance if theq−SDHassumption holds, whereq is the upper bound on the
number of elements to be accumulated.



3 Breaking the Collision Resistance

In this section, we construct a PPT algorithmA which breaks the collision resistance
property of the accumulator with non-negligible probability. Since this will contradict
the result from Theorem 1, we will then show that the adversary reduction model to the
q−SDH assumption given by Nguyen was incorrect.

3.1 Our Attack

Algorithm Construction. According to Definition 5, the adversary is given the func-
tionsf andg as well asu and the setUf = ZZp. We build the following algorithm:

AlgorithmA
Input: The pair of functions(f, g) and the valueu.

1. Computes = f(1, 0)

2. Letk be any polynomial function of̀. Choose uniformly at randomk + 1 elements
of ZZp \ {−s} denotedx1, . . . , xk, x and setX := {x1, . . . , xk}.

3. Computeλ :=

k
∏

i=1

(xi + s)u modp and µ := (x + s)
−1 modp. Denoteξ :=

λµ modp and setw := g(ξ).

Output: The triple(x,w,X).

Correctness of the output.Due to Step2, we have:X ⊂ X` andx ∈ Xext
f \ X. From

Step3, we obtain:w ∈ Ug.

By construction ofX we have:f(u, X) =

k
∏

i=1

(xi + s)u modp. We also haveξ =

g−1(w) sinceg is invertible. We obtain the following equalities:

f(ξ, x) = (x + s) ξ modp

= (x + s)λµ modp

= (x + s) (x + s)
−1

λ modp

= λ modp

= λ

= f(u, X)

Therefore we have:f(g−1(w), x) = f(u, X). In addition the construction of the triple
(x,w, X) is deterministic (the valueµ always exists sincex 6= −s). So we obtain:

Advcol.acc
A (`) = 1

Running time. First it should be noticed that any operation (addition, multiplication,
inversion) inZZp can be done in quadratic time as a function of` [6]. That is, any of
these arithmetic operations can be performed inO(`2) bit operations.



Sincek is a polynomial function of̀ , we denote it asK(`). We can also assume that
picking one random element fromZZp \ {−s} requires polynomial timeR(`) (other-
wise it would be computationally infeasible to construct a single family of elements
from ZZp \ {−s} = X` which is not a realistic assumption). Thus Step2 is executed in
(K(`) + 1)R(`) bit operations.

Sinces has been obtained at Step1 (usingO(`2) bit operations), one can getλ with k

multiplications andk additions inZZp representingO(K(`) `2) bit operations. Each of
the two elements,µ andξ, also needsO(`2) bit operations to be computed whileg can
be run in polynomial timeG(`). Therefore the number of bit operations executed during
Step3 is O(K(`) `2 + G(`)).

As a consequence, the running time ofA is:

O(`2) + (K(`) + 1)R(`) + O(K(`) `2 + G(`)) = O(K(`)R(`) `2 + G(`))

which is polynomial in the security parameter`.

ThereforeA is a PPT algorithm breaking the collision-resistance of theaccumulator
with non-negligible probability. Thus the accumulator is not collision-resistant. We
point out thatA enables to construct many such triples(x,w, X).

3.2 Comments on the Original Security Proof

The proof of Theorem 1 given by Nguyen in [7] might be right butthe adversary reduc-
tion is not accurate. According from Definition 6, an enemy trying to break theq−SDH
assumption should only be provided with(t, P, z P, . . . , zq P ). Nevertheless the adver-
sary model of the accumulator allows the enemy to queryf andg. As a consequence,
it is easy for him to obtainz by a single query tof as in Step1 of A. Then he can
compute(z + c)

−1 modp in O(`2) bit operations forany c. Finally he runsg on that
inverse and obtain1

z+c
P . This means that theq−SDH assumption isneververified in

Nguyen’s enemy model. Thus the security benefit of Theorem 1 vanishes.

In order to be immune against our attack, Nguyen suggested toallow the adversary the
use of the compositiong◦f instead of bothf andg [8]. His new definition is as follows:

Definition 7. An accumulator is said to becollision resistantif for every PPT algorithm
A, the function:

Advcol.acc
A (`) := Prob

(

(f, g)
R
← F`;u

R
← Uf ; (x,w, X)← A(g ◦ f, Uf , u) |

(X ⊂ X`) ∧ (w ∈ Ug) ∧ (x ∈ Xext
f \ X) ∧ (f(g−1(w), x) = f(u, X))

)

is negligible as a function of̀. We say thatw is a witnessfor the fact thatx ∈ X` has
been accumulated inv ∈ Ug wheneverg(f(g−1(w), x)) = v.



One can notice that the enemy is still allowed access tog sinceu is given. The accuracy
of this new definition for collision resistance remains to bejustified. In order to apply
Theorem 1 it must be demonstrated that the view of an adversary wishing to break the
collision resistance of the accumulator can be reduced to the view of someone trying to
break theq−SDH assumption. In particular, it must be argued that giveng◦f, Uf , u and
the public parameters(t, t′), the adversary cannot get the secret values in polynomial
time with non-negligible probability (otherwise he can perform the same attack as in
Sect. 3.1).

4 Conclusion

In this paper, we showed that the construction from [7] did not give a collision resis-
tant accumulator. As a consequence, the security of the identity escrow protocol and
the ID-based identification scheme developed in [7] is not guaranteed any longer. The
reader may be aware that Zhang and Chen already exhibited problems in the ID-based
identification protocol [9]. Nevertheless they did not notice that the accumulator could
be directly attacked.
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