How to construct pairing-friendly elliptic curves
for the embedding degree 2n, n is an odd prime

Abstract. Pairing based cryptography is a new public key cryptographic
scheme. The most popular one is constructed by using the Weil or Tate
pairing of elliptic curves. An elliptic curve suitable for pairing based
cryptography is called a “pairing-friendly” elliptic curve. Freeman-Scott-
Teske proposed a new method to obtain pairing-friendly elliptic curves
over a finite prime field, improving Brezing and Weng’s result. In this
article, for the embedding degree in the form 2n with an odd prime n,
we propose an improved method which produces more pairing-friendly
elliptic curves than the Freeman-Scott-Teske method does for a given
range of the group order. Moreover, we study how to avoid an attack
based on Cheon’s algorithm.
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1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which
was proposed around 2000 by three important works due to Joux [14], Sakai,
Ohgishi and Kasahara [20] and Boneh and Franklin [5]. In these last two papers,
the authors constructed an identity-based encryption scheme by using the Weil
pairing of elliptic curves.

Let IF, be a finite field with ¢ elements and E an elliptic curve defined over
Fg. The finite abelian group of F,-rational points of E/ and its order are denoted
by E(F,) and #E(F,), respectively. Assume that E(F,) has a subgroup G of a
large prime order. The most simple case is that E(F,) = G, that is, the order
of E(F,) is prime. Let ¢ be the order of G. We denote by E[(] the group of
{-torsion points of E(F,) where F, is an algebraic closure of F,. In the following,
we denote log, x by g x.

Roughly speaking, pairing based cryptography uses the fact that the sub-
group G C E[f] can be embedded into the multiplicative group py of -th roots
of unity in sz for some positive integer k£ by using the Weil pairing or some
other pairing map. The extension degree k is called embedding degree.

In pairing based cryptography, it is required that ¢ and ¢* should be suffi-
ciently large but & and the ratio p := lgq/lg ¢ should be appropriately small.
An elliptic curve satisfying these conditions is called a “pairing-friendly” elliptic
curve. It is very important to construct an efficient method to find pairing-
friendly elliptic curves. There are many works on this topic: [17], [9], [8], [1],
[19] and so on. Recently, Freeman, Scott and Teske [11] proposed a method to
obtain pairing-friendly elliptic curves over a finite prime field I, with a small p,



following Brezing and Weng’s result [8] which uses cyclotomic fields. In [11], they
take £(z) as a cyclotomic polynomial @ (z) for some integer ¢ and set a prime
number £ := {(g) if ¢(g) is a prime for some positive integer g. Note that g is a
primitive ck-th root of unity in Z/¢Z. As is stated in [11], the polynomial degree
of ¢(x) is important to obtain enough pairing-friendly elliptic curves with the
appropriate size of £ and p. The method in [11] needs an extension field Q((.x)
of a cyclotomic field Q((j) for some ¢ > 1. So the degree of ¢(x) becomes large
and therefore £ and p of pairing-friendly elliptic curves become extremely large,
greater than 200 bits in many cases.

In this article, we propose an improved method which enables us to take
¢ = 1. In particular, for the case that k¥ = 2n with an odd prime n, asymptotic
values of the ratio p as p,{ — oo are as follows:

Our result Freeman et al.
k P deg ¢(z) P deg ¢(x)
14 | 3/2(=15) 6 |[4/3(=1.33333...) 12
22 || 13/10(= 1.3)F 10 ||13/10(= 1.3) 20
26 || 7/6(=1.16666...)* | 12 |[7/6(= 1.16666...) 24
34 || 9/8(= L.125)F 16 ||9/8(= 1.125) 32
38 || 7/6(= 1.16666...) 18 |[10/9(= L.11111...) 36

In the above table, the symbol * means that the ratio is as same as the result of
[11]. We emphasize that our result is obtained without extending a cyclotomic
field Q((k), whereas in [11] the case k = 2n with an odd n needs a field extension.
Therefore the degree of £ = £(g) is relatively small in our method. As we show in
Section 3 and 4, our method produces more pairing-friendly elliptic curves than
the Freeman-Scott-Teske method does for a given range of ¢.

After Mitsunari, Sakai and Kasahara’s work [16], many protocols without
random oracles have been proposed based on weak Diffie-Hellman-like prob-
lems, e.g. [2], [3], [4], [18]. In Eurocrypt 2006, Cheon [7] proposed an algorithm
to solve the g-weak/strong Diffie-Hellman problem. Very recently, Kutsuma-
Matsuo [15] improved Cheon’s algorithm for the g-weak Diffie-Hellman problem.
For an abelian group G of prime order ¢, if / — 1 has a positive divisor less than
or equal to g, then their improved algorithm can solve the g-weak Diffie-Hellman
problem within O(W) group operations using space for O(y/¢/d) group ele-
ments. There also exists the £ + 1 variant of their algorithm. For Brezing and
Weng’ method [8], Freeman, Scott and Teske’s method [11] and our method pro-
posed in Section 3, all of them use a cyclotomic polynomial to set a prime £ as
£ =& (x) or £ = P (x) for some ¢ > 1 where k is the embedding degree. Then,
¢ —1 has a polynomial factor z(z & 1) or z2. The size of x is about lg¢/¢(ck)
bits, where ¢ is the FEuler phi function. So if we consider an attack based on
Cheon’s algorithm, we should study how to avoid this situation. In Section 5, we
show that we can avoid this problem by taking ¢ as a proper divisor of @y (z).

We give the outline of this article. In Section 2, we recall the Weil paring and
the condition to construct a secure and efficient pairing based cryptosystem.
In Section 3, we describe our method and analyze the probability of obtaining



pairing-friendly elliptic curves as compared to the Freeman-Scott-Teske method.
In Section 4, we show examples of pairing-friendly elliptic curves obtained by
using our method. In Section 5, we remark on an attack based on the Cheon’s
algorithm. Finally, we summarize our result in Section 6.

2 Pairing based cryptosystem

Let K := F, be a finite field with g elements and E an elliptic curve defined
over K. Assume that F(K) has a subgroup G of a large prime order. Let £ be
the order of G.

For a positive integer £ coprime to the characteristic of K, the Weil pairing
is a map

eo: E[f] x E[f] — py ¢ K*

where K is the field extension of K generated by coordinates of all points in E [4],
K* is the multiplicative group of K and e is the group of ¢-th roots of unity
in K*. For the details of the Weil pairing, see [21] for example. The key idea of
pairing based cryptography is based on the fact that the subgroup G = (P) is
embedded into the multiplicative group uy C K* via the Weil pairing or some
other pairing map.

The extension degree of the field extension K /K is called the embedding
degree of F with respect to ¢. It is known that E has the embedding degree
k with respect to ¢ if and only if k is the smallest integer such that ¢ divides
¢* — 1. In pairing based cryptography, the following conditions must be satisfied
to make a system secure:

— the order ¢ of a prime order subgroup of E(K) should be large enough so
that solving a discrete logarithm problem on the group is computationally
infeasible and

— ¢* should be large enough so that solving a discrete logarithm problem on
the multiplicative group IFZ,C is computationally infeasible.

Moreover for an efficient implementation of a pairing based cryptosystem, the
following are important:

— the embedding degree k should be appropriately small and
— the ratio 1g ¢/ 1g ¢ should be appropriately small.

Elliptic curves satisfying the above four conditions are called “pairing-friendly
elliptic curves”.

In practice, it is currently recommended that ¢ should be larger than 2160
and ¢* should be larger than 21024,

In the following, we only consider the case K = I, where p is an odd prime.



3 How to construct pairing-friendly elliptic curves

In this section, we describe our method to find pairing-friendly elliptic curves.
Our method uses the CM method.

First of all, we recall the framework of generating pairing-friendly elliptic
curves for a given embedding degree k by using the CM method. The procedure
is described as follows:

Step 1 : Find integers ¢, p,a,b and a positive integer D satisfying the following
conditions :
1. 4p — a® = DV?,
p+1—a=0 (mod ),
k is the smallest positive integer such that p¥ —1 =0 (mod ¢),
p and ¢ are primes and
—D=0or1 (mod 4).

CU LN

Step 2 : Using the CM method, find an elliptic curve E defined over I, such
that

1. #E(F,) =p+1—aand

2. E has complex multiplication by an order in Q(v/—D).

Note that conditions 2 and 3 in Step 1 yield that a —1 is a primitive k-th root of
unity in Z/¢Z. Our method which we describe later gives an improved algorithm
for Step 1 in the above framework.

3.1 Our method

In the following, we only consider the case that k is in the form k = 2n where n
is odd.

First note that for £k = 2n with an odd n, if g is a primitive k-th root of
unity in a field K, then y/—g = g(®*1/2 belongs to K. Our idea is to use this
V=g = ¢g"*t1/2 as \/=D. The advantage to use such v/—D is that we do not
need to extend a cyclotomic field Q(¢x) to obtain a small value of p = lgp/lg?.
In the following, we describe our method which is divided into two cases: (1) the
case of a general n, (2) the case of n =1 (mod 4).

The general case. Let g be a positive integer such that ¢ := @, (g) is a prime
number. Then, g is a primitive k-th root of unity modulo ¢ and \/—g = ¢g("t1)/2
(mod ¢). Take D, a, b (0 < D,a,b < £) as follows:

D :=g, a:=g+1, b:=(g—1)g"*Y/2/g (mod ¢).

Then, p = (a®>+ Db?)/4 = O(¢g"+?) and £ = O(g#*™), where ¢ denotes the Euler
phi function.

Hence, in this case, we have p ~ (n + 2)/p(n) as p,¢ — oco. In particular, if
n is a prime number, we obtain p ~ (n +2)/(n — 1).



Remark 1. The above method works well in most cases but there are some un-
fortunate cases. When k = 30, a4 Db? in the above has no chance to be divisible
by 4. Taking b as b = (g — 1)g("~1/2 = ¢8 — ¢7 without reducing modulo ¢, we
can make a? + Db? divisible by 4, but it makes p greater than 2.

Improvement for n = 1 (mod 4). When n = 1 (mod 4), we can improve
the asymptotic value of p.

Let g be a positive integer such that ¢ := &y (g) is a prime number. Then,
g is a primitive k-th root of unity modulo £ and /=g = ¢™*Y/2 (mod ¢).
Note that ¢("+1)/2 is also a primitive k-th root of unity modulo ¢. Take D, a, b
(0 < D,a,b < ¥) as follows:

D:=g, a:=gnt/2 4, b= (g2 —1)g"+t /2 /g (mod 0).

Then, since
b= (g(n+1)/2 _ 1)g(n—1)/2 = gn _ g(n—l)/2 =_1_ g(n—l)/2 (IIlOd E),

p = (a® + Db?)/4 = O(g"*") and £ = O(g*™).

Hence, in this case, we have p ~ (n+ 1)/p(n) as p,{ — co. In particular, if
n is a prime number, we obtain p ~ (n 4+ 1)/(n — 1).

In the following, we only consider the case that n is prime.
3.2 Asymptotic values of p as p, £ — oo.
In Table 1, we show asymptotic values of p obtained by using our method for

k = 2n with an odd n, 6 < n < 20 but n # 15.

Table 1. The value of p for various k

& ] p | degl(x) |
14 | 3/2(=1.5) 6
22 | 13/10(= 1.3)* 10
26 | 7/6(=1.16666...)* 12
34 | 9/8(=1.125)% 16
38 | 7/6(= 1.16666...) 18

In Table 1, the symbol * means that the ratio is the same value achieved by
[11]. We emphasize that our result is obtained without extending a cyclotomic
field Q({), whereas in [11] the case k = 2n with an odd n needs a field extension.
Therefore the degree of ¢ = £(g) is not large in our method. As we show in the
following pages, our method produces more pairing-friendly elliptic curves than
the Freeman-Scott-Teske method does, for a given range of /.



3.3 Probability of obtaining primes p and £

We roughly estimate the probability that p and ¢ are both prime in our method.
First we discuss the general situation. Let n; and ns be integers and put p =

iE 72 From the prime number theorem, the probability that an integer n is a
1

prime is approximately ﬁ We denote the probability that n; and ns are both
prime by Pr,,, ,,. If a pair (n1,n2) is randomly chosen, Pr,,, ,, is approximately
1 1

Innilnne = p(lnng)?”

Let f(x) be a polynomial of degree d with coefficients in Z. Fix a positive
real number p. Set £ = f(g) for an integer g and let p be an integer determined
by g such that llgiflf = p. Since /¢ is described as a polynomial of g, it is not
known whether ¢ and p take infinitely many primes. But we assume that the

pair (¢, p) satisfies Pr;, = p(l;@)Q = o ]}(9))2, We consider the case a pair (¢,p)

runs through 2™ < ¢ < 2™ for some fixed integer m and a small integer «.
To simplify, let ¢ ~ g%. Then Pry; ~ o For om/d < g < omta)/d the
average of the probability that ¢ and p are both prime is approximately

m+to

1 2 1
T TE—— / 5dg.
pd2(2"5% —2%) Jo#  (lng)

Then we can estimate the probability that there exists at least a couple of
primes (p, £) for the interval 2/¢ < g < 2(m+a)/d g

m+ta m

mta 2 d -—-2d

1 2 1
1—(1- — / 59
pd2(277% —2%) Jy#  (lng)?

We regard this value as the function of d and m, and denote it by P(d, m).
Now we compare the above probability for our method and the one for the
Freeman-Scott-Teske method.
Since f is the k-th cyclotomic polynomial in our method, d = ¢(k). We show
the smallest integer value of m for various k such that P(p(k), m) is greater than
% in Table 2.

Table 2. The smallest value of m for various k which gives P(d,m) > 1/2

k d = deg/ p m m m
(@a=1) | (@=2) | (a=3)
14 6 3/2 91 83 78
22 10 13/10 176 163 155
26 12 7/6 220 205 196
34 16 9/8 315 296 284
38 18 7/6 367 345 332




In [11], to make and the value of p as small as possible, they use the ck-th
cyclotomic polynomial as ¢ for some integer c¢. For this method, the smallest
integer value of m for various k such that P(d,m) is greater than % is as in

Table 3.

Table 3. the smallest value of m for various k which gives P(d, m) > 1/2 in [11]

k d=degl p m m m
(a=1) | (a=2) | (a=3)
14 12 4/3 176 161 151
22 20 13/10 360 335 320
26 24 7/6 436 405 388
34 32 9/8 668 630 608
38 36 10/9 723 681 655

From Table 2, it is expected that one can obtain sufficiently many pairing-
friendly elliptic curves of order about 210 for the embedding degree k = 2. Table
3 indicates that m should be considerably large to get many pairs of primes (p, £).
In practice, one can obtain smaller primes ¢ by using our method than using the
Freeman-Scott-Teske method; see Table 4 and 5.

Table 4. The smallest three primes ¢ obtained by using our method

i g ¢
14 | 233 26.2 14.3
22 | 928 | 107.0 | 1221
26 | 542 | 1358 | 145.7
34 | 1827 | 2254 | 2283
38 | 189.6 | 213.6 | 230.6

Table 5. The smallest three primes ¢ by using the Freeman-Scott-Teske method [11]

k g ¢

14 70.3 123.1 123.3
22 92.8 206.5 250.7
26 349.3 350.2 354.5
34 442.7 447.4 472.2
38 284.2 357.9 369.8




These tables shows that our method can produce more pairing-friendly ellip-
tic curves than the Freeman-Scott-Teske method does.

Remark 2. Using the CM method, we can construct an ordinary elliptic curves
with the complex multiplication by an order of the imaginary quadratic field
K =Q(v/=D), D > 0. Refer to [13] for the details of the calculation. In general,
for a large D, it is hard to construct the elliptic curve by the CM method.
Therefore we must be careful with the size of D.

In our method, we set D = g. If g is not square free, then we set the square
free part of g as D. So the size of g is important when we construct the elliptic
curve using the CM method. But as stated in [11], we can construct an elliptic
curve by using the CM method for D < 10'°. Hence our method is effective to
construct pairing-friendly elliptic curves.

4 Examples

We show some examples of pairing-friendly elliptic curves obtained by our method.
As in the following tables, we can take ¢ € [2160,229] for k € {14, 26, 34, 38}.

The case k = 2n with n = 3 (mod 4).

k 14
g 94907647 (square free)
lgg 26.5

a 94907648
b 81134361081873541386683178009858
12 730814630451781170954872473773075062791521390343
P 1561891480435469597269603256906882605549019836474911007611\
04666801301503
lgl 159.0
lgp/lgl | 1.48742
Elliptic curve E : y?> = 2° + Az + B
A 3120746808431800771007020585252804241341927261922643271324\
9182826793377
B 7286802807072765838236691246524811512724684296198132206253\
4344151629419




22

N s ®elx

lg ¢
lgp/lgt

64537 (square free)

15.9

64538

72251340785037749983512068952
1253374932065614913020027745090503713472041863353
8422491932469343751426462703347394271657745089047784271343\
9673

159.8

1.28748

Elliptic curve E : 4> = 2° + Az + B

A

B

755175504725507725547560647584404452629894705049767004264 1\
9648
78420006756598327541258918850118277747518797300143 74785542\
6323

38

N s B ae|x

gl
lgp/lgt

1483 (square free)

10.5

1484

51418400525474957138140623118446
1202951086100451498102340799609450549362206468742785844447
9802080965957690613998245806680893681680149400546162698741\
27960671

189.6

1.15611

Elliptic curve E : y?> = 2° + Az + B

A

B

3307781115969408495509334235203310628168457023744294531109\
26299761
1777852998099378454963000834243470138302497512656982015775\
76696370

The case k = 2n with n =1 (mod 4).

k 26
g 9779 (square free)
lgg 13.2
a 8551870640210380614813972060
b —874513819430451029227322
14 764696222581341148650511408773719240195697919573
D 18285492543987287680645893866289922483693928837435505359
gl |159.1
lgp/lgl | 1.15410

Elliptic curve E : y> =23 + Az + B

A
B

4259382036714762839964241616690260479913669125334000551
4291447154251119176416504645782568812948366431319159585
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34
2743 (square free)
g 11.4
8790878313605026490203306721144
—3204840799710181002626068802
10267261474026538061953029801463094309944057146657157201
1932692872252397082321139204980609619784333909444328950736
8327

gl | 182.7
lgp/lgl | 1.11406
Elliptic curve E : 4> = 2° + Az + B

A 8867741593431180281304173637484746944728502767354575224868\
122
B 3789900348071973173398722725207694885303890431924198073069\
304

N s ®elx

5 Remarks on Cheon’s algorithm

5.1 The g-weak Diffie-Hellman problem

After Mitsunari, Sakai and Kasahara’s work [16], many protocols without ran-
dom oracles have been proposed based on weak Diffie-Hellman-like problems,
e.g. [2], [3], [4], [18]. In the following, we call such kind of problems the “pairing-
related problems.” The definition of the g-weak Diffie-Hellman problem is as
follows.

Definition 1. Let G be an abelian group whose order is a large prime number p.
The q-weak Diffie-Hellman problem asks [1/alg for a tuple (g, [a]g, [a?]g, - . ., [a]g)
where g € G and « € (Z/pZ)*.

For the definition of other pairing-related problems, e.g. the g-strong Diffie-
Hellman problem, the g-bilinear Diffie-Hellman inversion problem, the (¢ 4 1)-
bilinear Diffie-Hellman exponent problem, see [2], [3], [4] and so on.

5.2 Cheon’s algorithm and its improvement

In Eurocrypt 2006, Cheon [7] proposed an algorithm to solve the g-weak/strong
Diffie-Hellman problem. Very recently, Kutsuma and Matsuo [15] improved Cheon’s
algorithm for the g-weak Diffie-Hellman problem. For an abelian group G of
prime order £, if /—1 has a positive divisor less than or equal to ¢, then their im-
proved algorithm can solve the ¢-weak Diffie-Hellman problem within O(,/¢/d)
group operations using space for O(4/¢/d) group elements. There also exists an

¢ + 1 variant of this algorithm.
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5.3 How to avoid an attack based on Cheon’s algorithm

In order to escape beyond the ability of Cheon’s algorithm and its improvement,
the most simple way is to take a larger /. However, for the Brezing-Weng method
[8], the Freeman-Scott-Teske method [11] and our method described in Section
3, the situation is not so easy. All of them use a cyclotomic polynomial to set
a prime £ as ¢ = @ (x) or £ = D4 (x) for some ¢ > 1 where k is the embedding
degree. Then, £ — 1 is factored by = at least. Moreover, if ck = 2", then £ — 1 is
factored by 22", otherwise £ — 1 is factored by @(z + 1) or z(z — 1). The size
of x is about 1gf/p(ck) bits, ¢ > 1, where ¢ is the Euler phi function. Hence,
if © < ¢ (resp. z(x 4+ 1) < q), the complexity to solve the g-weak Diffie-Hellman
problem is reduced to O(V¢1=1/#(ck)) (resp. O(V(1=2/¢(ck))) group operations.

Here we consider another approach. The key idea is to take ¢ as a proper
divisor of @ (z). Note that when k& = 2n and n is an odd prime, Py, (z) =
&, (—x). We start from the following lemma.

Lemma 1. Let n and £ be primes and x an integer. If &, (x) =0 (mod ¢), then
{=mnorl=1 (modn).

Proof. Assume that @,(z) = 0 (mod ¢) and ¢ # n. Then @, (z) = 0 (mod ¢)
yields that x gives a primitive n-th root of unity in (Z/¢Z)*. Hence n divides
#(Z/0Z)* = —1; that is, £ = 1 (mod n). 0

Proposition 1. Let k be a positive integer of the form k = 2n, where n is an
odd prime. Let x be an integer, ¢ a large prime (>> n) and s a small integer
such that $y(x) = sf. Then the following hold:

1. If n divides s, then x = —1 (mod n) and n? Js.
2. If s=mn then x + 1 divides £ — 1.
3. If n does not divide s, then x Z —1 (mod n).

Remark 3. In Proposition 1, note that by the assumption ¢ >> n and Lemma 1,
n divides £ — 1. Moreover, it is easy to see that 2 — 1 is divisible by 24. Hence
(£ +1)(¢—1) is divible by 24n.

Proof. First, note that £—1 = &y (z)/s—1 = (&,(—x) — s) /s. Second, note that
if 2 £ —1, then Py (x) = Py (—z) = ((—2)? = 1) /(—z—1) = (—z—1)/(—x—1) =
1 (mod n) and hence, if n divides s, we have z = —1 (mod n).

(1) From the above, if n divides s, then 2 = —1 (mod n). Hence we only have
to show n? [s. Write s = tn where ¢ is an integer. Since £ = 1 (mod n) from the
assumption of the proposition and @, (—z) — tn = @r(z) — tn = tn(f — 1), we
have that @,,(—x) —tn =0 (mod n?). Since @, (—x) =n (mod n?) in this case,
we have that ¢ # 0 (mod n); that is, n? Js.

(2) If s = n, then since Pi(—1) —s = P, (1) —n =0, P(z) — s has a factor
x + 1. More precisely, we have ®p(x) —n = &, (—2) —n = —(x + 1)((—2)" "2 +
2(—2)" 3+ +(n—2)x+(n—1)). Since z+1 = 0 (mod n) in this case and n is
an odd prime, (—2)" " 2+2(—z)" 3+ -+ (n—-2)(—2)+(n—1) =n(n—-1)/2=0
(mod n). Hence we have £ — 1 = ($,,(—x) — n)/n has a factor z + 1.

(3) Suppose that = —1 (mod n). Then Px(x) = $,,(1) =0 (mod n). This
contradicts the assumption that n does not divide s. a
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In particular, the case (2) in the above proposition is not suitable if we
consider an attack based on Cheon’s algorithm.

5.4 Examples

Here we show examples of pairing-friendly elliptic curves which are suitable even
if we consider an attack based on Cheon’s algorithm.

k 14

T 1083603511

s 29

/ 55824446131714375710467270162691899840740433320567739 (176bit)
P 51496017014989011498494367998093518344894496635664050001399\

1240135020678496405311
p 1.53017
{—1 |2-7-473632918148007086057 - 8418883665373832453656694590531
where the smallest prime factor greater than n = k/2 is 69 bits.
041 |22.3.5-19135609389442190543 - 48621782384516713765239920031503
where the smallest prime factor greater than n = k/2 is 65 bits.
22
2169245
67
34435869083893646715039335514954459125462349808949323158099'\
743 (205bit)
P 58877786517045158480579461956011716339017570871437492980201\
25450311726006289864629
p 1.32879
{—1 |2-11-15828246210282269526689
- 98890727105558870788821495077490125549
where the smallest prime factor greater than n is 74 bits.
041 | 25-3-9058407505366397011987
- 39599341209962829220904617618609338497
where the smallest prime factor greater than n is 73 bits.
26
83647
131
895628588110024088164630713805121667532341241783716653231
(190bit)
D 20523450351754980408769703428272332811368092974952355784416\
0697479999
p | 1.19947
{—1 |2-5-13-33591629474234771
- 205094268590147341903062638045840757101
where the smallest prime factor greater than n is 55 bits.
041 | 2%.3-17076787506992460196737701
- 1092648656037825201826341014309
where the smallest prime factor greater than n is 84 bits.
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34

[N N

-1

+1

1575639

2381
60610501695985839437465846157036619507108797234795263952984\
8651064007445920303292031414651370517 (319bit)
89569732648757629042959007586160261461111714604990742459299\
7853891279157614566654642142360937103791199734065959

1.15838

22 .172 . 3888757351834334105187773

- 1348277228356412908437143001701523444494806229463338676215\
52648314057 where the smallest prime factor greater than n is 82 bits.
2-3-11-9057633382734104479299082267437063491

- 1013886184152948303745315261728444902438096439529164946553
where the smallest prime factor greater than n is 123 bits.

34

SN

(-1

+1

1730735

17-137
27830402151707213772790243425060710128851524965270716441651\
11328554663063808567192444024844854329 (321bit)
48538978648626809809653096381338491065159598631595616079566
88321815318124568522625897243485762842754461264104559

1.15803

23 .17 - 4929246847318461204437729747

- 4151451860244053772511252182941008184691463249811185187194\
625694509 where the smallest prime factor greater than n is 92 bits.
2-3-5-3615657195406556217189386851007

- 2565730160763380770608353262624638635627092786276345288942\
0876973 where the smallest prime factor greater than n is 102 bits.

38

S O 8|S

(-1

+1

422017

2281
79033772326705018830502245444409438041774479438057073363711\
630220987237178915490932609778746724313 (326bit)
33874025807138240665499623427646024497140999922941667223498\
12927081355741867650294171908202450963933866119466570911873
1.20054

23.3-19 - 56115490008454054019 - 1680365814167200027103

- 5326447603114061036076407 - 345083037847191822956752878473
where the smallest prime factor greater than n is 66 bits.
2-7-11397078001996904390827

- 290689663615821861493703718939957193

- 1703968515303582052746670741905616480441

where the smallest prime factor greater than n is 74 bits.
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6 Conclusion

In this article, we proposed an improved method to construct pairing-friendly
elliptic curves over a finite prime field. More precisely, we improved the Freeman-
Scott-Teske method ([11]) for the case that the embedding degree 2n where n
is an odd prime. Though asymptotic values of p are not improved, our method
improves the range of ¢ in which we can find a pairing-friendly elliptic curves
of order ¢. Our probabilistic analysis indicates that for a given range of ¢, the
probability of finding a pairing-friendly elliptic curve by using our method is
much greater than the one by using the Freeman-Scott-Teske method. In fact,
by using our method, we provided pairing-friendly elliptic curves for a range
[2160 2200 of ¢, for which the Freeman-Scott-Teske method hardly produce a
pairing-friendly elliptic curve. Moreover, we studied the influence of an attack
based on Cheon’s algorithm and improved our method to avoid the attack. As
we showed examples, the improved method also produce pairing-friendly elliptic
curves.
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