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Abstract. Pairing based cryptography is a new public key cryptographic scheme. The most
popular one is constructed by using the Weil pairing of elliptic curves. For a large prime `
which devides E(Fq), a subgroup G generated by Fq-rational point P of order l is embedded
into Fqk by using the Weil pairing for some positive integer k. Pairing-friendly curves are
required to have appropriately large q and `, and appropriately small k and ρ := log q/ log `.
Recently, Freeman-Scott-Teske proposed a method to obtain curves with small ρ for each fixed
k, following Brezing-Weng’s result which uses a cyclotomic field Q(ζk). But their result needs
an extension of Q(ζk) in many cases and therefore q and ` becomes extremely large. In this
article, for k = 2n with odd n, we propose an improved method without field extensions which
achieves small ρ. In some cases, we achieve the same value of ρ as in Freeman-Scott-Teske’s
result, but with smaller q and ` than Freeman-Scott-Teske’s result.
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1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which was proposed around
2000 by three important works due to Joux [9], Sakai-Ohgishi-Kasahara [12] and Boneh-Franklin
[2]. Sakai-Ohgishi-Kasahara and Boneh-Franklin constructed an identity-based encryption scheme by
using the Weil pairing of elliptic curves.

Let Fq be a finite field with q elements and E an elliptic curve defined over Fq. The finite abelian
group of Fq-rational points of E and its order are denoted by E(Fq) and ]E(Fq), respectively. Assume
that E(Fq) has a subgroup G of a large prime order. The most simple case is that E(Fq) = G, that
is, the order of E(Fq) is prime. Let ` be the order of G. We denote by E[`] the group of `-torsion
points of E(Fq) where Fq is an algebraic closure of Fq.

Roughly speaking, pairing based cryptography uses the fact that E(Fq) ⊂ E[`] can be embedded
into µ` ⊂ Fqk for some positive integer k by using the Weil pairing or some other pairing map. The
extension degree k is called embedding degree.

In pairing based cryptography, it is required that ` and qk should be sufficiently large but k and
the ratio log q/ log ` should be sufficiently small. An elliptic curve satisfying these conditions is called
a “pairing-friendly curve”. It is very important how to find pairing-friendly curves. There are many
works on this topic [10], [5], [4], [1], [11] and so on. Recently, Freeman-Scott-Teske [7] proposed a
method to obtain curves with small ρ, following Brezing-Weng’s result [4] which uses cyclotomic
fields. In Freeman-Scott-Teske’s method, take `(x) as a cyclotomic polynomial Φck for some integer
c and set a prime number ` := `(g) if `(g) is prime for some positive integer g. Note that g is a
primitive ckth root of unity in Z/`Z. As is stated in [7], the degree of `(x) is important to obtain
enough pairing-friendly curves with appropriate size of ` and q. Freeman-Scott-Teske’s method in [7]
needs extension of cyclotomic fields Q(ζk), that is, c > 1. So the degree of `(x) becomes large and
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therefore ` and q of obtained pairing-friendly curves become extremely large, greater than 200-bit in
many cases. In this article, for the case that the embedding degree is in the form k = 2n with odd n,
we propose an improved method which avoids to suitable curves for pairing based cryptosystem. We
show the table of values of the ratio ρ obtained by using our method as follows.

our result Freeman et al.
k ρ deg `(x) ρ deg `(x)
14 3/2(= 1.5) 6 4/3(= 1.33333 . . . ) 12
22 13/10(= 1.3)* 10 13/10(= 1.3) 20
26 7/6(= 1.16666 . . . )* 12 7/6(= 1.16666 . . . ) 24
34 9/8(= 1.125)* 16 9/8(= 1.125) 32
38 7/6(= 1.16666 . . . ) 18 10/9(= 1.11111 . . . ) 36

In the above table, the symbol * means that the ratio has the same value achieved by [7]. We emphasis
that our result is obtained without extending a cyclotomic field Q(ζk), whereas in [7] the case k = 2n
with odd n needs a field extension. Hence in the above cases, we achieve the same value of ρ as in
Freeman-Scott-Teske’s result [7], but with smaller q and ` than ones in [7].

2 Pairing based cryptosystem

Let K := Fq be a finite field with q elements and E an elliptic curve defined over K. The finite abelian
group of K-rational points of E and its order are denoted by E(K) and ]E(K), respectively. Assume
that E(K) has a subgroup G of a large prime order. The most simple case is that E(K) = G, that is,
the order of E(K) is prime. Let ` be the order of G. We denote by E[`] the group of `-torsion points
of E(K) where K is an algebraic closure of K.

For a positive integer ` coprime to the characteristic of K, the Weil pairing is a map

e` : E[`]× E[`] → µ` ⊂ K̂∗

where K̂ is the field extension of K generated by coordinates of all points in E[`], K̂∗ is a multiplicative
group of K̂ and µ` is the group of `th root of unity in K̂∗. For the details of the Weil pairing, see
[13] for example. The key idea of pairing based cryptography is based on the fact that the subgroup
G = 〈P 〉 is embedded into the multiplicative group µ` ⊂ K̂∗ via the Weil pairing.

The extension degree of the field extension K̂/K is called the “embedding degree” of E with
respect to `. It is known that E has the embedding degree k with respect to ` if and only if k is the
smallest integer such that m divides qk − 1. In pairing based cryptography, the following conditions
must be satisfied to make a system secure:

– the order ` of a prime order subgroup of E(Fq) should be large enough so that the discrete
logarithm on the group is computationally infeasible,

– qk should be large enough so that the discrete logarithm on the multiplicative group F∗qk is
computationally infeasible.

Moreover for efficient implementation of pairing based cryptosystem, the following are important:

– the embedding degree k should be appropriately small,
– the ratio log q/ log ` should be appropriately small.

Elliptic curves satisfying the above four conditions are called “pairing-friendly elliptic curves”.
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3 How to construct pairing-friendly elliptic curves

Here we consider a method to generate pairing-friendly elliptic curves for a given k using the CM
method. The aim of this method is to find an elliptic curve E over Fq with complex multiplication
with respect to −D such that ]E(Fq) = q + 1 − a has a large prime factor ` and k is the smallest
positive integer qk − 1 divisible by `. Note that the minimality condition of k yields that ` divides
Φk(q) where Φk(x) is the kth cyclotomic polynomial.

Required conditions for elliptic curves in this method are summarized as follows:

1. 4q − a2 = Db2,
2. q + 1− a ≡ 0 (mod `),
3. k is the smallest positive integer such that qk − 1 ≡ 0 (mod `).

Note that conditions (2) and (3) yield a− 1 is a primitive kth root of unity in F`.

3.1 Our method

In the following, we only consider the case that q = p is prime and k is of the form k = 2n where n
is odd.

First note that for k = 2n with odd n, if g is a primitive kth root of unity in a field K, then√−g = g(n+1)/2 lives in K. Our idea is to use this
√−g = g(n+1)/2 as

√−D. The advantage to
use such

√−D is that we do not need to extend a cyclotomic field Q(ζk) to obtain a small value of
ρ = log p/ log `.

Our method based on this idea is divided into two cases. In the following, we describe our method.
Let g be a positive integer such that ` := Φk(g) is a prime number. Then, g is a primitive kth

root of unity under modulo ` and
√−g ≡ g(n+1)/2 (mod `). Take D, a, b (0 < D, a, b < `)as follows:

D := g, a := g + 1, b :≡ (g − 1)g(n+1)/2/g (mod `).

Then, p = (a2 + Db2)/4 = O(gn+2) and ` = O(gϕ(n)), where ϕ denotes the Euler’s phi function.
Hence, in this case, we have ρ = (n + 2)/ϕ(n) as p, ` →∞. In particular, if n is a prime number,

we obtain ρ = (n + 2)/(n− 1).

Remark 1. The above method works well in most cases, but there are some unfortunate cases, for
example, n = 30. For n = 30, a2 + Db2 in the above has no chance to be divisible by 4. Taking b as
b = (g − 1)g(n−1)/2 = g8 − g7 without taking (mod `), we can make a2 + Db2 divisible by 4, but it
makes ρ greater than 2.

n ≡ 1 (mod 4). When n ≡ 1 (mod 4), we can improve the value of ρ.
Let g be a positive integer such that ` := Φk(g) is a prime number. Then, g is a primitive kth

root of unity under modulo ` and
√−g ≡ g(n+1)/2 (mod `). Note that g(n+1)/2 is also a primitive

kth root of unity under modulo `. Take D, a, b (0 < D, a, b < `)as follows:

D := g, a := g(n+1)/2 + 1, b :≡ (g(n+1)/2 − 1)g(n+1)/2/g (mod `).

Then, since

b ≡ (g(n+1)/2 − 1)g(n−1)/2 ≡ gn − g(n−1)/2 ≡ −1− g(n−1)/2 (mod `),

p = (a2 + Db2)/4 = O(gn+1) and ` = O(gϕ(n)).
Hence, in this case, we have ρ = (n + 1)/ϕ(n) as p, ` →∞. In particular, if n is a prime number,

we obtain ρ = (n + 1)/(n− 1).
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3.2 Table of values of ρ (as p, ` → ∞).

We show the table of values of ρ obtained by our method for k = 2n with odd n, 6 < n < 20 but
n 6= 15.

k ρ deg `(x)
14 3/2(= 1.5) 6
18 5/3(= 1.66666 . . . ) 6
22 13/10(= 1.3)* 10
26 7/6(= 1.16666 . . . )* 12
34 9/8(= 1.125)* 16
38 7/6(= 1.16666 . . . ) 18

In the above table, the symbol * means that the ratio is the same value achieved by [7]. We
emphasis that our result is obtained without extending a cyclotomic field Q(ζk), whereas in [7] the
case k = 2n with odd n needs a field extension. Hence in the above cases, we achieve the same value
of ρ as in Freeman-Scott-Teske’s result [7], but with smaller q and ` than ones in [7].

3.3 Examples

We show some examples obtained by our method.
The case k = 2n with n ≡ 3 (mod 4).

k 14
g 94906471 = 112 · 784351 (not square free)

log g 26.500003121967254
a 94906472
b 81130339815368566417287197368170
b′ 11b =892433737969054230590159171049870
l 730760299020460302123530927476913237603395176511
p 156171730858874425623130807894467741045481485260496599196627111790004671

log l 160
log p 237

log p/ log l 1.48742
g 94907647 (square free)

log g 26.500020998502315
a 94907648
b 81134361081873541386683178009858
l 730814630451781170954872473773075062791521390343
p 156189148043546959726960325690688260554901983647491100761104666801301503

log l 160
log p 237

log p/ log l 1.48742
k 22
g 64537 (square free)

log g 15.977838895308661
a 64538
b 72251340785037749983512068952
l 1253374932065614913020027745090503713472041863353
p 84224919324693437514264627033473942716577450890477842713439673

log l 160
log p 206

log p/ log l 1.28748
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k 38
g 1483 (square free)

log g 10.53430288245463
a 1484
b 51418400525474957138140623118446
l 1202951086100451498102340799609450549362206468742785844447
p 980208096595769061399824580668089368168014940054616269874127960671

log l 190
log p 219

log p/ log l 1.15611

The case k = 2n with n ≡ 1 (mod 4).
k 18
g 94906623 (square free)

log g 26.500005432552275
a 7699855983294175985742107952727180889344
b -81130860417340694818970726128642
l 730767328960794658374478759845478477419642392323
p 14821945697041765687773625382217321241579116867133148076094462814012058758352127

log l 160
log p 264

log p/ log l 1.65409
k 26
g 9779 (square free)

log g 13.255471227467067
a 8551870640210380614813972060
b -874513819430451029227322
l 764696222581341148650511408773719240195697919573
p 18285492543987287680645893866289922483693928837435505359

log l 160
log p 184

log p/ log l 1.15410
k 34
g 2743 (square free)

log g 11.421538906848276
a 8790878313605026490203306721144
b -3204840799710181002626068802
l 10267261474026538061953029801463094309944057146657157201
p 19326928722523970823211392049806096197843339094443289507368327

log l 183
log p 204

log p/ log l 1.11406
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