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Abstract. Pairing based cryptography is a new public key cryptographic scheme. The most
popular one is constructed by using the Weil pairing of elliptic curves. For the group E(Fq)
of Fq-rational points of an elliptic curve E defined over a finite field Fq and a large prime `
which divides E(Fq), a subgroup G generated by a Fq-rational point P of order ` is embedded
into Fqk by using the Weil pairing for some positive integer k. Suitable curves for pairing
based cryptography, which is called pairing-friendly curves, are required to have appropriately
large q and `, and appropriately small k and ρ := log2 q/ log2 `. Recently, Freeman-Scott-Teske
proposed a method to obtain pairing-friendly curves over a finite prime field Fp with small
ρ = log2 p/ log2 ` for each fixed k, following Brezing-Weng’s result which uses a cyclotomic field
Q(ζk). But since their method needs an extension of Q(ζk) in many cases, p and ` become
extremely large. In this article, for k = 2n where n is an odd prime, we propose an improved
method which achieves small ρ without a field extension. Though asymptotic values of ρ are not
improved, our method produces more pairing-friendly curves than the Freeman-Scott-Teske’s
method does, for a given range of `.
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1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which was proposed around
2000 by three important works due to Joux [10], Sakai-Ohgishi-Kasahara [13] and Boneh-Franklin
[2]. Sakai-Ohgishi-Kasahara and Boneh-Franklin constructed an identity-based encryption scheme by
using the Weil pairing of elliptic curves.

Let Fq be a finite field with q elements and E an elliptic curve defined over Fq. The finite abelian
group of Fq-rational points of E and its order are denoted by E(Fq) and #E(Fq), respectively. Assume
that E(Fq) has a subgroup G of a large prime order. The most simple case is that E(Fq) = G, that
is, the order of E(Fq) is prime. Let ` be the order of G. We denote by E[`] the group of `-torsion
points of E(Fq) where Fq is an algebraic closure of Fq. In the following, we denote log2 x by lg x.

Roughly speaking, pairing based cryptography uses the fact that the subgroup G ⊂ E[`] can be
embedded into the multiplicative group µ` of `-th roots of unity in F∗qk for some positive integer k by
using the Weil pairing or some other pairing map. The extension degree k is called embedding degree.

In pairing based cryptography, it is required that ` and qk should be sufficiently large but k
and the ratio lg q/ lg ` should be appropriately small. An elliptic curve satisfying these conditions
is called a “pairing-friendly curve”. It is very important to construct an efficient method to find
pairing-friendly curves. There are many works on this topic: [11], [5], [4], [1], [12] and so on. Recently,
Freeman-Scott-Teske [7] proposed a method to obtain pairing-friendly curves over a finite prime field
Fp with small ρ, following Brezing-Weng’s result [4] which uses cyclotomic fields. In [7], they take
`(x) as a cyclotomic polynomial Φck(x) for some integer c and set a prime number ` := `(g) if `(g) is
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a prime for some positive integer g. Note that g is a primitive ck-th root of unity in Z/`Z. As is stated
in [7], the degree of `(x) is important to obtain enough pairing-friendly curves with appropriate size
of ` and p. The method in [7] needs an extension field Q(ζck) of a cyclotomic field Q(ζk) for some
c > 1. So the degree of `(x) becomes large and therefore ` and p of obtained pairing-friendly curves
become extremely large, greater than 200-bit in many cases.

In this article, for the case that the embedding degree is in the form k = 2n with odd n, we propose
an improved method for finding pairing-friendly curves, where we can take c = 1. In particular, for
the case that n is an odd prime, asymptotic values of the ratio ρ as p, ` →∞ are as follows:

Our result Freeman et al.
k ρ deg `(x) ρ deg `(x)
14 3/2(= 1.5) 6 4/3(= 1.33333 . . . ) 12
22 13/10(= 1.3)* 10 13/10(= 1.3) 20
26 7/6(= 1.16666 . . . )* 12 7/6(= 1.16666 . . . ) 24
34 9/8(= 1.125)* 16 9/8(= 1.125) 32
38 7/6(= 1.16666 . . . ) 18 10/9(= 1.11111 . . . ) 36

In the above table, the symbol * means that the ratio is as same as the result of [7]. We emphasis that
our result is obtained without extending a cyclotomic field Q(ζk), whereas in [7] the case k = 2n with
odd n needs a field extension. Therefore the degree of ` = `(g) is not large in our method. As we show
in Section 3 and 4, our method produces more pairing-friendly curves than the Freeman-Scott-Teske’s
method does, for a given range of `.

We give the outline of this article. In Section 2, we recall the Weil paring and the condition to
construct a secure and efficient pairing based cryptosystem. In Section 3, we describe our method
and analyze the probability to obtain pairing-friendly curves compared with Freeman-Scott-Teske’s
method. In Section 4, we show examples of pairing-friendly curves obtained by using our method.
Finally, we summarize our result in Section 5.

2 Pairing based cryptosystem

Let K := Fq be a finite field with q elements and E an elliptic curve defined over K. Assume that
E(K) has a subgroup G of a large prime order. Let ` be the order of G.

For a positive integer ` coprime to the characteristic of K, the Weil pairing is a map

e` : E[`]× E[`] → µ` ⊂ K̂∗

where K̂ is the field extension of K generated by coordinates of all points in E[`], K̂∗ is a multiplicative
group of K̂ and µ` is the group of `-th roots of unity in K̂∗. For the details of the Weil pairing, see
[14] for example. The key idea of pairing based cryptography is based on the fact that the subgroup
G = 〈P 〉 is embedded into the multiplicative group µ` ⊂ K̂∗ via the Weil pairing or some other
pairing map.

The extension degree of the field extension K̂/K is called the “embedding degree” of E with
respect to `. It is known that E has the embedding degree k with respect to ` if and only if k is the
smallest integer such that ` divides qk − 1. In pairing based cryptography, the following conditions
must be satisfied to make a system secure:

– the order ` of a prime order subgroup of E(K) should be large enough so that solving a discrete
logarithm problem on the group is computationally infeasible,

– qk should be large enough so that solving a discrete logarithm problem on the multiplicative
group F∗qk is computationally infeasible.

Moreover for an efficient implementation of a pairing based cryptosystem, the following are important:

– the embedding degree k should be appropriately small,
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– the ratio lg q/ lg ` should be appropriately small.

Elliptic curves satisfying the above four conditions are called “pairing-friendly (elliptic) curves”.
In practice, it is currently recommended that ` should be larger than 2160 and qk should be larger

than 21024.
In the following, we only consider the case K = Fp where p is an odd prime.

3 How to construct pairing-friendly elliptic curves

In this section, we describe our method to find pairing-friendly curves. Our method uses the CM
method.

First of all, we recall the framework of generating pairing-friendly curves for a given embedding
degree k by using the CM method. The procedure is described as follows:

Step 1 : Find integers `, p, a, b and a positive integer D satisfying the following conditions :

1. 4p− a2 = Db2,
2. p + 1− a ≡ 0 (mod `),
3. k is the smallest positive integer such that pk − 1 ≡ 0 (mod `),
4. p and ` are primes,
5. −D ≡ 0 or 1 (mod 4).

Step 2 : Using the CM method, find an elliptic curve E defined over Fp such that

1. #E(Fp) = p + 1− a,
2. E has complex multiplication by an order in Q(

√−D).

Note that conditions 2 and 3 in Step 1 yield that a− 1 is a primitive k-th root of unity in Z/`Z. Our
method which we describe later gives an improved algorithm for Step 1 in the above framework.

3.1 Our method

In the following, we only consider the case that k is in the form k = 2n where n is odd.
First note that for k = 2n with odd n, if g is a primitive k-th root of unity in a field K, then√−g = g(n+1)/2 belongs to K. Our idea is to use this

√−g = g(n+1)/2 as
√−D. The advantage to

use such
√−D is that we do not need to extend a cyclotomic field Q(ζk) to obtain a small value of

ρ = lg p/ lg `. In the following, we describe our method which is divided into two cases: (1) the case
of a general n, (2) the case of n ≡ 1 (mod 4).

The general case. Let g be a positive integer such that ` := Φk(g) is a prime number. Then, g is
a primitive k-th root of unity modulo ` and

√−g ≡ g(n+1)/2 (mod `). Take D, a, b (0 < D, a, b < `)
as follows:

D := g, a := g + 1, b :≡ (g − 1)g(n+1)/2/g (mod `).

Then, p = (a2 + Db2)/4 = O(gn+2) and ` = O(gϕ(n)), where ϕ denotes the Euler’s phi function.
Hence, in this case, we have ρ ∼ (n + 2)/ϕ(n) as p, ` →∞. In particular, if n is a prime number,

we obtain ρ ∼ (n + 2)/(n− 1).

Remark 1. The above method works well in most cases but there are some unfortunate cases. When
k = 30, a2 + Db2 in the above has no chance to be divisible by 4. Taking b as b = (g − 1)g(n−1)/2 =
g8− g7 without taking modulo `, we can make a2 +Db2 divisible by 4, but it makes ρ greater than 2.
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Improvement for n ≡ 1 (mod 4). When n ≡ 1 (mod 4), we can improve the asymptotic value
of ρ.

Let g be a positive integer such that ` := Φk(g) is a prime number. Then, g is a primitive k-th
root of unity under modulo ` and

√−g ≡ g(n+1)/2 (mod `). Note that g(n+1)/2 is also a primitive
k-th root of unity modulo `. Take D, a, b (0 < D, a, b < `)as follows:

D := g, a := g(n+1)/2 + 1, b :≡ (g(n+1)/2 − 1)g(n+1)/2/g (mod `).

Then, since

b ≡ (g(n+1)/2 − 1)g(n−1)/2 ≡ gn − g(n−1)/2 ≡ −1− g(n−1)/2 (mod `),

p = (a2 + Db2)/4 = O(gn+1) and ` = O(gϕ(n)).
Hence, in this case, we have ρ ∼ (n + 1)/ϕ(n) as p, ` →∞. In particular, if n is a prime number,

we obtain ρ ∼ (n + 1)/(n− 1).

3.2 Asymptotic values of ρ as p, ` → ∞.

In Table 1, we show asymptotic values of ρ obtained by using our method for k = 2n with odd n,
6 < n < 20 but n 6= 15.

Table 1. the value of ρ for various k

k ρ deg `(x)

14 3/2(= 1.5) 6

18 5/3(= 1.66666 . . . ) 6

22 13/10(= 1.3)* 10

26 7/6(= 1.16666 . . . )* 12

34 9/8(= 1.125)* 16

38 7/6(= 1.16666 . . . ) 18

In Table 1, the symbol * means that the ratio is the same value achieved by [7]. We emphasis that
our result is obtained without extending a cyclotomic field Q(ζk), whereas in [7] the case k = 2n with
odd n needs a field extension. Therefore the degree of ` = `(g) is not large in our method. As we show
in the following, our method produces more pairing-friendly curves than the Freeman-Scott-Teske’s
method does, for a given range of `.

3.3 Probability of obtaining primes p and `

We estimate the probability that p and ` are both prime in our method. First we discuss the general
situation. Let n1 and n2 be integers and put ρ = ln n2

ln n1
. From the prime number theorem, the proba-

bility that an integer n is a prime is approximately 1
ln n . So the probability that n1 and n2 are both

prime is approximately 1
ln n1 ln n2

= 1
ρ(ln n1)2

. We denote the probability by Prn1,n2 .
Let f(x) be a polynomial of degree d with coefficients in Z. Fix a positive real number ρ. Set

` = f(g) for an integer g and let p be an integer determined by g such that log p
log ` = ρ. Since ` is

described as a polynomial of g, it is not known whether ` and p take infinite many prime values.
But we assume that Pr`,p = 1

ρ(ln `)2 = 1
ρ(ln f(g))2 . We consider the case a pair (`, p) runs through

2m ≤ ` < 2m+α for some fixed integer m and a small integer α. To simplify, let ` ∼ gd. Then
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Pr`,p ∼ 1
ρd2(ln g)2 . For 2m/d ≤ g < 2(m+α)/d, the average of the probability that ` and p are both

prime is approximately

1

ρd2(2
m+α

d − 2
m
d )

∫ 2
m+α

d

2
m
d

1
(ln g)2

dg.

Then we can estimate the probability that there exists at least a couple of primes (p, `) for the
interval 2m/d ≤ g < 2(m+α)/d as

1−

1− 1

ρd2(2
m+α

d − 2
m
d )

∫ 2
m+α

d

2
m
d

1
(ln g)2

dg




2
m+α

d −2
m
d

.

We regard this value as the function of d and m, and denote it by P(d,m).
Now we compare the above probability for our method and the one for Freeman-Scott-Teske’s

method.
Since f is the k-th cyclotomic polynomial in our method, d = ϕ(k). We show the smallest integer

value of m for various k such that P(ϕ(k),m) is greater than 1
2 in Table 2.

Table 2. the smallest value of m for various k which gives P(d, m) > 1/2

k d = deg ` ρ m m m
(α = 1) (α = 2) (α = 3)

14 6 3/2 91 83 78

18 6 11/6 84 76 71

22 10 13/10 176 163 155

26 12 7/6 220 205 196

34 16 9/8 315 296 284

38 18 7/6 367 345 332

In [7], to make and the value of ρ as small as possible, they use the ck-th cyclotomic polynomial as
` for some integer c. For this method, the smallest integer value of m for various k such that P(d,m)
is greater than 1

2 is as in Table 3.

Table 3. the smallest value of m for various k which gives P(d, m) > 1/2 in [7]

k d = deg ` ρ m m m
(α = 1) (α = 2) (α = 3)

14 12 4/3 176 161 151

18 24 19/12 447 418 401

22 20 13/10 360 335 320

26 24 7/6 436 405 388

34 32 9/8 668 630 608

38 36 10/9 723 681 655

From Table 2, it is expected that one can obtain sufficiently many pairing-friendly elliptic curves
of order about 2160 for the embedding degree k ∈ {18, 22}. Table 3 indicates that m should be
considerably large to get many pairs of primes (p, `). In practice, one can obtain smaller primes ` by
using our method than using Freeman-Scott-Teske’s method. (See Table 4 and 5.)
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Table 4. The smallest three primes ` obtained by using our method

k lg `

14 23.3 26.2 44.3

18 50.5 56.8 56.9

22 92.8 107.0 122.1

26 54.2 135.8 145.7

34 182.7 225.4 228.3

38 189.6 213.6 230.6

Table 5. The smallest three primes ` by using Freeman-Scott-Teske’s method [7]

k lg `

14 70.3 123.1 123.3

18 38.0 331.0 332.4

22 92.8 206.5 250.7

26 349.3 350.2 354.5

34 442.7 447.4 472.2

38 284.2 357.9 369.8

These tables shows that our method can produce more pairing-friendly curves than the Freeman-
Scott-Teske’s method does.

Remark 2. Using the CM method, we can construct an ordinary elliptic curves with complex multi-
plication by the order of the imaginary quadratic field K = Q(

√−D), D > 0. (Refer to [9] for the
detail of the calculation.) In general, for a large D, it is hard to construct the elliptic curve by the
CM method. Therefore we must be careful with the size of D.

In our method, we set D = g. (If g is not square free, then we set the square free part of g as
D.) So the size of g is important when we construct the elliptic curve using the CM method. But as
stated in [7], we can construct an elliptic curve by using the CM method for D < 1010. Hence our
method is effective to construct pairing-friendly curves.

4 Examples

We show some examples of pairing-friendly curves obtained by our method. As in the following tables,
we can take ` ∈ [2160, 2200] for k ∈ {14, 18, 26, 34, 38}.

The case k = 2n with n ≡ 3 (mod 4).
k 14
g 94907647 (square free)

lg g 26.5
a 94907648
b 81134361081873541386683178009858
` 730814630451781170954872473773075062791521390343
p 156189148043546959726960325690688260554901983647491100761104666801301503

lg l 160
lg p 237

lg p/ lg ` 1.48742
Elliptic curve E : y2 = x3 + Ax + B

A 31207468084318007710070205852528042413419272619226432713249182826793377
B 72868028070727658382366912465248115127246842961981322062534344151629419
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k 22
g 64537 (square free)

lg g 15.9
a 64538
b 72251340785037749983512068952
` 1253374932065614913020027745090503713472041863353
p 84224919324693437514264627033473942716577450890477842713439673

lg ` 160
lg p 206

lg p/ lg ` 1.28748
Elliptic curve E : y2 = x3 + Ax + B

A 75517550472550772554756064758440445262989470504976700426419648
B 78420006756598327541258918850118277747518797300143747855426323

k 38
g 1483 (square free)

lg g 10.5
a 1484
b 51418400525474957138140623118446
` 1202951086100451498102340799609450549362206468742785844447
p 980208096595769061399824580668089368168014940054616269874127960671

lg l 190
lg p 219

lg p/ lg ` 1.15611
Elliptic curve E : y2 = x3 + Ax + B

A 330778111596940849550933423520331062816845702374429453110926299761
B 177785299809937845496300083424347013830249751265698201577576696370

The case k = 2n with n ≡ 1 (mod 4).

k 18
g 94906623 (square free)

lg g 26.5
a 7699855983294175985742107952727180889344
b −81130860417340694818970726128642
` 730767328960794658374478759845478477419642392323
p 148219456970417656877736253822173212415791168671331480760944628140120587583

52127
lg l 160
lg p 264

lg p/ lg ` 1.65409
Elliptic curve E : y2 = x3 + Ax + B

A 610587211902217729893806958821687111566883129507949202467723803382033767538
3850

B 901122997836204009521658818621702115763892648576404404181631296055091136970
6609
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k 26
g 9779 (square free)

lg g 13.2
a 8551870640210380614813972060
b −874513819430451029227322
` 764696222581341148650511408773719240195697919573
p 18285492543987287680645893866289922483693928837435505359

lg ` 160
lg p 184

lg p/ lg ` 1.15410
Elliptic curve E : y2 = x3 + Ax + B

A 4259382036714762839964241616690260479913669125334000551
B 4291447154251119176416504645782568812948366431319159585

k 34
g 2743 (square free)

lg g 11.4
a 8790878313605026490203306721144
b −3204840799710181002626068802
` 10267261474026538061953029801463094309944057146657157201
p 19326928722523970823211392049806096197843339094443289507368327

lg ` 183
lg p 204

lg p/ lg ` 1.11406
Elliptic curve E : y2 = x3 + Ax + B

A 8867741593431180281304173637484746944728502767354575224868122
B 3789900348071973173398722725207694885303890431924198073069304

5 Conclusion

In this article, we proposed an improved method to construct pairing-friendly elliptic curves over a
finite prime field. More precisely, we improved the Freeman-Scott-Teske’s method ([7]) for the case
that the embedding degree k = 2n where n is an odd prime. Though asymptotic values of ρ are
not improved, our method improves the range of ` in which we can find a pairing-friendly curves of
order `. Our probabilistic analysis indicates that for a given range of `, the probability of finding a
pairing-friendly curve by using our method is much greater than the one by using the Freeman-Scott-
Teske’s method. Moreover, by using our method we provided pairing-friendly elliptic curves for a
range [2160, 2200] of `, for which the Freeman-Scott-Teske’s method hardly produce a pairing-friendly
curve.
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