How to construct pairing-friendly curves for the embedding degree $k=2 n, n$ is an odd prime

Aya Comuta ${ }^{1}$, Mitsuru Kawazoe ${ }^{2}$, and Tetsuya Takahashi ${ }^{2}$
${ }^{1}$ Graduate School of Science
Osaka Prefecture University
${ }^{2}$ Faculty of Liberal Arts and Sciences
Osaka Prefecture University
1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
\{kawazoe, takahasi\}@las.osakafu-u.ac.jp

Abstract

Pairing based cryptography is a new public key cryptographic scheme. The most popular one is constructed by using the Weil pairing of elliptic curves. For a large prime ℓ which devides $E\left(\mathbb{F}_{q}\right)$, a subgroup G generated by \mathbb{F}_{q}-rational point P of order l is embedded into $\mathbb{F}_{q^{k}}$ by using the Weil pairing for some positive integer k. Pairing-friendly curves are required to have appropriately large q and ℓ, and appropriately small k and $\rho:=\log q / \log \ell$. Recently, Freeman-Scott-Teske proposed a method to obtain curves with small ρ for each fixed k, following Brezing-Weng's result which uses a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$. But their result needs an extension of $\mathbb{Q}\left(\zeta_{k}\right)$ in many cases and therefore q and ℓ becomes extremely large. In this article, for $k=2 n$ with odd n, we propose an improved method without field extensions which achieves small ρ. In some cases, we achieve the same value of ρ as in Freeman-Scott-Teske's result, but with smaller q and ℓ than Freeman-Scott-Teske's result.

Keywords: Pairing based cryptosystem, Elliptic curves, Weil pairing

1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which was proposed around 2000 by three important works due to Joux [9], Sakai-Ohgishi-Kasahara [12] and Boneh-Franklin [2]. Sakai-Ohgishi-Kasahara and Boneh-Franklin constructed an identity-based encryption scheme by using the Weil pairing of elliptic curves.

Let \mathbb{F}_{q} be a finite field with q elements and E an elliptic curve defined over \mathbb{F}_{q}. The finite abelian group of \mathbb{F}_{q}-rational points of E and its order are denoted by $E\left(\mathbb{F}_{q}\right)$ and $\sharp E\left(\mathbb{F}_{q}\right)$, respectively. Assume that $E\left(\mathbb{F}_{q}\right)$ has a subgroup G of a large prime order. The most simple case is that $E\left(\mathbb{F}_{q}\right)=G$, that is, the order of $E\left(\mathbb{F}_{q}\right)$ is prime. Let ℓ be the order of G. We denote by $E[\ell]$ the group of ℓ-torsion points of $E\left(\overline{\mathbb{F}_{q}}\right)$ where $\overline{\mathbb{F}_{q}}$ is an algebraic closure of \mathbb{F}_{q}.

Roughly speaking, pairing based cryptography uses the fact that $E\left(\mathbb{F}_{q}\right) \subset E[\ell]$ can be embedded into $\mu_{\ell} \subset \mathbb{F}_{q^{k}}$ for some positive integer k by using the Weil pairing or some other pairing map. The extension degree k is called embedding degree.

In pairing based cryptography, it is required that ℓ and q^{k} should be sufficiently large but k and the ratio $\log q / \log \ell$ should be sufficiently small. An elliptic curve satisfying these conditions is called a "pairing-friendly curve". It is very important how to find pairing-friendly curves. There are many works on this topic [10], [5], [4], [1], [11] and so on. Recently, Freeman-Scott-Teske [7] proposed a method to obtain curves with small ρ, following Brezing-Weng's result [4] which uses cyclotomic fields. In Freeman-Scott-Teske's method, take $\ell(x)$ as a cyclotomic polynomial $\Phi_{c k}$ for some integer c and set a prime number $\ell:=\ell(g)$ if $\ell(g)$ is prime for some positive integer g. Note that g is a primitive $c k$ th root of unity in $\mathbb{Z} / \ell \mathbb{Z}$. As is stated in [7], the degree of $\ell(x)$ is important to obtain enough pairing-friendly curves with appropriate size of ℓ and q. Freeman-Scott-Teske's method in [7] needs extension of cyclotomic fields $\mathbb{Q}\left(\zeta_{k}\right)$, that is, $c>1$. So the degree of $\ell(x)$ becomes large and
therefore ℓ and q of obtained pairing-friendly curves become extremely large, greater than 200-bit in many cases. In this article, for the case that the embedding degree is in the form $k=2 n$ with odd n, we propose an improved method which avoids to suitable curves for pairing based cryptosystem. We show the table of values of the ratio ρ obtained by using our method as follows.

	our result		Freeman et al.	
k	ρ	$\operatorname{deg} \ell(x)$	ρ	$\operatorname{deg} \ell(x)$
14	$3 / 2(=1.5)$	6	$4 / 3(=1.33333 \ldots)$	12
22	$13 / 10(=1.3)^{*}$	10	$13 / 10(=1.3)$	20
26	$7 / 6(=1.16666 \ldots)^{*}$	12	$7 / 6(=1.16666 \ldots)$	24
34	$9 / 8(=1.125)^{*}$	16	$9 / 8(=1.125)$	32
38	$7 / 6(=1.16666 \ldots)$	18	$10 / 9(=1.11111 \ldots)$	36

In the above table, the symbol * means that the ratio has the same value achieved by [7]. We emphasis that our result is obtained without extending a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$, whereas in [7] the case $k=2 n$ with odd n needs a field extension. Hence in the above cases, we achieve the same value of ρ as in Freeman-Scott-Teske's result [7], but with smaller q and ℓ than ones in [7].

2 Pairing based cryptosystem

Let $K:=\mathbb{F}_{q}$ be a finite field with q elements and E an elliptic curve defined over K. The finite abelian group of K-rational points of E and its order are denoted by $E(K)$ and $\sharp E(K)$, respectively. Assume that $E(K)$ has a subgroup G of a large prime order. The most simple case is that $E(K)=G$, that is, the order of $E(K)$ is prime. Let ℓ be the order of G. We denote by $E[\ell]$ the group of ℓ-torsion points of $E(\bar{K})$ where \bar{K} is an algebraic closure of K.

For a positive integer ℓ coprime to the characteristic of K, the Weil pairing is a map

$$
e_{\ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell} \subset \hat{K}^{*}
$$

where \hat{K} is the field extension of K generated by coordinates of all points in $E[\ell], \hat{K}^{*}$ is a multiplicative group of \hat{K} and μ_{ℓ} is the group of ℓ th root of unity in \hat{K}^{*}. For the details of the Weil pairing, see [13] for example. The key idea of pairing based cryptography is based on the fact that the subgroup $G=\langle P\rangle$ is embedded into the multiplicative group $\mu_{\ell} \subset \hat{K}^{*}$ via the Weil pairing.

The extension degree of the field extension \hat{K} / K is called the "embedding degree" of E with respect to ℓ. It is known that E has the embedding degree k with respect to ℓ if and only if k is the smallest integer such that m divides $q^{k}-1$. In pairing based cryptography, the following conditions must be satisfied to make a system secure:

- the order ℓ of a prime order subgroup of $E\left(\mathbb{F}_{q}\right)$ should be large enough so that the discrete logarithm on the group is computationally infeasible,
$-q^{k}$ should be large enough so that the discrete logarithm on the multiplicative group $\mathbb{F}_{q^{k}}^{*}$ is computationally infeasible.

Moreover for efficient implementation of pairing based cryptosystem, the following are important:

- the embedding degree k should be appropriately small,
- the ratio $\log q / \log \ell$ should be appropriately small.

Elliptic curves satisfying the above four conditions are called "pairing-friendly elliptic curves".

3 How to construct pairing-friendly elliptic curves

Here we consider a method to generate pairing-friendly elliptic curves for a given k using the CM method. The aim of this method is to find an elliptic curve E over \mathbb{F}_{q} with complex multiplication with respect to $-D$ such that $\sharp E\left(\mathbb{F}_{q}\right)=q+1-a$ has a large prime factor ℓ and k is the smallest positive integer $q^{k}-1$ divisible by ℓ. Note that the minimality condition of k yields that ℓ divides $\Phi_{k}(q)$ where $\Phi_{k}(x)$ is the k th cyclotomic polynomial.

Required conditions for elliptic curves in this method are summarized as follows:

1. $4 q-a^{2}=D b^{2}$,
2. $q+1-a \equiv 0(\bmod \ell)$,
3. k is the smallest positive integer such that $q^{k}-1 \equiv 0(\bmod \ell)$.

Note that conditions (2) and (3) yield $a-1$ is a primitive k th root of unity in \mathbb{F}_{ℓ}.

3.1 Our method

In the following, we only consider the case that $q=p$ is prime and k is of the form $k=2 n$ where n is odd.

First note that for $k=2 n$ with odd n, if g is a primitive k th root of unity in a field K, then $\sqrt{-g}=g^{(n+1) / 2}$ lives in K. Our idea is to use this $\sqrt{-g}=g^{(n+1) / 2}$ as $\sqrt{-D}$. The advantage to use such $\sqrt{-D}$ is that we do not need to extend a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$ to obtain a small value of $\rho=\log p / \log \ell$.

Our method based on this idea is divided into two cases. In the following, we describe our method.
Let g be a positive integer such that $\ell:=\Phi_{k}(g)$ is a prime number. Then, g is a primitive k th root of unity under modulo ℓ and $\sqrt{-g} \equiv g^{(n+1) / 2}(\bmod \ell)$. Take $D, a, b(0<D, a, b<\ell)$ as follows:

$$
D:=g, \quad a:=g+1, \quad b: \equiv(g-1) g^{(n+1) / 2} / g \quad(\bmod \ell) .
$$

Then, $p=\left(a^{2}+D b^{2}\right) / 4=O\left(g^{n+2}\right)$ and $\ell=O\left(g^{\varphi(n)}\right)$, where φ denotes the Euler's phi function.
Hence, in this case, we have $\rho=(n+2) / \varphi(n)$ as $p, \ell \rightarrow \infty$. In particular, if n is a prime number, we obtain $\rho=(n+2) /(n-1)$.

Remark 1. The above method works well in most cases, but there are some unfortunate cases, for example, $n=30$. For $n=30, a^{2}+D b^{2}$ in the above has no chance to be divisible by 4 . Taking b as $b=(g-1) g^{(n-1) / 2}=g^{8}-g^{7}$ without taking $(\bmod \ell)$, we can make $a^{2}+D b^{2}$ divisible by 4, but it makes ρ greater than 2 .
$\boldsymbol{n} \equiv \mathbf{1}(\bmod 4)$. When $n \equiv 1(\bmod 4)$, we can improve the value of ρ.
Let g be a positive integer such that $\ell:=\Phi_{k}(g)$ is a prime number. Then, g is a primitive k th root of unity under modulo ℓ and $\sqrt{-g} \equiv g^{(n+1) / 2}(\bmod \ell)$. Note that $g^{(n+1) / 2}$ is also a primitive k th root of unity under modulo ℓ. Take $D, a, b(0<D, a, b<\ell)$ as follows:

$$
D:=g, \quad a:=g^{(n+1) / 2}+1, \quad b: \equiv\left(g^{(n+1) / 2}-1\right) g^{(n+1) / 2} / g \quad(\bmod \ell)
$$

Then, since

$$
b \equiv\left(g^{(n+1) / 2}-1\right) g^{(n-1) / 2} \equiv g^{n}-g^{(n-1) / 2} \equiv-1-g^{(n-1) / 2} \quad(\bmod \ell)
$$

$p=\left(a^{2}+D b^{2}\right) / 4=O\left(g^{n+1}\right)$ and $\ell=O\left(g^{\varphi(n)}\right)$.
Hence, in this case, we have $\rho=(n+1) / \varphi(n)$ as $p, \ell \rightarrow \infty$. In particular, if n is a prime number, we obtain $\rho=(n+1) /(n-1)$.

3.2 Table of values of $\rho($ as $p, \ell \rightarrow \infty)$.

We show the table of values of ρ obtained by our method for $k=2 n$ with odd $n, 6<n<20$ but $n \neq 15$.

k	ρ	$\operatorname{deg} \ell(x)$
14	$3 / 2(=1.5)$	6
18	$5 / 3(=1.66666 \ldots)$	6
22	$13 / 10(=1.3)^{*}$	10
26	$7 / 6(=1.16666 \ldots)^{*}$	12
34	$9 / 8(=1.125)^{*}$	16
38	$7 / 6(=1.16666 \ldots)$	18

In the above table, the symbol * means that the ratio is the same value achieved by [7]. We emphasis that our result is obtained without extending a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$, whereas in [7] the case $k=2 n$ with odd n needs a field extension. Hence in the above cases, we achieve the same value of ρ as in Freeman-Scott-Teske's result [7], but with smaller q and ℓ than ones in [7].

3.3 Examples

We show some examples obtained by our method.
The case $k=2 n$ with $n \equiv 3(\bmod 4)$.

k	14
g	$94906471=11^{2} \cdot 784351$ (not square free)
$\log g$	26.500003121967254
a	94906472
b	81130339815368566417287197368170
b^{\prime}	$11 b=892433737969054230590159171049870$
l	730760299020460302123530927476913237603395176511
p	156171730858874425623130807894467741045481485260496599196627111790004671
$\log l$	160
$\log p$	237
$\log p / \log l$	1.48742
g	94907647 (square free)
$\log g$	26.500020998502315
a	94907648
b	81134361081873541386683178009858
l	730814630451781170954872473773075062791521390343
p	156189148043546959726960325690688260554901983647491100761104666801301503
$\log l$	160
$\log p$	237
$\log p / \log l$	1.48742
k	22
g	64537 (square free)
$\log g$	15.977838895308661
a	64538
b	72251340785037749983512068952
l	1253374932065614913020027745090503713472041863353
p	84224919324693437514264627033473942716577450890477842713439673
$\log l$	160
$\log p$	206
$\underline{\log p / \log l}$	1.28748

k	38
g	1483 (square free)
$\log g$	10.53430288245463
a	1484
b	51418400525474957138140623118446
l	1202951086100451498102340799609450549362206468742785844447
p	980208096595769061399824580668089368168014940054616269874127960671
$\log l$	190
$\log p$	219
$\log p / \log l$	1.15611

The case $k=2 n$ with $n \equiv 1(\bmod 4)$.

k	18
g	94906623 (square free)
$\log g$	26.500005432552275
a	7699855983294175985742107952727180889344
b	-81130860417340694818970726128642
l	730767328960794658374478759845478477419642392323
p	14821945697041765687773625382217321241579116867133148076094462814012058758352127
$\log l$	160
$\log p$	264
$\log p / \log l$	1.65409
k	26
g	9779 (square free)
$\log g$	13.255471227467067
a	8551870640210380614813972060
b	-874513819430451029227322
l	764696222581341148650511408773719240195697919573
p	18285492543987287680645893866289922483693928837435505359
$\log l$	160
$\log p$	184
$\log p / \log l$	$l .15410$
k	34
g	2743 (square free)
$\log g$	11.421538906848276
a	8790878313605026490203306721144
b	-3204840799710181002626068802
l	10267261474026538061953029801463094309944057146657157201
p	19326928722523970823211392049806096197843339094443289507368327
$\log l$	183
$\log p$	204
$\log p / \log l$	l

References

1. P.S.L.M. Barreto M. Naehrig, Pairing-friendly elliptic curves of prime order, In Proceedings of SAC 2005 Workshop on Selected Areas in Cryptography, LNCS3897, pp. 319-331. Springer, 2006.
2. D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing, SIAM Journal of Computing, 32(3) (2003), pp. 586-615.
3. I.-F. Blake, G. Seroussi, N.-P. Smart, Advances in Elliptic Curve Cryptography, Cambridge University Press, 2005.
4. F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography, Design, Codes and Cryptography, 37 (2005), pp. 133-141.
5. C. Cocks, R. G. E. Pinch, Identity-based cryptosystems based on the Weil pairing, Unpublished manuscript, 2001.
6. D. Freeman, Methods for constructing pairing-friendly elliptic curves, 10th Workshop on Elliptic Curves in Cryptography (ECC 2006), Toronto, Canada, September 2006.
7. D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves, preprint, 2006.
8. S. Galbraith, J. McKee, P. Valença, Ordinary abelian varieties having small embedding degree, In Proc. Workshop on Mathematical Problems and Techniques in Cryptology, pp. 29-45. CRM, Barcelona, 2005.
9. A. Joux, A one round protocol for tripartite Diffie-Hellman, In Algorithmic Number Theory Symposium ANTS-IV, volume 1838 of Lecture Notes in Computer Science, pp. 385-393. Springer-Verlag, 2000. Full version: Journal of Cryptology 17 (2004), 263-276.
10. A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Transactions on Fundamentals E84-A(5) (2001), pp. 1234-1243.
11. M. Scott, P.S.L.M. Barreto, Generating more MNT elliptic curves, Designs, Codes and Cryptography 38 (2006), pp. 209-217.
12. R. Sakai, K. Ohgishi, M. Kasahara, Cryptosystem based on pairing, In 2000 Symposium on Cryptography and Information Security (SCIS 2000), Okinawa, Japan, 2000.
13. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, 1986.
