How to construct pairing-friendly curves for the embedding degree $k=2 n, n$ is an odd prime

Aya Comuta ${ }^{1}$, Mitsuru Kawazoe ${ }^{2}$, and Tetsuya Takahashi ${ }^{2}$
${ }^{1}$ Graduate School of Science
Osaka Prefecture University
${ }^{2}$ Faculty of Liberal Arts and Sciences
Osaka Prefecture University
1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan
\{kawazoe, takahasi\}@las.osakafu-u.ac.jp

Abstract

Pairing based cryptography is a new public key cryptographic scheme. The most popular one is constructed by using the Weil pairing of elliptic curves. For the group $E\left(\mathbb{F}_{q}\right)$ of \mathbb{F}_{q}-rational points of an elliptic curve E defined over a finite field \mathbb{F}_{q} and a large prime ℓ which divides $E\left(\mathbb{F}_{q}\right)$, a subgroup G generated by a \mathbb{F}_{q}-rational point P of order ℓ is embedded into $\mathbb{F}_{q^{k}}$ by using the Weil pairing for some positive integer k. Suitable curves for pairing based cryptography, which is called pairing-friendly curves, are required to have appropriately large q and ℓ, and appropriately small k and $\rho:=\log _{2} q / \log _{2} \ell$. Recently, Freeman-Scott-Teske proposed a method to obtain pairing-friendly curves over a finite prime field \mathbb{F}_{p} with small $\rho=\log _{2} p / \log _{2} \ell$ for each fixed k, following Brezing-Weng's result which uses a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$. But since their method needs an extension of $\mathbb{Q}\left(\zeta_{k}\right)$ in many cases, p and ℓ become extremely large. In this article, for $k=2 n$ where n is an odd prime, we propose an improved method which achieves small ρ without a field extension. Though asymptotic values of ρ are not improved, our method produces more pairing-friendly curves than the Freeman-Scott-Teske's method does, for a given range of ℓ.

Keywords: Pairing based cryptosystem, Elliptic curves, Weil pairing

1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which was proposed around 2000 by three important works due to Joux [10], Sakai-Ohgishi-Kasahara [13] and Boneh-Franklin [2]. Sakai-Ohgishi-Kasahara and Boneh-Franklin constructed an identity-based encryption scheme by using the Weil pairing of elliptic curves.

Let \mathbb{F}_{q} be a finite field with q elements and E an elliptic curve defined over \mathbb{F}_{q}. The finite abelian group of \mathbb{F}_{q}-rational points of E and its order are denoted by $E\left(\mathbb{F}_{q}\right)$ and $\# E\left(\mathbb{F}_{q}\right)$, respectively. Assume that $E\left(\mathbb{F}_{q}\right)$ has a subgroup G of a large prime order. The most simple case is that $E\left(\mathbb{F}_{q}\right)=G$, that is, the order of $E\left(\mathbb{F}_{q}\right)$ is prime. Let ℓ be the order of G. We denote by $E[\ell]$ the group of ℓ-torsion points of $E\left(\overline{\mathbb{F}_{q}}\right)$ where $\overline{\mathbb{F}_{q}}$ is an algebraic closure of \mathbb{F}_{q}. In the following, we denote $\log _{2} x$ by $\lg x$.

Roughly speaking, pairing based cryptography uses the fact that the subgroup $G \subset E[\ell]$ can be embedded into the multiplicative group μ_{ℓ} of ℓ-th roots of unity in $\mathbb{F}_{q^{k}}^{*}$ for some positive integer k by using the Weil pairing or some other pairing map. The extension degree k is called embedding degree.

In pairing based cryptography, it is required that ℓ and q^{k} should be sufficiently large but k and the ratio $\lg q / \lg \ell$ should be appropriately small. An elliptic curve satisfying these conditions is called a "pairing-friendly curve". It is very important to construct an efficient method to find pairing-friendly curves. There are many works on this topic: [11], [5], [4], [1], [12] and so on. Recently, Freeman-Scott-Teske [7] proposed a method to obtain pairing-friendly curves over a finite prime field \mathbb{F}_{p} with small ρ, following Brezing-Weng's result [4] which uses cyclotomic fields. In [7], they take $\ell(x)$ as a cyclotomic polynomial $\Phi_{c k}(x)$ for some integer c and set a prime number $\ell:=\ell(g)$ if $\ell(g)$ is
a prime for some positive integer g. Note that g is a primitive $c k$-th root of unity in $\mathbb{Z} / \ell \mathbb{Z}$. As is stated in [7], the degree of $\ell(x)$ is important to obtain enough pairing-friendly curves with appropriate size of ℓ and p. The method in [7] needs an extension field $\mathbb{Q}\left(\zeta_{c k}\right)$ of a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$ for some $c>1$. So the degree of $\ell(x)$ becomes large and therefore ℓ and p of obtained pairing-friendly curves become extremely large, greater than 200-bit in many cases.

In this article, for the case that the embedding degree is in the form $k=2 n$ with odd n, we propose an improved method for finding pairing-friendly curves, where we can take $c=1$. In particular, for the case that n is an odd prime, asymptotic values of the ratio ρ as $p, \ell \rightarrow \infty$ are as follows:

	Our result		Freeman et al.	
k	ρ	$\operatorname{deg} \ell(x)$	ρ	$\operatorname{deg} \ell(x)$
14	$3 / 2(=1.5)$	6	$4 / 3(=1.33333 \ldots)$	12
22	$13 / 10(=1.3)^{*}$	10	$13 / 10(=1.3)$	20
26	$7 / 6(=1.16666 \ldots)^{*}$	12	$7 / 6(=1.16666 \ldots)$	24
34	$9 / 8(=1.125)^{*}$	16	$9 / 8(=1.125)$	32
38	$7 / 6(=1.16666 \ldots)$	18	$10 / 9(=1.11111 \ldots)$	36

In the above table, the symbol * means that the ratio is as same as the result of [7]. We emphasis that our result is obtained without extending a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$, whereas in [7] the case $k=2 n$ with odd n needs a field extension. Therefore the degree of $\ell=\ell(g)$ is not large in our method. As we show in Section 3 and 4, our method produces more pairing-friendly curves than the Freeman-Scott-Teske's method does, for a given range of ℓ.

We give the outline of this article. In Section 2, we recall the Weil paring and the condition to construct a secure and efficient pairing based cryptosystem. In Section 3, we describe our method and analyze the probability to obtain pairing-friendly curves compared with Freeman-Scott-Teske's method. In Section 4, we show examples of pairing-friendly curves obtained by using our method. Finally, we summarize our result in Section 5.

2 Pairing based cryptosystem

Let $K:=\mathbb{F}_{q}$ be a finite field with q elements and E an elliptic curve defined over K. Assume that $E(K)$ has a subgroup G of a large prime order. Let ℓ be the order of G.

For a positive integer ℓ coprime to the characteristic of K, the Weil pairing is a map

$$
e_{\ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell} \subset \hat{K}^{*}
$$

where \hat{K} is the field extension of K generated by coordinates of all points in $E[\ell], \hat{K}^{*}$ is a multiplicative group of \hat{K} and μ_{ℓ} is the group of ℓ-th roots of unity in \hat{K}^{*}. For the details of the Weil pairing, see [14] for example. The key idea of pairing based cryptography is based on the fact that the subgroup $G=\langle P\rangle$ is embedded into the multiplicative group $\mu_{\ell} \subset \hat{K}^{*}$ via the Weil pairing or some other pairing map.

The extension degree of the field extension \hat{K} / K is called the "embedding degree" of E with respect to ℓ. It is known that E has the embedding degree k with respect to ℓ if and only if k is the smallest integer such that ℓ divides $q^{k}-1$. In pairing based cryptography, the following conditions must be satisfied to make a system secure:

- the order ℓ of a prime order subgroup of $E(K)$ should be large enough so that solving a discrete logarithm problem on the group is computationally infeasible,
- q^{k} should be large enough so that solving a discrete logarithm problem on the multiplicative group $\mathbb{F}_{q^{k}}^{*}$ is computationally infeasible.

Moreover for an efficient implementation of a pairing based cryptosystem, the following are important:

- the embedding degree k should be appropriately small,
- the ratio $\lg q / \lg \ell$ should be appropriately small.

Elliptic curves satisfying the above four conditions are called "pairing-friendly (elliptic) curves".
In practice, it is currently recommended that ℓ should be larger than 2^{160} and q^{k} should be larger than 2^{1024}.

In the following, we only consider the case $K=\mathbb{F}_{p}$ where p is an odd prime.

3 How to construct pairing-friendly elliptic curves

In this section, we describe our method to find pairing-friendly curves. Our method uses the CM method.

First of all, we recall the framework of generating pairing-friendly curves for a given embedding degree k by using the CM method. The procedure is described as follows:

Step 1 : Find integers ℓ, p, a, b and a positive integer D satisfying the following conditions :

1. $4 p-a^{2}=D b^{2}$,
2. $p+1-a \equiv 0(\bmod \ell)$,
3. k is the smallest positive integer such that $p^{k}-1 \equiv 0(\bmod \ell)$,
4. p and ℓ are primes,
5. $-D \equiv 0$ or $1(\bmod 4)$.

Step 2: Using the CM method, find an elliptic curve E defined over \mathbb{F}_{p} such that

1. $\# E\left(\mathbb{F}_{p}\right)=p+1-a$,
2. E has complex multiplication by an order in $\mathbb{Q}(\sqrt{-D})$.

Note that conditions 2 and 3 in Step 1 yield that $a-1$ is a primitive k-th root of unity in $\mathbb{Z} / \ell \mathbb{Z}$. Our method which we describe later gives an improved algorithm for Step 1 in the above framework.

3.1 Our method

In the following, we only consider the case that k is in the form $k=2 n$ where n is odd.
First note that for $k=2 n$ with odd n, if g is a primitive k-th root of unity in a field K, then $\sqrt{-g}=g^{(n+1) / 2}$ belongs to K. Our idea is to use this $\sqrt{-g}=g^{(n+1) / 2}$ as $\sqrt{-D}$. The advantage to use such $\sqrt{-D}$ is that we do not need to extend a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$ to obtain a small value of $\rho=\lg p / \lg \ell$. In the following, we describe our method which is divided into two cases: (1) the case of a general $n,(2)$ the case of $n \equiv 1(\bmod 4)$.

The general case. Let g be a positive integer such that $\ell:=\Phi_{k}(g)$ is a prime number. Then, g is a primitive k-th root of unity modulo ℓ and $\sqrt{-g} \equiv g^{(n+1) / 2}(\bmod \ell)$. Take $D, a, b(0<D, a, b<\ell)$ as follows:

$$
D:=g, \quad a:=g+1, \quad b: \equiv(g-1) g^{(n+1) / 2} / g \quad(\bmod \ell) .
$$

Then, $p=\left(a^{2}+D b^{2}\right) / 4=O\left(g^{n+2}\right)$ and $\ell=O\left(g^{\varphi(n)}\right)$, where φ denotes the Euler's phi function.
Hence, in this case, we have $\rho \sim(n+2) / \varphi(n)$ as $p, \ell \rightarrow \infty$. In particular, if n is a prime number, we obtain $\rho \sim(n+2) /(n-1)$.

Remark 1. The above method works well in most cases but there are some unfortunate cases. When $k=30, a^{2}+D b^{2}$ in the above has no chance to be divisible by 4. Taking b as $b=(g-1) g^{(n-1) / 2}=$ $g^{8}-g^{7}$ without taking modulo ℓ, we can make $a^{2}+D b^{2}$ divisible by 4 , but it makes ρ greater than 2 .

Improvement for $\boldsymbol{n} \equiv \mathbf{1}(\bmod 4)$. When $n \equiv 1(\bmod 4)$, we can improve the asymptotic value of ρ.

Let g be a positive integer such that $\ell:=\Phi_{k}(g)$ is a prime number. Then, g is a primitive k-th root of unity under modulo ℓ and $\sqrt{-g} \equiv g^{(n+1) / 2}(\bmod \ell)$. Note that $g^{(n+1) / 2}$ is also a primitive k-th root of unity modulo ℓ. Take $D, a, b(0<D, a, b<\ell)$ as follows:

$$
D:=g, \quad a:=g^{(n+1) / 2}+1, \quad b: \equiv\left(g^{(n+1) / 2}-1\right) g^{(n+1) / 2} / g \quad(\bmod \ell)
$$

Then, since

$$
b \equiv\left(g^{(n+1) / 2}-1\right) g^{(n-1) / 2} \equiv g^{n}-g^{(n-1) / 2} \equiv-1-g^{(n-1) / 2} \quad(\bmod \ell)
$$

$p=\left(a^{2}+D b^{2}\right) / 4=O\left(g^{n+1}\right)$ and $\ell=O\left(g^{\varphi(n)}\right)$.
Hence, in this case, we have $\rho \sim(n+1) / \varphi(n)$ as $p, \ell \rightarrow \infty$. In particular, if n is a prime number, we obtain $\rho \sim(n+1) /(n-1)$.

3.2 Asymptotic values of ρ as $p, \ell \rightarrow \infty$.

In Table 1, we show asymptotic values of ρ obtained by using our method for $k=2 n$ with odd n, $6<n<20$ but $n \neq 15$.

Table 1. the value of ρ for various k

k	ρ	$\operatorname{deg} \ell(x)$
14	$3 / 2(=1.5)$	6
18	$5 / 3(=1.66666 \ldots)$	6
22	$13 / 10(=1.3)^{*}$	10
26	$7 / 6(=1.16666 \ldots)^{*}$	12
34	$9 / 8(=1.125)^{*}$	16
38	$7 / 6(=1.16666 \ldots)$	18

In Table 1, the symbol * means that the ratio is the same value achieved by [7]. We emphasis that our result is obtained without extending a cyclotomic field $\mathbb{Q}\left(\zeta_{k}\right)$, whereas in [7] the case $k=2 n$ with odd n needs a field extension. Therefore the degree of $\ell=\ell(g)$ is not large in our method. As we show in the following, our method produces more pairing-friendly curves than the Freeman-Scott-Teske's method does, for a given range of ℓ.

3.3 Probability of obtaining primes p and ℓ

We estimate the probability that p and ℓ are both prime in our method. First we discuss the general situation. Let n_{1} and n_{2} be integers and put $\rho=\frac{\ln n_{2}}{\ln n_{1}}$. From the prime number theorem, the probability that an integer n is a prime is approximately $\frac{1}{\ln n}$. So the probability that n_{1} and n_{2} are both prime is approximately $\frac{1}{\ln n_{1} \ln n_{2}}=\frac{1}{\rho\left(\ln n_{1}\right)^{2}}$. We denote the probability by $\operatorname{Pr}_{n_{1}, n_{2}}$.

Let $f(x)$ be a polynomial of degree d with coefficients in \mathbb{Z}. Fix a positive real number ρ. Set $\ell=f(g)$ for an integer g and let p be an integer determined by g such that $\frac{\log p}{\log \ell}=\rho$. Since ℓ is described as a polynomial of g, it is not known whether ℓ and p take infinite many prime values. But we assume that $\operatorname{Pr}_{\ell, p}=\frac{1}{\rho(\ln \ell)^{2}}=\frac{1}{\rho(\ln f(g))^{2}}$. We consider the case a pair (ℓ, p) runs through $2^{m} \leq \ell<2^{m+\alpha}$ for some fixed integer m and a small integer α. To simplify, let $\ell \sim g^{d}$. Then
$\operatorname{Pr}_{\ell, p} \sim \frac{1}{\rho d^{2}(\ln g)^{2}}$. For $2^{m / d} \leq g<2^{(m+\alpha) / d}$, the average of the probability that ℓ and p are both prime is approximately

$$
\frac{1}{\rho d^{2}\left(2^{\frac{m+\alpha}{d}}-2^{\frac{m}{d}}\right)} \int_{2^{\frac{m}{d}}}^{2^{\frac{m+\alpha}{d}}} \frac{1}{(\ln g)^{2}} d g
$$

Then we can estimate the probability that there exists at least a couple of primes (p, ℓ) for the interval $2^{m / d} \leq g<2^{(m+\alpha) / d}$ as

$$
1-\left(1-\frac{1}{\rho d^{2}\left(2^{\frac{m+\alpha}{d}}-2^{\frac{m}{d}}\right)} \int_{2^{\frac{m}{d}}}^{2^{\frac{m+\alpha}{d}}} \frac{1}{(\ln g)^{2}} d g\right)^{2^{\frac{m+\alpha}{d}}-2^{\frac{m}{d}}} .
$$

We regard this value as the function of d and m, and denote it by $\mathrm{P}(d, m)$.
Now we compare the above probability for our method and the one for Freeman-Scott-Teske's method.

Since f is the k-th cyclotomic polynomial in our method, $d=\varphi(k)$. We show the smallest integer value of m for various k such that $\mathrm{P}(\varphi(k), m)$ is greater than $\frac{1}{2}$ in Table 2.

Table 2. the smallest value of m for various k which gives $\mathrm{P}(d, m)>1 / 2$

k	$d=\operatorname{deg} \ell$	ρ	m $(\alpha=1)$	m $(\alpha=2)$	m $(\alpha=3)$
14	6	$3 / 2$	91	83	78
18	6	$11 / 6$	84	76	71
22	10	$13 / 10$	176	163	155
26	12	$7 / 6$	220	205	196
34	16	$9 / 8$	315	296	284
38	18	$7 / 6$	367	345	332

In [7], to make and the value of ρ as small as possible, they use the $c k$-th cyclotomic polynomial as ℓ for some integer c. For this method, the smallest integer value of m for various k such that $\mathrm{P}(d, m)$ is greater than $\frac{1}{2}$ is as in Table 3.

Table 3. the smallest value of m for various k which gives $\mathrm{P}(d, m)>1 / 2$ in [7]

k	$d=\operatorname{deg} \ell$	ρ	m $(\alpha=1)$	m $(\alpha=2)$	m $(\alpha=3)$
14	12	$4 / 3$	176	161	151
18	24	$19 / 12$	447	418	401
22	20	$13 / 10$	360	335	320
26	24	$7 / 6$	436	405	388
34	32	$9 / 8$	668	630	608
38	36	$10 / 9$	723	681	655

From Table 2, it is expected that one can obtain sufficiently many pairing-friendly elliptic curves of order about 2^{160} for the embedding degree $k \in\{18,22\}$. Table 3 indicates that m should be considerably large to get many pairs of primes (p, ℓ). In practice, one can obtain smaller primes ℓ by using our method than using Freeman-Scott-Teske's method. (See Table 4 and 5.)

Table 4. The smallest three primes ℓ obtained by using our method

k	$\lg \ell$		
14	23.3	26.2	44.3
18	50.5	56.8	56.9
22	92.8	107.0	122.1
26	54.2	135.8	145.7
34	182.7	225.4	228.3
38	189.6	213.6	230.6

Table 5. The smallest three primes ℓ by using Freeman-Scott-Teske's method [7]

k	$\lg \ell$		
14	70.3	123.1	123.3
18	38.0	331.0	332.4
22	92.8	206.5	250.7
26	349.3	350.2	354.5
34	442.7	447.4	472.2
38	284.2	357.9	369.8

These tables shows that our method can produce more pairing-friendly curves than the Freeman-Scott-Teske's method does.

Remark 2. Using the CM method, we can construct an ordinary elliptic curves with complex multiplication by the order of the imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D}), D>0$. (Refer to [9] for the detail of the calculation.) In general, for a large D, it is hard to construct the elliptic curve by the CM method. Therefore we must be careful with the size of D.

In our method, we set $D=g$. (If g is not square free, then we set the square free part of g as D.) So the size of g is important when we construct the elliptic curve using the CM method. But as stated in [7], we can construct an elliptic curve by using the CM method for $D<10^{10}$. Hence our method is effective to construct pairing-friendly curves.

4 Examples

We show some examples of pairing-friendly curves obtained by our method. As in the following tables, we can take $\ell \in\left[2^{160}, 2^{200}\right]$ for $k \in\{14,18,26,34,38\}$.

The case $k=2 n$ with $n \equiv 3(\bmod 4)$.

k	14
g	94907647 (square free)
$\lg g$	26.5
a	94907648
b	81134361081873541386683178009858
ℓ	730814630451781170954872473773075062791521390343
p	156189148043546959726960325690688260554901983647491100761104666801301503
$\lg l$	160
$\lg p$	237
$\lg p / \lg \ell$	1.48742
Elliptic curve $E: y^{2}=x^{3}+A x+B$	
A	31207468084318007710070205852528042413419272619226432713249182826793377
B	72868028070727658382366912465248115127246842961981322062534344151629419

k	22
g	64537 (square free)
$\lg g$	15.9
a	64538
b	72251340785037749983512068952
ℓ	1253374932065614913020027745090503713472041863353
p	84224919324693437514264627033473942716577450890477842713439673
$\lg \ell$	160
$\lg p$	206
$\lg p / \lg \ell$	1.28748
Elliptic curve $E: y^{2}=x^{3}+A x+B$	
A	75517550472550772554756064758440445262989470504976700426419648
B	78420006756598327541258918850118277747518797300143747855426323

k	38
g	1483 (square free)
$\lg g$	10.5
a	1484
b	51418400525474957138140623118446
ℓ	1202951086100451498102340799609450549362206468742785844447
p	980208096595769061399824580668089368168014940054616269874127960671
$\lg l$	190
$\lg p$	219
$\lg p / \lg \ell$	1.15611
Elliptic curve $E: y^{2}=x^{3}+A x+B$	
A	330778111596940849550933423520331062816845702374429453110926299761
B	177785299809937845496300083424347013830249751265698201577576696370

The case $k=2 n$ with $n \equiv 1(\bmod 4)$.

k	18
g	94906623 (square free)
$\lg g$	26.5
a	7699855983294175985742107952727180889344
b	-81130860417340694818970726128642
ℓ	730767328960794658374478759845478477419642392323
p	148219456970417656877736253822173212415791168671331480760944628140120587583
$\lg l$	52127
$\lg p$	160
$\lg p / \lg \ell$	264
Elliptic curve $E: y^{2}=x^{3}+A x+B$	
A	610587211902217729893806958821687111566883129507949202467723803382033767538
	3850
B	901122997836204009521658818621702115763892648576404404181631296055091136970

k	26
g	9779 (square free)
$\lg g$	13.2
a	8551870640210380614813972060
b	-874513819430451029227322
ℓ	764696222581341148650511408773719240195697919573
p	18285492543987287680645893866289922483693928837435505359
$\lg \ell$	160
$\lg p$	184
$\lg p / \lg \ell$	1.15410
Elliptic curve $E: y^{2}=x^{3}+A x+B$	
A	4259382036714762839964241616690260479913669125334000551
B	4291447154251119176416504645782568812948366431319159585

k	34
g	2743 (square free)
$\lg g$	11.4
a	8790878313605026490203306721144
b	-3204840799710181002626068802
ℓ	10267261474026538061953029801463094309944057146657157201
p	19326928722523970823211392049806096197843339094443289507368327
$\lg \ell$	183
$\lg p$	204
$\lg p / \lg \ell$	1.11406
Elliptic curve $E: y^{2}=x^{3}+A x+B$	
A	8867741593431180281304173637484746944728502767354575224868122
B	3789900348071973173398722725207694885303890431924198073069304

5 Conclusion

In this article, we proposed an improved method to construct pairing-friendly elliptic curves over a finite prime field. More precisely, we improved the Freeman-Scott-Teske's method ([7]) for the case that the embedding degree $k=2 n$ where n is an odd prime. Though asymptotic values of ρ are not improved, our method improves the range of ℓ in which we can find a pairing-friendly curves of order ℓ. Our probabilistic analysis indicates that for a given range of ℓ, the probability of finding a pairing-friendly curve by using our method is much greater than the one by using the Freeman-ScottTeske's method. Moreover, by using our method we provided pairing-friendly elliptic curves for a range $\left[2^{160}, 2^{200}\right]$ of ℓ, for which the Freeman-Scott-Teske's method hardly produce a pairing-friendly curve.

References

1. P.S.L.M. Barreto M. Naehrig, Pairing-friendly elliptic curves of prime order, In Proceedings of SAC 2005 Workshop on Selected Areas in Cryptography, LNCS3897, pp. 319-331. Springer, 2006.
2. D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing, SIAM Journal of Computing, $32(3)$ (2003), pp. 586-615.
3. I.-F. Blake, G. Seroussi, N.-P. Smart, Advances in Elliptic Curve Cryptography, Cambridge University Press, 2005.
4. F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography, Design, Codes and Cryptography, 37 (2005), pp. 133-141.
5. C. Cocks, R. G. E. Pinch, Identity-based cryptosystems based on the Weil pairing, Unpublished manuscript, 2001.
6. D. Freeman, Methods for constructing pairing-friendly elliptic curves, 10th Workshop on Elliptic Curves in Cryptography (ECC 2006), Toronto, Canada, September 2006.
7. D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves, Cryptology ePrint Archive, Report 2006/372, 2006 http://eprint.iacr.org/
8. S. Galbraith, J. McKee, P. Valença, Ordinary abelian varieties having small embedding degree, In Proc. Workshop on Mathematical Problems and Techniques in Cryptology, pp. 29-45. CRM, Barcelona, 2005.
9. IEEE Computer Society, New York, USA. IEEE Standard Specifications For Public-Key Cryptography IEEE Std 1363-2000, 2000.
10. A. Joux, A one round protocol for tripartite Diffie-Hellman, In Algorithmic Number Theory Symposium ANTS-IV, volume 1838 of Lecture Notes in Computer Science, pp. 385-393. Springer-Verlag, 2000. Full version: Journal of Cryptology 17 (2004), 263-276.
11. A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Transactions on Fundamentals E84-A(5) (2001), pp. 1234-1243.
12. M. Scott, P.S.L.M. Barreto, Generating more MNT elliptic curves, Designs, Codes and Cryptography 38 (2006), pp. 209-217.
13. R. Sakai, K. Ohgishi, M. Kasahara, Cryptosystem based on pairing, In 2000 Symposium on Cryptography and Information Security (SCIS 2000), Okinawa, Japan, 2000.
14. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, 1986.
