How to construct pairing-friendly curves for the embedding
degree k = 2n, n is an odd prime
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Abstract. Pairing based cryptography is a new public key cryptographic scheme. The most
popular one is constructed by using the Weil pairing of elliptic curves. For the group FE(F,)
of F4-rational points of an elliptic curve E defined over a finite field F; and a large prime ¢
which divides E(F,), a subgroup G generated by a Fg-rational point P of order ¢ is embedded
into F . by using the Weil pairing for some positive integer k. Suitable curves for pairing
based cryptography, which is called pairing-friendly curves, are required to have appropriately
large ¢ and ¢, and appropriately small k and p := log, ¢/ log, £. Recently, Freeman-Scott-Teske
proposed a method to obtain pairing-friendly curves over a finite prime field F, with small
p = log, p/log, ¢ for each fixed k, following Brezing-Weng’s result which uses a cyclotomic field
Q(Ck). But since their method needs an extension of Q((x) in many cases, p and ¢ become
extremely large. In this article, for £ = 2n where n is an odd prime, we propose an improved
method which achieves small p without a field extension. Though asymptotic values of p are not
improved, our method produces more pairing-friendly curves than the Freeman-Scott-Teske’s
method does, for a given range of £.
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1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which was proposed around
2000 by three important works due to Joux [10], Sakai-Ohgishi-Kasahara [13] and Boneh-Franklin
[2]. Sakai-Ohgishi-Kasahara and Boneh-Franklin constructed an identity-based encryption scheme by
using the Weil pairing of elliptic curves.

Let F, be a finite field with ¢ elements and E an elliptic curve defined over ;. The finite abelian
group of Fy-rational points of E and its order are denoted by E(F,) and #E(F,), respectively. Assume
that E(F,) has a subgroup G of a large prime order. The most simple case is that E(F;) = G, that
is, the order of E(F,) is prime. Let £ be the order of G. We denote by E[{] the group of ¢-torsion
points of E(F,) where F, is an algebraic closure of F,. In the following, we denote log, x by lg .

Roughly speaking, pairing based cryptography uses the fact that the subgroup G C E[¢] can be
embedded into the multiplicative group py of ¢-th roots of unity in F*, for some positive integer k by
using the Weil pairing or some other pairing map. The extension degree k is called embedding degree.

In pairing based cryptography, it is required that ¢ and ¢* should be sufficiently large but k
and the ratio lgg/lg¥¢ should be appropriately small. An elliptic curve satisfying these conditions
is called a “pairing-friendly curve”. It is very important to construct an efficient method to find
pairing-friendly curves. There are many works on this topic: [11], [5], [4], [1], [12] and so on. Recently,
Freeman-Scott-Teske [7] proposed a method to obtain pairing-friendly curves over a finite prime field
F, with small p, following Brezing-Weng’s result [4] which uses cyclotomic fields. In [7], they take
¢(x) as a cyclotomic polynomial @, (z) for some integer ¢ and set a prime number ¢ := ¢(g) if (g) is



a prime for some positive integer g. Note that g is a primitive ck-th root of unity in Z/¢Z. As is stated
in [7], the degree of ¢(x) is important to obtain enough pairing-friendly curves with appropriate size
of ¢ and p. The method in [7] needs an extension field Q((.;) of a cyclotomic field Q(¢x) for some
¢ > 1. So the degree of ¢(x) becomes large and therefore ¢ and p of obtained pairing-friendly curves
become extremely large, greater than 200-bit in many cases.

In this article, for the case that the embedding degree is in the form k& = 2n with odd n, we propose
an improved method for finding pairing-friendly curves, where we can take ¢ = 1. In particular, for
the case that n is an odd prime, asymptotic values of the ratio p as p,£ — oo are as follows:

Our result Freeman et al.
k p deg ¢(x) o deg ¢(x)
14 | 3/2(=15) 6 4/3(=1.33333...) 12
22 || 13/10(= 1.3)F 10 |[13/10(= 1.3) 20
26 || 7/6(=1.16666...)* | 12 |[7/6(= 1.16666...) 24
34 || 9/8(=1.125)F 16 ||9/8(= 1.125) 32
38 7/6(=1.16666...) 18 10/9(=1.11111...) 36

In the above table, the symbol * means that the ratio is as same as the result of [7]. We emphasis that
our result is obtained without extending a cyclotomic field Q((), whereas in [7] the case k = 2n with
odd n needs a field extension. Therefore the degree of £ = ¢(g) is not large in our method. As we show
in Section 3 and 4, our method produces more pairing-friendly curves than the Freeman-Scott-Teske’s
method does, for a given range of /.

We give the outline of this article. In Section 2, we recall the Weil paring and the condition to
construct a secure and efficient pairing based cryptosystem. In Section 3, we describe our method
and analyze the probability to obtain pairing-friendly curves compared with Freeman-Scott-Teske’s
method. In Section 4, we show examples of pairing-friendly curves obtained by using our method.
Finally, we summarize our result in Section 5.

2 Pairing based cryptosystem

Let K :=F, be a finite field with ¢ elements and E an elliptic curve defined over K. Assume that
E(K) has a subgroup G of a large prime order. Let £ be the order of G.
For a positive integer ¢ coprime to the characteristic of K, the Weil pairing is a map

er: E[f] x Elf] — py C K*

where K is the field extension of K generated by coordinates of all points in E[¢], K*isa multiplicative
group of K and tte is the group of ¢-th roots of unity in K*. For the details of the Weil pairing, see
[14] for example. The key idea of pairing based cryptography is based on the fact that the subgroup
G = (P) is embedded into the multiplicative group py C K* via the Weil pairing or some other
pairing map.

The extension degree of the field extension K /K is called the “embedding degree” of E with
respect to £. It is known that F has the embedding degree k with respect to £ if and only if k is the
smallest integer such that ¢ divides ¢* — 1. In pairing based cryptography, the following conditions
must be satisfied to make a system secure:

— the order £ of a prime order subgroup of E(K) should be large enough so that solving a discrete
logarithm problem on the group is computationally infeasible,

— ¢* should be large enough so that solving a discrete logarithm problem on the multiplicative
group F;k is computationally infeasible.

Moreover for an efficient implementation of a pairing based cryptosystem, the following are important:

— the embedding degree k should be appropriately small,



— the ratio lg ¢/ lg ¢ should be appropriately small.

Elliptic curves satisfying the above four conditions are called “pairing-friendly (elliptic) curves”.

In practice, it is currently recommended that £ should be larger than 2160 and ¢* should be larger
than 21024

In the following, we only consider the case K = IF,, where p is an odd prime.

3 How to construct pairing-friendly elliptic curves

In this section, we describe our method to find pairing-friendly curves. Our method uses the CM
method.

First of all, we recall the framework of generating pairing-friendly curves for a given embedding
degree k by using the CM method. The procedure is described as follows:

Step 1 : Find integers ¢, p,a,b and a positive integer D satisfying the following conditions :
1. 4p — a® = Db?,

p+1—a=0 (mod ¥¢),

. k is the smallest positive integer such that p* — 1 =0 (mod ¢),

. p and £ are primes,
—D =0or1 (mod 4).

G L

Step 2 : Using the CM method, find an elliptic curve E defined over I, such that

1. #EF,) =p+1—aq,
2. E has complex multiplication by an order in Q(+/—D).

Note that conditions 2 and 3 in Step 1 yield that a — 1 is a primitive k-th root of unity in Z/¢Z. Our
method which we describe later gives an improved algorithm for Step 1 in the above framework.

3.1 Owur method

In the following, we only consider the case that k is in the form k& = 2n where n is odd.

First note that for £ = 2n with odd n, if g is a primitive k-th root of unity in a field K, then
V=g = g""tY/2 belongs to K. Our idea is to use this \/—g = ¢g("*1/2 as /=D. The advantage to
use such /—D is that we do not need to extend a cyclotomic field Q(¢x) to obtain a small value of
p =lgp/lgl. In the following, we describe our method which is divided into two cases: (1) the case
of a general n, (2) the case of n =1 (mod 4).

The general case. Let g be a positive integer such that £ := &4 (g) is a prime number. Then, g is
a primitive k-th root of unity modulo £ and /=g = ¢("*1/2 (mod ¢). Take D, a, b (0 < D,a,b < £)
as follows:

D:=yg, a:=g+1, b:=(g—1)g"*V/2/g  (mod ).

Then, p = (a? + Db?)/4 = O(g"+?) and £ = O(g¥™)), where ¢ denotes the Euler’s phi function.
Hence, in this case, we have p ~ (n+2)/¢(n) as p,{ — oco. In particular, if n is a prime number,
we obtain p ~ (n+2)/(n —1).

Remark 1. The above method works well in most cases but there are some unfortunate cases. When
k = 30, a®> + Db? in the above has no chance to be divisible by 4. Taking b as b = (g — 1)9("_1)/2 =
g% — ¢” without taking modulo ¢, we can make a? 4+ Db? divisible by 4, but it makes p greater than 2.



Improvement for n = 1 (mod 4). When n = 1 (mod 4), we can improve the asymptotic value
of p.

Let g be a positive integer such that ¢ := @, (g) is a prime number. Then, ¢ is a primitive k-th
root of unity under modulo ¢ and /=g = ¢»*1/2 (mod ¢). Note that ¢g(»*1/2 is also a primitive
k-th root of unity modulo ¢. Take D, a, b (0 < D,a,b < £)as follows:

D:=g, a:=gnth/2 4, b= (g2 _1)g /2 /g (mod 0).
Then, since
b= (g(n+1)/2 _ 1)g(n—1)/2 = gn _ g(n—l)/2 =_1— g(n—l)/2 (mod Z),
p = (a®> + Db?)/4 = O(g"t') and £ = O(g¥™).
Hence, in this case, we have p ~ (n+1)/p(n) as p,¢ — oo. In particular, if n is a prime number,
we obtain p ~ (n4+1)/(n —1).
3.2 Asymptotic values of p as p,£ — oo.

In Table 1, we show asymptotic values of p obtained by using our method for k£ = 2n with odd n,
6 <n <20 but n # 15.

Table 1. the value of p for various k

| k [ p [ deg ¢(z) ‘
14 | 3/2(=15) 6
18 | 5/3(= 1.66666...) 6
22 | 13/10(= 1.3)* 10
26 | 7/6(= 1.16666...)" 12
34 | 9/8(=1.125)* 16
38 | 7/6(=1.16666...) 18

In Table 1, the symbol * means that the ratio is the same value achieved by [7]. We emphasis that
our result is obtained without extending a cyclotomic field Q((), whereas in [7] the case k = 2n with
odd n needs a field extension. Therefore the degree of £ = £(g) is not large in our method. As we show
in the following, our method produces more pairing-friendly curves than the Freeman-Scott-Teske’s
method does, for a given range of /.

3.3 Probability of obtaining primes p and £

We estimate the probability that p and ¢ are both prime in our method. First we discuss the general
situation. Let n; and ns be integers and put p = Inns “From the prime number theorem, the proba-

Inng*
bility that an integer n is a prime is approximately ﬁ So the probability that n, and ns are both
prime is approximately lnnll We denote the probability by Pry, n,.

Inny p(lnnqi)?"

Let f(x) be a polynomial of degree d with coefficients in Z. Fix a positive real number p. Set
¢ = f(g) for an integer g and let p be an integer determined by g such that 113?2 = p. Since £ is
described as a polynomial of g, it is not known whether ¢ and p take infinite many prime values.

But we assume that Pry, = p(h}e)Q = oW ;(g))z- We consider the case a pair (£,p) runs through

2m < ¢ < 2™+ for some fixed integer m and a small integer a. To simplify, let £ ~ g% Then



Pry, ~ m. For 2™/® < g < 20m+e)/d the average of the probability that £ and p are both

prime is approximately
mta

1 27 4d 1
mta ™ / 72dg
pd2(27T — 2% Jo#  (Ing)
Then we can estimate the probability that there exists at least a couple of primes (p,¢) for the
interval 2m/4 < g < 2(mte)/d uq

m+tao

1 2 1
1—(1- T g— / ——5dg
pd2(275% —2%) o (Ing)?

We regard this value as the function of d and m, and denote it by P(d, m).
Now we compare the above probability for our method and the one for Freeman-Scott-Teske’s

method.
Since f is the k-th cyclotomic polynomial in our method, d = ¢(k). We show the smallest integer

value of m for various k such that P(p(k), m) is greater than % in Table 2.

Table 2. the smallest value of m for various k which gives P(d,m) > 1/2

k d = deg/ p m m m
(@=1) | (a=2) | (@=3)
14 6 3/2 91 83 78
18 6 11/6 84 76 71
22 10 13/10 176 163 155
26 12 7/6 220 205 196
34 16 9/8 315 296 284
38 18 7/6 367 345 332

In [7], to make and the value of p as small as possible, they use the ck-th cyclotomic polynomial as
¢ for some integer c. For this method, the smallest integer value of m for various k such that P(d, m)

is greater than % is as in Table 3.

Table 3. the smallest value of m for various k which gives P(d,m) > 1/2 in [7]

k d=degl p m m m
(a=1) (a=2) (a=3)
14 12 4/3 176 161 151
18 24 19/12 447 418 401
22 20 13/10 360 335 320
26 24 7/6 436 405 388
34 32 9/8 668 630 608
38 36 10/9 723 681 655

From Table 2, it is expected that one can obtain sufficiently many pairing-friendly elliptic curves
of order about 260 for the embedding degree k € {18,22}. Table 3 indicates that m should be
considerably large to get many pairs of primes (p, ). In practice, one can obtain smaller primes ¢ by
using our method than using Freeman-Scott-Teske’s method. (See Table 4 and 5.)



These tables shows that our method can produce more pairing-friendly curves than the Freeman-

Table 4. The smallest three primes ¢ obtained by using our method

k Igt

14 123.3(26.2|44.3
18 |50.5|56.8|56.9
22 192.81107.0{122.1
26 | 54.2 (135.8|145.7
34 |182.7]225.4|228.3
38 ]189.6/213.6|230.6

Table 5. The smallest three primes ¢ by using Freeman-Scott-Teske’s method [7]

k Ig ¢
14 |70.3[123.1[123.3
18 |38.0 [331.0|332.4
22 | 92.8 [206.5[250.7
26 |349.3[350.2[354.5
34 |442.7(447.4[472.2
38 [284.2[357.9]369.8

Scott-Teske’s method does.

Remark 2. Using the CM method, we can construct an ordinary elliptic curves with complex multi-
plication by the order of the imaginary quadratic field K = Q(v/—D), D > 0. (Refer to [9] for the
detail of the calculation.) In general, for a large D, it is hard to construct the elliptic curve by the

CM method. Therefore we must be careful with the size of D.

In our method, we set D = g. (If g is not square free, then we set the square free part of g as
D.) So the size of g is important when we construct the elliptic curve using the CM method. But as
stated in [7], we can construct an elliptic curve by using the CM method for D < 10*°. Hence our

method is effective to construct pairing-friendly curves.

4 Examples

We show some examples of pairing-friendly curves obtained by our method. As in the following tables,

we can take ¢ € [2150 2200 for k € {14, 18,26, 34, 38}.

The case k = 2n with n = 3 (mod 4).

k 14
g 94907647 (square free)
lgg | 265
a 94907648
b 81134361081873541386683178009858
l 730814630451781170954872473773075062791521390343
D 156189148043546959726960325690688260554901983647491100761104666801301503
gl | 160
lgp 237
lgp/lgl | 1.48742
Elliptic curve E : y? = 2% + Az + B
A 31207468084318007710070205852528042413419272619226432713249182826793377
B 72868028070727658382366912465248115127246842961981322062534344151629419




k 22
g 64537 (square free)
lgg 15.9
a 64538
b 72251340785037749983512068952
/ 1253374932065614913020027745090503713472041863353
P 84224919324693437514264627033473942716577450890477842713439673
gt 160
lgp 206
lgp/lgl | 1.28748

Elliptic curve E : y> = 2°> + Az + B

A 75517550472550772554756064758440445262989470504976700426419648
B 78420006756598327541258918850118277747518797300143747855426323
k 38
g 1483 (square free)
lgg 10.5
a 1484
b 51418400525474957138140623118446
14 1202951086100451498102340799609450549362206468742785844447
p 980208096595769061399824580668089368168014940054616269874127960671
gl | 190
lep | 219
lgp/lgl | 1.15611

Elliptic curve E : y? = 2% + Az + B

A
B

330778111596940849550933423520331062816845702374429453110926299761
177785299809937845496300083424347013830249751265698201577576696370

The case k = 2n with n =1 (mod 4).

k 18
g 94906623 (square free)
lgg 26.5
a 7699855983294175985742107952727180889344
b —81130860417340694818970726128642
L 730767328960794658374478759845478477419642392323
D 148219456970417656877736253822173212415791168671331480760944628140120587583
52127
lel | 160
lgp 264
lgp/lgl | 1.65409
Elliptic curve E : y> = 2> + Az + B
A 610587211902217729893806958821687111566883129507949202467723803382033767538
3850
B 901122997836204009521658818621702115763892648576404404181631296055091136970

6609




k 26

g 9779 (square free)
lgg 13.2

a 8551870640210380614813972060

b —874513819430451029227322

/ 764696222581341148650511408773719240195697919573

D 18285492543987287680645893866289922483693928837435505359
gl | 160
lgp 184

lgp/lgl | 1.15410

Elliptic curve E : y> = 2°> + Az + B
A 4259382036714762839964241616690260479913669125334000551
B 4291447154251119176416504645782568812948366431319159585

k 34

g 2743 (square free)
lgg | 11.4

a 8790878313605026490203306721144

b —3204840799710181002626068802

/ 10267261474026538061953029801463094309944057146657157201

P 19326928722523970823211392049806096197843339094443289507368327
gl | 183
lep | 204

lgp/lg ¢ | 1.11406

Elliptic curve E : y?> = 2° + Az + B
A 8867741593431180281304173637484746944728502767354575224868122
B 3789900348071973173398722725207694885303890431924198073069304

5 Conclusion

In this article, we proposed an improved method to construct pairing-friendly elliptic curves over a
finite prime field. More precisely, we improved the Freeman-Scott-Teske’s method ([7]) for the case
that the embedding degree k = 2n where n is an odd prime. Though asymptotic values of p are
not improved, our method improves the range of ¢ in which we can find a pairing-friendly curves of
order ¢. Our probabilistic analysis indicates that for a given range of ¢, the probability of finding a
pairing-friendly curve by using our method is much greater than the one by using the Freeman-Scott-
Teske’s method. Moreover, by using our method we provided pairing-friendly elliptic curves for a
range [2160,2290] of ¢, for which the Freeman-Scott-Teske’s method hardly produce a pairing-friendly
curve.
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