How to construct pairing-friendly curves for the embedding degree k = 2n, n is an odd prime

Aya Comuta¹, Mitsuru Kawazoe², and Tetsuya Takahashi²

Graduate School of Science
 Osaka Prefecture University
 Faculty of Liberal Arts and Sciences
 Osaka Prefecture University
 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
 {kawazoe, takahasi}@las.osakafu-u.ac.jp

Abstract. Pairing based cryptography is a new public key cryptographic scheme. The most popular one is constructed by using the Weil pairing of elliptic curves. For a large prime ℓ which devides $E(\mathbb{F}_q)$, a subgroup G generated by \mathbb{F}_q -rational point P of order ℓ is embedded into \mathbb{F}_{q^k} by using the Weil pairing for some positive integer ℓ . Pairing-friendly curves are required to have appropriately large ℓ and ℓ , and appropriately small ℓ and ℓ is each fixed ℓ , following Brezing-Weng's result which uses a cyclotomic field $\mathbb{Q}(\zeta_k)$. But their result needs an extension of $\mathbb{Q}(\zeta_k)$ in many cases and therefore ℓ and ℓ becomes extremely large. In this article, for ℓ and ℓ with odd ℓ , we propose an improved method without field extensions which achieves small ℓ . In some cases, we achieve the same value of ℓ as in Freeman-Scott-Teske's result, but with smaller ℓ and ℓ than Freeman-Scott-Teske's result.

Keywords: Pairing based cryptosystem, Elliptic curves, Weil pairing

1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which was proposed around 2000 by three important works due to Joux [9], Sakai-Ohgishi-Kasahara [12] and Boneh-Franklin [2]. Sakai-Ohgishi-Kasahara and Boneh-Franklin constructed an identity-based encryption scheme by using the Weil pairing of elliptic curves.

Let \mathbb{F}_q be a finite field with q elements and E an elliptic curve defined over \mathbb{F}_q . The finite abelian group of \mathbb{F}_q -rational points of E and its order are denoted by $E(\mathbb{F}_q)$ and $\sharp E(\mathbb{F}_q)$, respectively. Assume that $E(\mathbb{F}_q)$ has a subgroup G of a large prime order. The most simple case is that $E(\mathbb{F}_q) = G$, that is, the order of $E(\mathbb{F}_q)$ is prime. Let ℓ be the order of G. We denote by $E[\ell]$ the group of ℓ -torsion points of $E(\overline{\mathbb{F}_q})$ where $\overline{\mathbb{F}_q}$ is an algebraic closure of \mathbb{F}_q .

Roughly speaking, pairing based cryptography uses the fact that $E(\mathbb{F}_q) \subset E[\ell]$ can be embedded into $\mu_{\ell} \subset \mathbb{F}_{q^k}$ for some positive integer k by using the Weil pairing or some other pairing map. The extension degree k is called *embedding degree*.

In pairing based cryptography, it is required that ℓ and q^k should be sufficiently large but k and the ratio $\log q/\log \ell$ should be sufficiently small. An elliptic curve satisfying these conditions is called a "pairing-friendly curve". It is very important how to find pairing-friendly curves. There are many works on this topic [10], [5], [4], [1], [11] and so on. Recently, Freeman-Scott-Teske [7] proposed a method to obtain curves with small ρ , following Brezing-Weng's result [4] which uses cyclotomic fields. In Freeman-Scott-Teske's method, take $\ell(x)$ as a cyclotomic polynomial Φ_{ck} for some integer c and set a prime number $\ell := \ell(g)$ if $\ell(g)$ is prime for some positive integer g. Note that g is a primitive ckth root of unity in $\mathbb{Z}/\ell\mathbb{Z}$. As is stated in [7], the degree of $\ell(x)$ is important to obtain enough pairing-friendly curves with appropriate size of ℓ and q. Freeman-Scott-Teske's method in [7] needs extension of cyclotomic fields $\mathbb{Q}(\zeta_k)$, that is, c > 1. So the degree of $\ell(x)$ becomes large and

therefore ℓ and q of obtained pairing-friendly curves become extremely large, greater than 200-bit in many cases. In this article, for the case that the embedding degree is in the form k=2n with odd n, we propose an improved method which avoids to suitable curves for pairing based cryptosystem. We show the table of values of the ratio ρ obtained by using our method as follows.

	our result		Freeman et al.	
k	ρ	$\deg \ell(x)$	ρ	$\deg \ell(x)$
14	3/2(=1.5)	6	4/3 (= 1.333333)	12
22	13/10(=1.3)*	10	13/10(=1.3)	20
26	$7/6 (= 1.16666)^*$	12	7/6 (= 1.16666)	24
34	9/8 (= 1.125)*	16	9/8 (= 1.125)	32
38	7/6 (= 1.16666)	18	10/9 (= 1.111111)	36

In the above table, the symbol * means that the ratio has the same value achieved by [7]. We emphasis that our result is obtained without extending a cyclotomic field $\mathbb{Q}(\zeta_k)$, whereas in [7] the case k=2n with odd n needs a field extension. Hence in the above cases, we achieve the same value of ρ as in Freeman-Scott-Teske's result [7], but with smaller q and ℓ than ones in [7].

2 Pairing based cryptosystem

Let $K:=\mathbb{F}_q$ be a finite field with q elements and E an elliptic curve defined over K. The finite abelian group of K-rational points of E and its order are denoted by E(K) and $\sharp E(K)$, respectively. Assume that E(K) has a subgroup G of a large prime order. The most simple case is that E(K)=G, that is, the order of E(K) is prime. Let ℓ be the order of G. We denote by $E[\ell]$ the group of ℓ -torsion points of $E(\overline{K})$ where \overline{K} is an algebraic closure of K.

For a positive integer ℓ coprime to the characteristic of K, the Weil pairing is a map

$$e_{\ell}: E[\ell] \times E[\ell] \to \mu_{\ell} \subset \hat{K}^*$$

where \hat{K} is the field extension of K generated by coordinates of all points in $E[\ell]$, \hat{K}^* is a multiplicative group of \hat{K} and μ_{ℓ} is the group of ℓ th root of unity in \hat{K}^* . For the details of the Weil pairing, see [13] for example. The key idea of pairing based cryptography is based on the fact that the subgroup $G = \langle P \rangle$ is embedded into the multiplicative group $\mu_{\ell} \subset \hat{K}^*$ via the Weil pairing.

The extension degree of the field extension \hat{K}/K is called the "embedding degree" of E with respect to ℓ . It is known that E has the embedding degree k with respect to ℓ if and only if k is the smallest integer such that m divides $q^k - 1$. In pairing based cryptography, the following conditions must be satisfied to make a system secure:

- the order ℓ of a prime order subgroup of $E(\mathbb{F}_q)$ should be large enough so that the discrete logarithm on the group is computationally infeasible,
- $-q^k$ should be large enough so that the discrete logarithm on the multiplicative group $\mathbb{F}_{q^k}^*$ is computationally infeasible.

Moreover for efficient implementation of pairing based cryptosystem, the following are important:

- the embedding degree k should be appropriately small,
- the ratio $\log q/\log \ell$ should be appropriately small.

Elliptic curves satisfying the above four conditions are called "pairing-friendly elliptic curves".

3 How to construct pairing-friendly elliptic curves

Here we consider a method to generate pairing-friendly elliptic curves for a given k using the CM method. The aim of this method is to find an elliptic curve E over \mathbb{F}_q with complex multiplication with respect to -D such that $\sharp E(\mathbb{F}_q) = q+1-a$ has a large prime factor ℓ and k is the smallest positive integer q^k-1 divisible by ℓ . Note that the minimality condition of k yields that ℓ divides $\Phi_k(q)$ where $\Phi_k(x)$ is the kth cyclotomic polynomial.

Required conditions for elliptic curves in this method are summarized as follows:

- 1. $4q a^2 = Db^2$,
- 2. $q+1-a \equiv 0 \pmod{\ell}$,
- 3. k is the smallest positive integer such that $q^k 1 \equiv 0 \pmod{\ell}$.

Note that conditions (2) and (3) yield a-1 is a primitive kth root of unity in \mathbb{F}_{ℓ} .

3.1 Our method

In the following, we only consider the case that q = p is prime and k is of the form k = 2n where n is odd.

First note that for k=2n with odd n, if g is a primitive kth root of unity in a field K, then $\sqrt{-g}=g^{(n+1)/2}$ lives in K. Our idea is to use this $\sqrt{-g}=g^{(n+1)/2}$ as $\sqrt{-D}$. The advantage to use such $\sqrt{-D}$ is that we do not need to extend a cyclotomic field $\mathbb{Q}(\zeta_k)$ to obtain a small value of $\rho=\log p/\log \ell$.

Our method based on this idea is divided into two cases. In the following, we describe our method. Let g be a positive integer such that $\ell := \Phi_k(g)$ is a prime number. Then, g is a primitive kth root of unity under modulo ℓ and $\sqrt{-g} \equiv g^{(n+1)/2} \pmod{\ell}$. Take D, a, b (0 < D, a, $b < \ell$) as follows:

$$D := g,$$
 $a := g + 1,$ $b :\equiv (g - 1)g^{(n+1)/2}/g \pmod{\ell}.$

Then, $p = (a^2 + Db^2)/4 = O(q^{n+2})$ and $\ell = O(q^{\varphi(n)})$, where φ denotes the Euler's phi function.

Hence, in this case, we have $\rho = (n+2)/\varphi(n)$ as $p, \ell \to \infty$. In particular, if n is a prime number, we obtain $\rho = (n+2)/(n-1)$.

Remark 1. The above method works well in most cases, but there are some unfortunate cases, for example, n=30. For n=30, a^2+Db^2 in the above has no chance to be divisible by 4. Taking b as $b=(g-1)g^{(n-1)/2}=g^8-g^7$ without taking (mod ℓ), we can make a^2+Db^2 divisible by 4, but it makes ρ greater than 2.

 $n \equiv 1 \pmod{4}$. When $n \equiv 1 \pmod{4}$, we can improve the value of ρ .

Let g be a positive integer such that $\ell := \Phi_k(g)$ is a prime number. Then, g is a primitive kth root of unity under modulo ℓ and $\sqrt{-g} \equiv g^{(n+1)/2} \pmod{\ell}$. Note that $g^{(n+1)/2}$ is also a primitive kth root of unity under modulo ℓ . Take D, a, b (0 < D, a, $b < \ell$) as follows:

$$D := g,$$
 $a := g^{(n+1)/2} + 1,$ $b :\equiv (g^{(n+1)/2} - 1)g^{(n+1)/2}/g \pmod{\ell}.$

Then, since

$$b \equiv (g^{(n+1)/2} - 1)g^{(n-1)/2} \equiv g^n - g^{(n-1)/2} \equiv -1 - g^{(n-1)/2} \pmod{\ell},$$

$$p = (a^2 + Db^2)/4 = O(q^{n+1})$$
 and $\ell = O(q^{\varphi(n)})$.

Hence, in this case, we have $\rho = (n+1)/\varphi(n)$ as $p, \ell \to \infty$. In particular, if n is a prime number, we obtain $\rho = (n+1)/(n-1)$.

3.2 Table of values of ρ (as $p, \ell \to \infty$).

We show the table of values of ρ obtained by our method for k=2n with odd n, 6 < n < 20 but $n \neq 15$.

k	ρ	$\deg \ell(x)$
14	3/2(=1.5)	6
18	5/3 (= 1.66666)	6
22	13/10(=1.3)*	10
26	7/6 (= 1.16666)*	12
34	9/8 (= 1.125)*	16
38	7/6(=1.16666)	18

In the above table, the symbol * means that the ratio is the same value achieved by [7]. We emphasis that our result is obtained without extending a cyclotomic field $\mathbb{Q}(\zeta_k)$, whereas in [7] the case k=2n with odd n needs a field extension. Hence in the above cases, we achieve the same value of ρ as in Freeman-Scott-Teske's result [7], but with smaller q and ℓ than ones in [7].

3.3 Examples

We show some examples obtained by our method.

The case k = 2n with $n \equiv 3 \pmod{4}$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	k	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g	$94906471 = 11^2 \cdot 784351$ (not square free)
$\begin{array}{c} b \\ b \\ b \\ c \\$	$\log g$	26.500003121967254
$\begin{array}{c} b' & 11b = 892433737969054230590159171049870 \\ l & 730760299020460302123530927476913237603395176511 \\ p & 156171730858874425623130807894467741045481485260496599196627111790004671 \\ \log p & 160 \\ \log p & 237 \\ \log p/\log l & 1.48742 \\ g & 94907647 & (\text{square free}) \\ \log g & 26.500020998502315 \\ a & 94907648 \\ b & 81134361081873541386683178009858 \\ l & 730814630451781170954872473773075062791521390343 \\ p & 156189148043546959726960325690688260554901983647491100761104666801301503 \\ \log l & 160 \\ \log p & 237 \\ \log p/\log l & 1.48742 \\ \hline k & 22 \\ g & 64537 & (\text{square free}) \\ \log g & 15.977838895308661 \\ a & 64538 \\ b & 72251340785037749983512068952 \\ l & 1253374932065614913020027745090503713472041863353 \\ p & 84224919324693437514264627033473942716577450890477842713439673 \\ \log l & 160 \\ \log p & 206 \\ \hline \end{array}$		94906472
$\begin{array}{c} l \\ p \\ 156171730858874425623130807894467741045481485260496599196627111790004671 \\ \log l \\ \log l \\ \log p \\ 237 \\ \log p/\log l \\ 1.48742 \\ \hline g \\ \log g \\ 26.500020998502315 \\ a \\ 94907647 \\ (\text{square free}) \\ 0 \\ 3 \\ b \\ 81134361081873541386683178009858 \\ l \\ 730814630451781170954872473773075062791521390343 \\ p \\ 156189148043546959726960325690688260554901983647491100761104666801301503 \\ 0 \\ \log p \\ 237 \\ \log p/\log l \\ 1.48742 \\ \hline k \\ 22 \\ \hline g \\ 64537 \\ (\text{square free}) \\ \log g \\ 15.977838895308661 \\ a \\ 64538 \\ b \\ 72251340785037749983512068952 \\ l \\ 1253374932065614913020027745090503713472041863353 \\ p \\ 84224919324693437514264627033473942716577450890477842713439673 \\ \log l \\ 160 \\ \log p \\ 206 \\ \end{array}$	b	81130339815368566417287197368170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b'	11b = 892433737969054230590159171049870
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	730760299020460302123530927476913237603395176511
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p	156171730858874425623130807894467741045481485260496599196627111790004671
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\log l$	160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log p$	237
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\log p / \log l$	1.48742
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g	94907647 (square free)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log g$	26.500020998502315
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a	94907648
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b	81134361081873541386683178009858
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	730814630451781170954872473773075062791521390343
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p	156189148043546959726960325690688260554901983647491100761104666801301503
$\begin{array}{ c c c c c } \hline \log p/\log l & 1.48742 \\ \hline k & 22 \\ \hline g & 64537 \text{ (square free)} \\ \log g & 15.977838895308661 \\ a & 64538 \\ b & 72251340785037749983512068952 \\ l & 1253374932065614913020027745090503713472041863353 \\ p & 84224919324693437514264627033473942716577450890477842713439673 \\ \log l & 160 \\ \log p & 206 \\ \hline \end{array}$	$\log l$	160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\log p / \log l$	1.48742
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k	22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	g	64537 (square free)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\log g$	15.977838895308661
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a	64538
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b	72251340785037749983512068952
$ \begin{array}{c c} & 160 \\ & \log p & 206 \end{array} $	l	1253374932065614913020027745090503713472041863353
$\log p$ 206	p	84224919324693437514264627033473942716577450890477842713439673
	$\log l$	160
$\log p/\log l 1.28748$	01	
	$\log p / \log l$	1.28748

k	38
g	1483 (square free)
$\log g$	10.53430288245463
a	1484
b	51418400525474957138140623118446
l	1202951086100451498102340799609450549362206468742785844447
p	980208096595769061399824580668089368168014940054616269874127960671
$\log l$	190
$\log p$	219
$\log p / \log l$	1.15611

The case k = 2n with $n \equiv 1 \pmod{4}$.

ic case n —	$2n \text{ with } n \equiv 1 \pmod{4}$.	
k	18	
g	94906623 (square free)	
$\log g$	26.500005432552275	
a	7699855983294175985742107952727180889344	
b	-81130860417340694818970726128642	
l	730767328960794658374478759845478477419642392323	
p	14821945697041765687773625382217321241579116867133148076094462814012058758352127714821945697041765687773625382217321241579116867133148076094462814012058758352127714821945697041765687773625382217321241579116867133148076094462814012058758352127714821945697041765687773625382217321241579116867133148076094462814012058758352127714817148171481714817148171481714817	
$\log l$	160	
$\log p$	264	
$\log p / \log l$	1.65409	
\overline{k}	26	
g	9779 (square free)	
$\log g$	13.255471227467067	
a	8551870640210380614813972060	
b	-874513819430451029227322	
l	764696222581341148650511408773719240195697919573	
p	18285492543987287680645893866289922483693928837435505359	
$\log l$	160	
$\log p$	184	
$\log p / \log l$	1.15410	
\overline{k}	34	
g	2743 (square free)	
$\log g$	11.421538906848276	
a	8790878313605026490203306721144	
b	-3204840799710181002626068802	
l	10267261474026538061953029801463094309944057146657157201	
p	19326928722523970823211392049806096197843339094443289507368327	
$\log l$	183	
$\log p$	204	
$\log p / \log l$	1.11406	

References

- 1. P.S.L.M. Barreto M. Naehrig, *Pairing-friendly elliptic curves of prime order*, In Proceedings of SAC 2005 Workshop on Selected Areas in Cryptography, LNCS3897, pp. 319–331. Springer, 2006.
- 2. D. Boneh, M. Franklin, *Identity-based encryption from the Weil pairing*, SIAM Journal of Computing, **32**(3) (2003), pp. 586–615.
- 3. I.-F. Blake, G. Seroussi, N.-P. Smart, Advances in Elliptic Curve Cryptography, Cambridge University Press, 2005.

- 4. F. Brezing and A. Weng, *Elliptic curves suitable for pairing based cryptography*, Design, Codes and Cryptography, **37** (2005), pp. 133–141.
- 5. C. Cocks, R. G. E. Pinch, *Identity-based cryptosystems based on the Weil pairing*, Unpublished manuscript, 2001.
- 6. D. Freeman, Methods for constructing pairing-friendly elliptic curves, 10th Workshop on Elliptic Curves in Cryptography (ECC 2006), Toronto, Canada, September 2006.
- 7. D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves, preprint, 2006.
- 8. S. Galbraith, J. McKee, P. Valença, Ordinary abelian varieties having small embedding degree, In Proc. Workshop on Mathematical Problems and Techniques in Cryptology, pp. 29–45. CRM, Barcelona, 2005.
- 9. A. Joux, A one round protocol for tripartite Diffie-Hellman, In Algorithmic Number Theory Symposium ANTS-IV, volume 1838 of Lecture Notes in Computer Science, pp. 385–393. Springer-Verlag, 2000. Full version: Journal of Cryptology 17 (2004), 263–276.
- 10. A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Transactions on Fundamentals E84-A(5) (2001), pp. 1234–1243.
- 11. M. Scott, P.S.L.M. Barreto, *Generating more MNT elliptic curves*, Designs, Codes and Cryptography **38** (2006), pp. 209–217.
- 12. R. Sakai, K. Ohgishi, M. Kasahara, *Cryptosystem based on pairing*, In 2000 Symposium on Cryptography and Information Security (SCIS 2000), Okinawa, Japan, 2000.
- 13. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, 1986.