Another class of quadratic APN binomials over $\mathbb{F}_{2^{n}}$: the case n divisible by 4

Lilya Budaghyan,* Claude Carlet ${ }^{\dagger} \quad$ Gregor Leander ${ }^{\ddagger}$

Abstract

We exhibit an infinite class of almost perfect nonlinear quadratic binomials from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{n}}$ with $n=4 k$ and k odd. We prove that these functions are CCZinequivalent to known APN power functions when $k \neq 1$. In particular it means that for $n=12,20,28$, they are CCZ-inequivalent to any power function.

Keywords. Affine equivalence, Almost bent, Almost perfect nonlinear, CCZequivalence, Differential uniformity, Nonlinearity, S-box, Vectorial Boolean function.

1 Introduction

A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is called APN if, for every $a \neq 0$ and every b in \mathbb{F}_{2}^{n}, the equation $F(x)+F(x+a)=b$ admits at most two solutions (it is also called differentially 2-uniform). Vectorial Boolean functions used as S-boxes in block ciphers must have low differential uniformity to prevent from the differential cryptanalysis (see [5, 33]). In this sense almost perfect nonlinear (APN) functions are optimal. The notion of APN function is closely connected to the notion of almost bent (AB) function. A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is called AB if the minimum Hamming distance between all Boolean functions $v \cdot F, v \in \mathbb{F}_{2}^{n} \backslash\{0\}$ (where "." denotes the usual inner product in \mathbb{F}_{2}^{n}, note that any other choice of an inner product would lead to the same notion) and all affine Boolean functions on \mathbb{F}_{2}^{n} is maximal (this distance is called the nonlinearity of F and this maximum equals $2^{n-1}-2^{\frac{n-1}{2}}$). AB functions oppose an optimum resistance to the linear cryptanalysis (see [31, 15]). Besides, every AB function is APN [15] and any quadratic APN function is AB [14].

Until recently the only known constructions of APN and AB functions were EAequivalent to power functions over finite fields. Recall that functions F and F^{\prime} are called extended affine equivalent (EA-equivalent) if $F^{\prime}=A_{1} \circ F \circ A_{2}+A$, where the mappings

[^0]A, A_{1}, A_{2} are affine, and where A_{1}, A_{2} are permutations. Table 1 gives all known values of exponents d (up to multiplication by a power of 2 modulo $2^{n}-1$, and up to taking the inverse when a function is a permutation) such that the power function x^{d} over $\mathbb{F}_{2^{n}}$ is APN. For n odd the Gold, Kasami, Welch and Niho APN functions from Table 1 are also AB (for the proofs of AB property see [11, 12, 25, 27, 29, 33]).

Table 1
Known APN power functions x^{d} on $\mathbb{F}_{2^{n}}$.

Functions	Exponents d	Conditions	Proven in
Gold	$2^{i}+1$	$\operatorname{gcd}(i, n)=1$	$[25,33]$
Kasami	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(i, n)=1$	$[28,29]$
Welch	$2^{t}+3$	$n=2 t+1$	$[20]$
Niho	$2^{t}+2^{\frac{t}{2}}-1, t$ even	$n=2 t+1$	$[19]$
	$2^{t}+2^{\frac{3 t+1}{2}}-1, t$ odd		
Inverse	$2^{2 t}-1$	$n=2 t+1$	$[4,33]$
Dobbertin	$2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1$	$n=5 t$	$[21]$

When using S-boxes EA-equivalent to power functions the advantage is the low implementation complexity in hardware environments. On the other hand the properties of power functions could be exploited in an attack (see [1]). A first well known property of a power permutation F is that all its component functions $\operatorname{tr}(c F), c \in \mathbb{F}_{2^{n}}^{*}$, are affine equivalent. A second consequence is that the rich algebraic structure of the field $\mathbb{F}_{2^{n}}$ can be extensively used, probably in a simpler manner for a power function than for a polynomial with many terms. The impact of the choice of power functions on algebraic attacks is another open question [16]. Probably, some of the potential weaknesses of S-boxes based on power functions can be avoided by using S-boxes EA-inequivalent or even CCZ-inequivalent (see below) to power mappings.

Applying the stability properties studied in [14] and more recently called CCZ-equivalence (cf. definition at Section 2), classes of APN functions EA-inequivalent to power functions are constructed in $[9,8]$. They are presented in Table 2. When n is odd these functions are also AB. However they are, by construction, CCZ-equivalent to Gold mappings.

Table 2
Known APN functions EA-inequivalent to power functions on $\mathbb{F}_{2^{n}}$.

Functions	Conditions	Alg. degree
$x^{2^{i}+1}+\left(x^{2^{i}}+x \operatorname{tr}(1)+1\right) \operatorname{tr}\left(x^{2^{i}+1}+x \operatorname{tr}(1)\right)$	$\begin{gathered} n \geq 4 \\ \operatorname{gcd}(i, n)=1 \end{gathered}$	3
$\left[x+\operatorname{tr}_{n / 3}\left(x^{2\left(2^{i}+1\right)}+x^{4\left(2^{i}+1\right)}\right)+\operatorname{tr}(x) \operatorname{tr}_{n / 3}\left(x^{2^{i}+1}+x^{2^{2 i}\left(2^{i}+1\right)}\right)\right]^{2^{i}+1}$	n divisible by 6 $\operatorname{gcd}(i, n)=1$	4
$\begin{aligned} & x^{2^{i}+1}+\operatorname{tr}_{n / m}\left(x^{2^{i}+1}\right)+x^{2^{i}} \operatorname{tr}_{n / m}(x)+x \operatorname{tr}_{n / m}(x)^{2^{i}} \\ & +\left[\operatorname{tr}_{n / m}(x)^{2^{2}+1}+\operatorname{tr}_{n / m}\left(x^{2^{i}+1}\right)+\operatorname{tr}_{n / m}(x)\right]^{\frac{1}{2+1}}\left(x^{2^{i}}+\operatorname{tr}_{n / m}(x)^{2^{i}}+1\right) \\ & +\left[\operatorname{tr}_{n / m}\left(x 2^{2^{i}+1}+\operatorname{tr}_{n / m}\left(x^{2^{i}+1}\right)+\operatorname{tr}_{n / m}(x)\right]^{\frac{2^{i}}{2^{2}+1}}\left(x+\operatorname{tr}_{n / m}(x)\right)\right. \\ & \hline \end{aligned}$	$m \neq n$ n odd n divisible by m $\operatorname{gcd}(n, i)=1$	$m+2$

The first examples of APN functions CCZ-inequivalent to power mappings are introduced in [24]. These are two quadratic binomials:

- $x^{3}+w x^{36}$ over $\mathbb{F}_{2^{10}}$, where w has the order 3 or 93 ,
- $x^{3}+w x^{528}$ over $\mathbb{F}_{2^{12}}$, where w has the order 273 or 585 .

The second of these two functions has been proven being part of an infinite sequence of quadratic APN binomials given in Table 3 which represents by the only known classes of APN functions CCZ-inequivalent to power functions. Note that the first function from [24] is not explained yet by any infinite family.

Table 3
Known APN functions CCZ-inequivalent to power functions on $\mathbb{F}_{2^{n}}$.

	Functions	Conditions	Proven in
		$n=3 k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1$	
The case n	$x^{2^{s}+1}+w x^{2^{i k}}+2^{m k+s}$	$k \geq 4, i=s k \bmod 3, m=3-i$	$[6,7]$
divisible by 3		w has the order $2^{2 k}+2^{k}+1$	
		$n=4 k, \operatorname{gcd}(k, 2)=\operatorname{gcd}(s, 2 k)=1$	
The case n	$x^{2^{s}+1}+w x^{2^{i k}+2^{m k+s}}$	$n \geq 3, i=s k \bmod 4, m=4-i$ divisible by 4	
	w has the order $2^{3 k}+2^{2 k}+2^{k}+1$	Theorem 1 of	
the present paper			

The functions from Table 3 which correspond to the case n divisible by 3 are proven to be APN for n even and in case n odd they are AB permutations [6, 7]. The present paper introduces a new infinite family of quadratic APN binomials which corresponds to the case n divisible by 4 in Table 3. It is proven (in [6] for n divisible by 3 and in the present paper for n divisible by 4) that all these functions are EA-inequivalent to power functions and CCZ-inequivalent to the Gold and Kasami mappings. This implies that for n even they are CCZ-inequivalent to all known APN functions and for $n=12,15,20,24,28$, they are CCZ-inequivalent to any power mappings. We conjecture CCZ-inequivalence of these functions to any power functions for all $n \geq 12$.

Though quadratic APN functions are used in some Feistel ciphers (see for instance [32]) functions of low algebraic degree are not the best choices for S-boxes. However, the APN functions from Table 3 can be viewed as the first necessary steps to construct maximum nonlinear S-boxes of a larger algebraic degree CCZ-inequivalent to power functions. Note that, applying CCZ-equivalence to quadratic APN functions it is possible to construct nonquadratic APN mappings CCZ-inequivalent to power functions. The existence of APN functions CCZ-inequivalent to power functions and to quadratic functions is still an open problem.

2 Preliminaries

Let \mathbb{F}_{2}^{n} be the n-dimensional vector space over the field \mathbb{F}_{2}. Any function F from \mathbb{F}_{2}^{n} to itself can be uniquely represented as a polynomial on n variables with coefficients in \mathbb{F}_{2}^{n},
whose degree with respect to each coordinate is at most 1 :

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}_{2}^{n}} c(u)\left(\prod_{i=1}^{n} x_{i}^{u_{i}}\right), \quad c(u) \in \mathbb{F}_{2}^{n}
$$

This representation is called the algebraic normal form of F and its degree $d^{\circ}(F)$ the algebraic degree of the function F.
Besides, the field $\mathbb{F}_{2^{n}}$ can be identified with \mathbb{F}_{2}^{n} as a vector space. Then, viewed as a function from this field to itself, F has a unique representation as a univariate polynomial over $\mathbb{F}_{2^{n}}$ of degree smaller than 2^{n} :

$$
F(x)=\sum_{i=0}^{2^{n}-1} c_{i} x^{i}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

For any $k, 0 \leq k \leq 2^{n}-1$, the number $w_{2}(k)$ of the nonzero coefficients $k_{s} \in\{0,1\}$ in the binary expansion $\sum_{s=0}^{n-1} 2^{s} k_{s}$ of k is called the 2 -weight of k. The algebraic degree of F is equal to the maximum 2-weight of the exponents i of the polynomial $F(x)$ such that $c_{i} \neq 0$, that is $d^{\circ}(F)=\max _{0 \leq i \leq n-1, c_{i} \neq 0} w_{2}(i)$ (see [14]).

A function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is linear if and only if $F(x)$ is a linearized polynomial over $\mathbb{F}_{2^{n}}$, that is,

$$
\sum_{i=0}^{n-1} c_{i} x^{2^{i}}, \quad c_{i} \in \mathbb{F}_{2^{n}}
$$

The sum of a linear function and a constant is called an affine function.
Let F be a function from $\mathbb{F}_{2^{n}}$ to itself and $A_{1}, A_{2}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be affine permutations. The functions F and $A_{1} \circ F \circ A_{2}$ are then called affine equivalent. Affine equivalent functions have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in introduction, we say that the functions F and F^{\prime} are extended affine equivalent if $F^{\prime}=A_{1} \circ F \circ A_{2}+A$ for some affine permutations A_{1}, A_{2} and an affine function A. If F is not affine, then F and F^{\prime} have again the same algebraic degree.

Two mappings F and G from $\mathbb{F}_{2^{n}}$ to itself are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if the graphs of F and G, that is, the subsets $\left\{(x, F(x)) \mid x \in \mathbb{F}_{2^{n}}\right\}$ and $\left\{(x, G(x)) \mid x \in \mathbb{F}_{2^{n}}\right\}$ of $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$, are affine equivalent. Hence, F and G are CCZ-equivalent if and only if there exists an affine automorphism $\mathcal{L}=\left(L_{1}, L_{2}\right)$ of $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ such that

$$
y=F(x) \Leftrightarrow L_{2}(x, y)=G\left(L_{1}(x, y)\right) .
$$

Note that since \mathcal{L} is a permutation then the function $L_{1}(x, F(x))$ has to be a permutation too (see [6]). As shown in [14], EA-equivalence is a particular case of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse.

For a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ and any elements $a, b \in \mathbb{F}_{2^{n}}$ we denote

$$
\delta_{F}(a, b)=\left|\left\{x \in \mathbb{F}_{2}^{n}: F(x+a)+F(x)=b\right\}\right|
$$

and

$$
\Delta_{F}=\left\{\delta_{F}(a, b): a, b \in \mathbb{F}_{2^{n}}, a \neq 0\right\} .
$$

F is called a differentially δ-uniform function if $\max _{a \in \mathbb{F}_{2^{n}}^{*}, b \in \mathbb{F}_{2^{n}}} \delta_{F}(a, b) \leq \delta$. Note that $\delta \geq 2$ for any function over $\mathbb{F}_{2^{n}}$. Differentially 2 -uniform mappings are called almost perfect nonlinear.

For any function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ we denote

$$
\lambda_{F}(a, b)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{\operatorname{tr}(b F(x)+a x)}, \quad a, b \in \mathbb{F}_{2^{n}},
$$

where $\operatorname{tr}(x)=x+x^{2}+x^{4}+\ldots+x^{2^{n-1}}$ is the trace function from $\mathbb{F}_{2^{n}}$ into \mathbb{F}_{2}. The set $\Lambda_{F}=\left\{\lambda_{F}(a, b): a, b \in \mathbb{F}_{2^{n}}, b \neq 0\right\}$ is called the Walsh spectrum of F and the value

$$
\mathcal{N} \mathcal{L}(F)=2^{n-1}-\frac{1}{2} \max _{a \in \mathbb{F}_{2^{n}}, b \in \mathbb{F}_{2^{n}}^{*}}\left|\lambda_{F}(a, b)\right|
$$

equals the nonlinearity of the function F. The nonlinearity of any function F satisfies the inequality

$$
\mathcal{N} \mathcal{L}(F) \leq 2^{n-1}-2^{\frac{n-1}{2}}
$$

($[15,35]$) and in case of equality F is called almost bent or maximum nonlinear.
It is shown in [14] that, if F and G are CCZ-equivalent, then F is APN (resp. AB) if and only if G is APN (resp. AB). More general, CCZ-equivalent functions have the same nonlinearity and differential uniformity.

Obviously, AB functions exist only for n odd. It is proven in [15] that every AB function is APN and its Walsh spectrum equals $\left\{0, \pm 2^{\frac{n+1}{2}}\right\}$. If n is odd, every APN mapping which is quadratic (that is, whose algebraic degree equals 2) is AB [14], but this is not true for nonquadratic cases: the Dobbertin and the inverse APN functions are not AB (see [14],[12]). When n is even, the inverse function $x^{2^{n}-2}$ is a differentially 4 -uniform permutation [33] and has the best known nonlinearity [30], that is $2^{n-1}-2^{\frac{n}{2}}$ (see [12, 18]). This function has been chosen as the basic S-box, with $n=8$, in the Advanced Encryption Standard (AES), see [17]. A comprehensive survey on APN and AB functions can be found in [13].

3 A new family of APN functions

Theorem 1 Let s and k be positive integers such that $s \leq 4 k-1, \operatorname{gcd}(k, 2)=\operatorname{gcd}(s, 2 k)=$ 1 , and $i=s k \bmod 4, m=4-i, n=4 k$. If $w \in \mathbb{F}_{2^{n}}$ has the order $2^{3 k}+2^{2 k}+2^{k}+1$ then the function $F(x)=x^{2^{s}+1}+w x^{2^{2 k}+2^{m k+s}}$ is APN on $\mathbb{F}_{2^{n}}$.

Proof. Without loss of generality we can assume that $w=\alpha^{2^{k}-1}$ where α is a primitive element of $\mathbb{F}_{2^{n}}^{*}$. We have to show that for every $u, v \in \mathbb{F}_{2^{n}}, u \neq 0$, the equation

$$
\begin{equation*}
F(x)+F(x+u)=v \tag{1}
\end{equation*}
$$

has at most 2 solutions. We have

$$
\begin{aligned}
F(x)+F(x+u)= & \alpha^{2^{k}-1}\left(x^{2^{i k}+2^{m k+s}}+(x+u)^{2^{i k}+2^{m k+s}}\right)+x^{2^{s}+1}+(x+u)^{2^{s}+1} \\
= & \alpha^{2^{k}-1} u^{2^{i k}+2^{m k+s}}\left(\left(\frac{x}{u}\right)^{2^{i k}}+\left(\frac{x}{u}\right)^{2^{m k+s}}\right) \\
& +u^{2^{s}+1}\left(\left(\frac{x}{u}\right)^{2^{s}}+\left(\frac{x}{u}\right)\right)+\alpha^{2^{k}-1} u^{2^{i k}+2^{m k+s}}+u^{2^{s}+1}
\end{aligned}
$$

As this is a linear equation in x it is sufficient to study the kernel. To simplify notation we denote

$$
a=2^{2^{k}-1} u^{2^{i k}+2^{m k+s}-2^{s}-1} .
$$

After replacing x by $u x$ and dividing by $u^{2^{s}+1}$, we see the equation (1) admits 0 or 2 solutions for every $u \in \mathbb{F}_{2^{n}}^{*}$ if and only if, denoting

$$
\Delta_{a}(x)=a\left(x^{2^{i k}}+x^{2^{m k+s}}\right)+x^{2^{s}}+x
$$

the equation $\Delta_{a}(x)=0$ has the only solutions 0 and 1 .
From now on we consider the cases $i=1$ and $i=3$ separately.
Case $1(i=3, m=1)$: If we denote $y=x^{2^{k}}, z=y^{2^{k}}, t=z^{2^{k}}$ and $b=a^{2^{k}}, c=b^{2^{k}}$, $d=c^{2^{k}}$ the equation $\Delta_{a}(x)=0$ can be rewritten as

$$
a\left(t+y^{2^{s}}\right)+x^{2^{s}}+x=0
$$

Since $2^{i k}+2^{m k+s}-2^{s}-1=2^{3 k}+2^{k+s}-2^{s}-1=\left(2^{k}-1\right)\left(2^{2 k}+2^{k}+2^{s}+1\right)$ then a is always a $\left(2^{k}-1\right)$-th power and thus $a b c d=1$. Considering also the conjugated equations we derive the following system of equations

$$
\begin{aligned}
f_{1} & =a\left(t+y^{2^{s}}\right)+x^{2^{s}}+x= \\
f_{2} & =b\left(x+z^{2^{s}}\right)+y^{2^{s}}+y= \\
f_{3} & =c\left(y+t^{2^{s}}\right)+z^{2^{s}}+z= \\
f_{4} & =z+x^{2^{s}}+a b c\left(t^{2^{s}}+t\right)=0
\end{aligned}
$$

The aim is now to eliminate y, z and t from these equations and to get an equation in x only. First we compute

$$
\begin{aligned}
R_{1} & =b c f_{1}+a b c f_{2}+a b f_{3}+f_{4} \\
& =a b(b c+1) z^{2^{s}}+(a b+1) z+(b c+1) x^{2^{s}}+b c(a b+1) x
\end{aligned}
$$

and

$$
\begin{aligned}
R_{2} & =c f_{1}^{2^{s}}+a^{2^{s}} c\left(f_{2}^{2^{s}}+f_{2}\right)+a^{2^{s}} f_{3} \\
& =a^{2^{s}} b^{2^{s}} c 2^{2^{2 s}}+a^{2^{s}}(b c+1) z^{2^{s}}+a^{2^{s}} z+c x^{2^{2 s}}+c(a b+1)^{2^{s}} x^{2^{s}}+a^{2^{s}} b c x
\end{aligned}
$$

to eliminate t and y. To eliminate $z^{22^{2 s}}$ we compute

$$
\begin{aligned}
R_{3} & =c R_{1}^{2^{s}}+(b c+1)^{2^{s}} R_{2} \\
& =\left(c(a b+1)^{2^{s}}+a^{2^{s}}(b c+1)^{2^{s}+1}\right) z^{2^{s}}+a^{2^{s}}(b c+1)^{2^{s}} z+c(a b+1)^{2^{s}} x^{2^{s}}+a^{2^{s}} b c(b c+1)^{2^{s}} x .
\end{aligned}
$$

Using equations R_{1} and R_{3} we can eliminate $z^{2^{s}}$ by computing

$$
\begin{aligned}
R_{4} & =a b(b c+1) R_{3}+\left(c(a b+1)^{2^{s}}+a^{2^{s}}(b c+1)^{2^{s}+1}\right) R_{1} \\
& =P(a)\left(z+(b c+1) x^{2^{s}}+b c x\right)
\end{aligned}
$$

where

$$
P(a)=c(a b+1)^{2^{s}+1}+a^{2^{s}}(b c+1)^{2^{s}+1} .
$$

Below we shall show that $P(a) \neq 0$, thus we can denote

$$
R_{5}=\frac{R_{4}}{P(a)}=z+(b c+1) x^{2^{s}}+b c x .
$$

Computing

$$
\begin{aligned}
R_{6} & =R_{1}+a b(b c+1) R_{5}^{2^{s}} \\
& =(a b+1) z+a b(b c+1)^{2^{s}+1} x^{2^{2 s}}+\left(a b^{2^{s}+1} c^{2^{s}}+1\right)(b c+1) x^{2^{s}}+b c(a b+1) x
\end{aligned}
$$

we finally get our desired equation

$$
\begin{aligned}
R_{7} & =(a b+1) R_{5}+R_{6} \\
& =a b(b c+1)^{2^{s}+1}\left(x^{2^{2 s}}+x^{2^{s}}\right) .
\end{aligned}
$$

Obviously if x is a solution of $\Delta_{a}(x)=0$ then $R_{7}(x)=0$. For $P(a) \neq 0$ and $b c+1 \neq 0$ this is equivalent to $x=0,1$. Thus to prove the theorem we have to show that $P(a)$ and $b c+1$ do not vanish for elements a fulfilling the equation

$$
\begin{equation*}
a=\alpha^{2^{k}-1} u^{2^{3 k}+2^{k+s}-2^{s}-1} . \tag{2}
\end{equation*}
$$

Assume $b c=1$, that is, $a^{2^{2 k}+2^{k}}=1$ and then $a^{2^{k}+1}=1$. We have

$$
a^{2^{k}+1}=\left(\alpha u^{2^{k}+2^{s}}\right)^{2^{2 k}-1}
$$

because

$$
\left(2^{3 k}+2^{k+s}-2^{s}-1\right)\left(2^{k}+1\right)=\left(2^{2 k}-1\right)\left(2^{k}+2^{s}\right) \quad \bmod \left(2^{4 k}-1\right) .
$$

Since $a^{2^{k}+1}=1$ then $\alpha u^{2^{k}+2^{s}}$ should be $\left(2^{2 k}+1\right)$-th power of an element of the field. We have

$$
2^{k}+2^{s}=2^{s}\left(2^{k-s}+1\right)=2^{s}\left(2^{2 p}+1\right)
$$

with some p odd. Indeed, $k s \bmod 4=3$, then

$$
k \quad \bmod 4 \neq s \quad \bmod 4
$$

for odd k, s, and $k-s=2 p$ for some p odd.
Numbers $2^{2 p}+1$ and $2^{2 k}+1$ are divisible by 5 because p, k are odd. We get that $u^{2^{k}+2^{s}}$ is 5 -th power of an element of the field and $\alpha u^{2^{k}+2^{s}}$ is not. Therefore $\alpha u^{2^{k}+2^{s}}$ is not $\left(2^{2 k}+1\right)$-th power of an element of the field. A contradiction.

Let $c(a b+1)^{2^{s}+1}+a^{2^{s}}(b c+1)^{2^{s}+1}=0$. Since $b c+1 \neq 0$ then $a b+1 \neq 0$ and we get

$$
\frac{c}{a^{2^{s}}}=\left(\frac{b c+1}{a b+1}\right)^{2^{s}+1}
$$

Note that since n is even and s is odd then $2^{n}-1$ and $2^{s}+1$ are divisible by 3 . Therefore $c / a^{2^{s}}$ is third power of an element of the field. We have

$$
c / a^{2^{s}}=a^{2^{2 k}-2^{s}}=a^{2^{s}\left(2^{2 k-s}-1\right)}
$$

and
$\left(2^{3 k}+2^{k+s}-2^{s}-1\right)\left(2^{2 k-s}-1\right)=-\left(2^{2 k}-1\right)-2^{k-s}\left(2^{2 s}-1\right)-2^{s}\left(2^{2(k-s)}-1\right) \bmod \left(2^{4 k}-1\right)$.
The numbers $2^{2 k}-1,2^{2 s}-1$ and $2^{2(k-s)}-1$ are divisible by 3 . On the other hand $2^{k}-1$ and $2^{2 k-s}-1$ are not divisible by 3 since k and $2 k-s$ are odd. We get

$$
a^{2^{s}\left(2^{2 k-s}-1\right)}=2^{2^{s}\left(2^{2 k-s}-1\right)\left(2^{k}-1\right)} u^{2^{s}\left(-\left(2^{2 k}-1\right)-2^{k-s}\left(2^{2 s}-1\right)-2^{s}\left(2^{2(k-s)}-1\right)\right) .} \text {. }
$$

Obviously $c / a^{2^{s}}$ is not third power of an element of the field and therefore it is not ($2^{s}+1$)-th power.

Case $2(i=1, m=3)$: \quad Since $2^{i k}+2^{m k+s}-2^{s}-1=2^{k}+2^{3 k+s}-2^{s}-1=\left(2^{k}-1\right)(1+$ $2^{2 k+s}+2^{k+s}+2^{s}$) then a is always a $\left(2^{k}-1\right)$-th power and thus again $a b c d=1$.

In this case the equation $\Delta_{a}(x)=0$ can be transformed into the following system of equations

$$
\begin{aligned}
& f_{1}=a\left(y+t^{2^{s}}\right)+x^{2^{s}}+x=0 \\
& f_{2}=b\left(z+x^{2^{s}}\right)+y^{2^{s}}+y=0 \\
& f_{3}=c\left(t+y^{2^{s}}\right)+z^{2^{s}}+z=0 \\
& f_{4}=x+z^{2^{s}}+a b c\left(t^{2^{s}}+t\right)=0 .
\end{aligned}
$$

We get

$$
\begin{aligned}
R_{1} & =b c f_{1}+a b c f_{2}+a b f_{3}+f_{4} \\
& =(a b+1) z^{2^{s}}+a b(b c+1) z+b c(a b+1) x^{2^{s}}+(b c+1) x, \\
R_{2} & =c^{2^{s}} f_{1}+a c^{2^{s}}\left(f_{2}^{2^{s}}+f_{2}\right)+a f_{3}^{2^{s}} \\
& =a z^{2^{2 s}}+a(b c+1)^{2^{s}} z^{2^{s}}+a b c^{2^{s}} z+a b^{2^{s}} c^{2^{s}} x^{2^{2 s}}+c^{2^{s}}(a b+1) x^{2^{s}}+c^{2^{s}} x, \\
R_{3} & =a R_{1}^{2^{s}}+(a b+1)^{2^{s}} R_{2} \\
& =a(b c+1)^{2^{s}} z^{2^{s}}+a b c^{2^{s}}(a b+1)^{2^{s}} z+\left(a(b c+1)^{2^{s}}+c^{2^{s}}(a b+1)^{2^{s}+1}\right) x^{2^{s}}+c^{2^{s}}(a b+1)^{2^{s}} x, \\
R_{4} & =(a b+1) R_{3}+a\left(b c+12^{2^{s}}\right) R_{1} \\
& =P(a)\left(a b z+(a b+1) x^{2^{s}}+x\right),
\end{aligned}
$$

where

$$
P(a)=c^{2^{s}}(a b+1)^{2^{s}+1}+a(b c+1)^{2^{s}+1} .
$$

Assuming that $P(a) \neq 0$ we continue

$$
\begin{aligned}
R_{5} & =\frac{R_{4}}{P(a)}=a b z+(a b+1) x^{2^{s}}+x \\
R_{6} & =a^{2^{s}} b^{2^{s}} R_{1}+(a b+1) R_{5}^{2^{s}} \\
& =a^{2^{s}+1} b^{2^{s}+1}(b c+1) z+(a b+1)^{2^{s}+1} x^{2^{2 s}}+\left(a^{2^{s}} b^{2^{s}+1} c+1\right)(a b+1) x^{2^{s}}+a^{2^{s}} b^{2^{s}}(b c+1) x, \\
R_{7} & =a^{2^{s}} b^{2^{s}}(b c+1) R_{5}+R_{6} \\
& =(a b+1)^{2^{s}+1}\left(x^{2^{2 s}}+x^{2^{s}}\right)
\end{aligned}
$$

We see now that the equation $\Delta_{a}(x)=0$ has the only solutions 0 and 1 if $P(a) \neq 0$ and $a b+1 \neq 0$.

Assume that $a b=1$, that is, $a^{2^{k}+1}=1$. We have

$$
\left(2^{k}+2^{3 k+s}-2^{s}-1\right)\left(2^{k}+1\right)=\left(2^{2 k}-1\right)\left(2^{k+s}+1\right) \bmod \left(2^{4 k}-1\right)
$$

and

$$
a^{2^{k}+1}=\left(\alpha^{2^{k}-1} u^{2^{k}+2^{3 k+s}-2^{s}-1}\right)^{2^{k}+1}=\left(\alpha u^{2^{k+s}+1}\right)^{2^{2 k}-1} .
$$

Because $a^{2^{k}+1}=1$, the element $\alpha u^{2^{k+s}+1}$ should be $\left(2^{2 k}+1\right)$-th power of an element of the field. Since $k s \bmod 4=1$ then $k \bmod 4=s \bmod 4$ and $2^{k+s}+1=2^{2 p}+1$ for some p odd. Thus $2^{k+s}+1$ and $2^{2 k}+1$ are divisible by 5 . Therefore $\alpha u^{2^{k+s}+1}$ is not fifth power of an element of the field and then it is not $\left(2^{2 k}+1\right)$-th power. A contradiction.

Let $c^{2^{s}}(a b+1)^{2^{s}+1}+a(b c+1)^{2^{s}+1}=0$. Since $a b+1 \neq 0$ then

$$
c^{2^{s}} / a=\left(\frac{b c+1}{a b+1}\right)^{2^{s}+1} .
$$

We show that the element $c^{2^{s}} / a=a^{2^{2 k+s}-1}$ is not third power of an element of the field. A contradiction.

Indeed, for n even and s odd the numbers $2^{s}+1$ and $2^{n}-1$ are divisible by 3 . On the other hand

$$
a^{2^{2 k+s}-1}=\left(\alpha^{2^{k}-1} u^{2^{k}+2^{3 k+s}-2^{s}-1}\right)^{2^{2 k+s}-1}=\alpha^{\left(2^{k}-1\right)\left(2^{2 k+s}-1\right)} u^{\left(2^{k}+2^{3 k+s}-2^{s}-1\right)\left(2^{2 k+s}-1\right)}
$$

and
$\left(2^{k}+2^{3 k+s}-2^{s}-1\right)\left(2^{2 k+s}-1\right)=2^{s}\left(1-2^{2 k}\right)+\left(1-2^{2(k+s)}\right)+2^{k}\left(2^{2 s}-1\right) \bmod \left(2^{4 k}-1\right)$.
Since $2^{2 k}-1,2^{2(k+s)}+1$ and $2^{2 s}-1$ are divisible by 3 then $u^{\left(2^{k}+2^{3 k+s}-2^{s}-1\right)\left(2^{2 k+s}-1\right)}$ is third power of an element of the field. The number $\left(2^{k}-1\right)\left(2^{2 k+s}-1\right)$ is not divisible by 3 because k and $2 k+s$ are odd. Therefore, $a^{2^{2 k+s}-1}$ is not third power of an element of the field.

4 On CCZ-inequivalence of the introduced APN functions to power functions

To prove CCZ-inequivalence of APN functions of Theorem 1 to the Gold and Kasami functions we use results from [6].

Theorem 2 ([6]) Let n be a positive integer and let s, j, q be three nonzero elements of $\mathbb{Z} / n \mathbb{Z}$ such that $q \neq \pm s, j \neq \pm s, \pm q, 2 s, s \pm q$. Then the function $F(x)=x^{2^{s}+1}+a x^{2^{j}\left(2^{q}+1\right)}$ with $a \in \mathbb{F}_{2^{n}}^{*}$ is $E A$-inequivalent to power functions on $\mathbb{F}_{2^{n}}$.

Theorem 3 ([6]) Let n be a positive integer and r, s, q be three nonzero elements of $\mathbb{Z} / n \mathbb{Z}$ and j an element of $\mathbb{Z} / n \mathbb{Z}$ such that $s \neq \pm q, j \neq s-r, j \neq-r, j+q \neq s-r, j+q \neq-r$. If for $a \in \mathbb{F}_{2^{n}}^{*}$ the function $F(x)=x^{2^{s}+1}+a x^{\left.2^{j} 2^{q}+1\right)}$ is $A P N$ on $\mathbb{F}_{2^{n}}$ and it is CCZ-equivalent to the function $G(x)=x^{2^{r}+1}$ then F and G are EA-equivalent.

Theorem 4 ([6]) Let n be a positive integer and r, s, q, j be nonzero elements of $\mathbb{Z} / n \mathbb{Z}$ such that $\operatorname{gcd}(r, n)=1, n>4, s \neq \pm q, s \neq \pm 3 q, q \neq \pm 3 s, s \neq \pm j, q \neq \pm j, 3 q+j \neq 0$, $j+q \neq \pm s, j \neq s+q, 2 q \neq \pm j, 2 q \neq s-j, 2 s \neq j, 2 s \neq j+q$. Then for $a \in \mathbb{F}_{2^{n}}^{*}$ the functions $F(x)=x^{2^{s}+1}+a x^{2^{j}\left(2^{q}+1\right)}$ and $K(x)=x^{4^{r}-2^{r}+1}$ are CCZ-inequivalent on $\mathbb{F}_{2^{n}}$.

Proposition 1 The function F of Theorem 1 is EA-inequivalent to power functions when $k \geq 3$.

Proof. The function F satisfies the conditions of Theorem 2. If $i=1$ then $j=k$ and $q=2 k+s$. The conditions $q \neq \pm s, j \neq \pm s, \pm q, \pm 2 s, s \pm q$ are satisfied when $k \geq 3$ because k, s are odd, $n=4 k, \operatorname{gcd}(s, 4 k)=1$. The same is with the case $i=3$.

Proposition 2 The function F of Theorem 1 is CCZ-inequivalent to the Gold mappings when $k \geq 3$.

Proof. The proof is based on Proposition 1 and Theorem 3. Let $i=1$, then $j=k$ and $q=2 k+s$ satisfy the conditions $q \neq \pm s, j \neq s-r, j \neq-r, j+q \neq s-r, j+q \neq-r$ for any r satisfying $1 \leq r<n / 2$ and $\operatorname{gcd}(r, n)=1$. Indeed, $q= \pm s$ is in contradiction with $\operatorname{gcd}(s, 4 k)=1, n=4 k$. If $k=s-r$ then it contradicts to the fact that k is odd and $s-r$ is even. If $k=-r$ then it would contradict to $\operatorname{gcd}(r, 4 k)=1$. If $3 k+s=s-r$ then $3 k=-r$ and $\operatorname{gcd}(r, k) \neq 1$, a contradiction. If $3 k+s=-r$ then $s+r=k$ while s, r, k are odd. By Theorem 3 and Proposition 1 the function F is CCZ-inequivalent to $x^{2^{r}+1}$. For the case $i=3$ the proof is similar.

Proposition 3 The function F of Theorem 1 is CCZ-inequivalent to the Kasami mappings when $k \geq 3$.

Proof. Obviously, when $k \geq 3$ the function F satisfies the conditions of Theorem 4 because k, s are odd, $n=4 k, \operatorname{gcd}(s, 4 k)=1$.

If n is even then for any quadratic APN mapping F the number $2^{n / 2}$ divides all the values in the Walsh spectrum of F (see [34]). Besides, it is proven in [11] that $2^{\frac{2 n}{5}+1}$ cannot be a divisor of all the values in the Walsh spectrum of the Dobbertin function. Since the Walsh spectrum of a function is invariant (up to the sign of the values in it) under CCZ-equivalence then we can make the following conclusion from Propositions 1-3.

Corollary 1 The function F of Theorem 1 is CCZ-inequivalent to all known power APN functions when $k \geq 3$.

For $n=12,20,28$ Corollary 1 implies that the introduced APN binomials are CCZinequivalent to all power functions. When $n \geq 20$ and n is not divisible by 3 then the function F is CCZ-inequivalent to all known APN functions.

Problem 1 Construct APN polynomials CCZ-inequivalent to power functions and to quadratic functions.

References

[1] AES Security Report. C. Cid and H. Gilbert eds., http://www.ecrypt.eu.org/documents/D.STVL.2-1.0.pdf, 2006.
[2] T. Bending, D. Fon-Der-Flaass. Crooked functions, bent functions and distanceregular graphs. Electron. J. Comb., 5(R34), 14, 1998.
[3] T. Berger, A. Canteaut, P. Charpin and Y. Laigle-Chapuy. On almost perfect nonlinear mappings over F_{2}^{n}. Proceedings of International Symposium on Information Theory ISIT 2005.
[4] T. Beth and C. Ding. On almost perfect nonlinear permutations. Advances in Cryptology-EUROCRYPT'93, Lecture Notes in Computer Science, 765, SpringerVerlag, New York, pp. 65-76, 1993.
[5] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology, vol. 4, No.1, pp. 3-72, 1991.
[6] L. Budaghyan, C. Carlet, G. Leander. A class of quadratic APN binomials inequivalent to power functions, submitted.
[7] L. Budaghyan, C. Carlet, P. Felke, G. Leander. An infinite class of quadratic APN functions which are not equivalent to power mappings. Proceedings of the IEEE International Symposium on Information Theory 2006, Seattle, USA, Jul. 2006.
[8] L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Functions. IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1141- 1152, March 2006.
[9] L. Budaghyan, C. Carlet, A. Pott. New Constructions of Almost Bent and Almost Perfect Nonlinear Functions. Proceedings of the Workshop on Coding and Cryptography 2005, P. Charpin and \emptyset. Ytrehus eds, pp. 306-315, 2005.
[10] A. Canteaut, P. Charpin and H. Dobbertin. A new characterization of almost bent functions. Fast Software Encryption 99, Lecture Notes in Computer Science 1636, L. Knudsen edt, pp. 186-200. Springer-Verlag, 1999.
[11] A. Canteaut, P. Charpin and H. Dobbertin. Binary m-sequences with three-valued crosscorrelation: A proof of Welch's conjecture. IEEE Trans. Inform. Theory, 46 (1), pp. 4-8, 2000.
[12] A. Canteaut, P. Charpin, H. Dobbertin. Weight divisibility of cyclic codes, highly nonlinear functions on $\mathbb{F}_{2^{m}}$, and crosscorrelation of maximum-length sequences. SIAM Journal on Discrete Mathematics, 13(1), pp. 105-138, 2000.
[13] C. Carlet. Vectorial (multi-output) Boolean Functions for Cryptography. Chapter of the monography Boolean Methods and Models, Y. Crama and P. Hammer eds, Cambridge University Press, to appear soon. Preliminary version available at http://wwwrocq.inria.fr/codes/Claude.Carlet/pubs.html
[14] C. Carlet, P. Charpin and V. Zinoviev. Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography, 15(2), pp. 125-156, 1998.
[15] F. Chabaud and S. Vaudenay. Links between differential and linear cryptanalysis, Advances in Cryptology -EUROCRYPT'94, Lecture Notes in Computer Science, Springer-Verlag, New York, 950, pp. 356-365, 1995.
[16] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems of equations. Advances in cryptology-ASIACRYPT 2002, Lecture Notes in Computer Science 2501, pp. 267-287, Springer, 2003.
[17] J. Daemen and V. Rijmen. AES proposal: Rijndael. http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf, 1999.
[18] H. Dobbertin. One-to-One Highly Nonlinear Power Functions on $G F\left(2^{n}\right)$. Appl. Algebra Eng. Commun. Comput. 9 (2), pp. 139-152, 1998.
[19] H. Dobbertin. Almost perfect nonlinear power functions over $\operatorname{GF}\left(2^{n}\right)$: the Niho case. Inform. and Comput., 151, pp. 57-72, 1999.
[20] H. Dobbertin. Almost perfect nonlinear power functions over $G F\left(2^{n}\right)$: the Welch case. IEEE Trans. Inform. Theory, 45, pp. 1271-1275, 1999.
[21] H. Dobbertin. Almost perfect nonlinear power functions over $G F\left(2^{n}\right)$: a new case for n divisible by 5. D. Jungnickel and H. Niederreiter eds. Proceedings of Finite Fields and Applications FQ5, Augsburg, Germany, Springer, pp. 113-121, 2000.
[22] H. Dobbertin, Uniformly representable permutation polynomials, T. Helleseth, P.V. Kumar and K. Yang eds. in the Proceedings of "Sequences and their applicationsSETA '01', Springer Verlag, London, 2002, 1-22.
[23] H. Dobbertin. Private communication. 2004.
[24] Y. Edel, G. Kyureghyan and A. Pott. A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 744-747, Feb. 2006.
[25] R. Gold. Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory, 14, pp. 154-156, 1968.
[26] T. Helleseth and D. Sandberg. Some power mappings with low differential uniformity. Applic. Alg. Eng., Commun. Comput., vol. 8, pp. 363-370, 1997.
[27] H. Hollmann and Q. Xiang. A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. Finite Fields and Their Applications 7, pp. 253-286, 2001.
[28] H. Janwa and R. Wilson. Hyperplane sections of Fermat varieties in P^{3} in char. 2 and some applications to cyclic codes. Proceedings of AAECC-10, Lecture Notes in Computer Science, vol. 673, Berlin, Springer-Verlag, pp. 180-194, 1993.
[29] T. Kasami. The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control, 18, pp. 369-394, 1971.
[30] G. Lachaud and J. Wolfmann. The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory, vol. 36, pp. 686-692, 1990.
[31] M. Matsui. Linear cryptanalysis method for DES cipher. Advances in CryptologyEUROCRYPT'93, Lecture Notes in Computer Science, Springer-Verlag, pp. 386-397, 1994.
[32] New European Schemes for Signatures, Integrity and Encryption. https://www.cosic.esat.kuleuven.ac.be/nessie.
[33] K. Nyberg. Differentially uniform mappings for cryptography, Advances in Cryptography, EUROCRYPT'93, Lecture Notes in Computer Science, Springer-Verlag, New York, 765, pp. 55-64, 1994.
[34] K. Nyberg. S-boxes and Round Functions with Controllable Linearity and Differential Uniformity. Proceedings of Fast Software Encryption 1994, Lecture Notes in Computer Science 1008, pp. 111-130, 1995.
[35] V. Sidelnikov. On mutual correlation of sequences, Soviet Math. Dokl., 12(1971), pp. 197-201.

[^0]: *Department of Mathematics, University of Trento, I-38050 Povo (Trento), ITALY; e-mail: lilia.b@mail.ru
 ${ }^{\dagger}$ Department of Mathematics, University of Paris 8, and also a member of INRIA, Projet CODES, BP 105-78153, Le Chesnay Cedex, FRANCE; e-mail: claude.carlet@inria.fr
 ${ }^{\ddagger}$ Department of Mathematics, Ruhr-University, Bochum, D-44780 Bochum, GERMANY; e-mail: leander@itsc.ruhr-uni-bochum.de

