
Distinguishing attacks on ISAAC

Jean-Philippe Aumasson

FHNW, 5210 Windisch, Switzerland

Abstract. This paper presents two strong distinguishers for the deterministic random bit gen-
erator ISAAC, requiring 248 and 264 samples of respectively 64 and 32 bits, based on the obser-
vation that more than 28 167 initial states among the 28 192 ones induce a strongly non-uniform
distribution of the bits produced at the first round of the algorithm. A previous attack on ISAAC
presented at Asiacrypt’06 by Paul and Preneel is demonstrated to be non relevant, since relies
on an erroneous algorithm. The results of this paper stress the unsecurity of ISAAC, both as a
pseudo-random generator and as a stream cipher. A modification of the algorithm is proposed
to fix the weaknesses discovered.

ISAAC [3] is a deterministic random bits generator presented at FSE’96 by Jenkins, who
claims that it has “no bad initial states, not even the state of all zeros”. We contradict this
affirmation, presenting more than 28 167 weak states, in Section 2, after a short description of
ISAAC and the observation of some minor weaknesses, in Section 1. Recall that, as a source
of non-uniform randomness, weak states might distort simulations, and harm cryptographic
applications, and so generators with many such states should not be used. In Section 3, we
exploit some weak states to construct two strong distinguishers, requiring respectively 248

64-bit samples and 264 32-bit samples. Sections 4 and 5 respectively propose a modification of
ISAAC’s algorithm to avoid the design flaws presented, and point out an error in a previous
analysis of ISAAC. Section 6 is our conclusion.

1 Preliminaries

1.1 Presentation of ISAAC

ISAAC is an array-based pseudo-random generator, derived from the generators IA and IBAA,
presented in the same paper [3]. Although it is “designed to be cryptographically secure” [3], no
security proof is given, and only statistical tests argue for its security. Nevertheless, only two
publications tackled it until now: one [8] of 2001 by Pudovkina, presenting a state recovery
attack running in time 24 121, and a recent one [7] by Paul and Preneel which presents a
distinguisher running in time 217. However, as we show in Section 5, the authors of the latter
attack considered an algorithm slightly distinct from the real one, that makes their attack
unrelevant.

We follow the description of the algorithm provided in Figure 4 of [3]; the internal state
is an array of 256 32-bit words, and at each round, the algorithm computes another array of
256 32-bit words. In the following, α denotes the initial state, and αi its ith element, while ω
denotes the first output, and ωi its ith element, for i ∈ {0, . . . , 255}. The generation algorithm
takes as parameters the initial values of the three variables a, b and c; a (32-bit) is used as an
entropy accumulator, b (32-bit) contains the previous pseudo-random word, and c (8-bit) is
a simple counter, incremented at each round of the algorithm. Their initial values are public,
and are not part of the secret initial state.

2 Jean-Philippe Aumasson

We give the generation algorithm in a readable form in Algorithm 1.1, for an arbitrary
round, where the variable internal state is s, the output array is k, and the inputs a, b, and c
are those computed in the previous round. The symbol ⊕ denotes the bitwise XOR, + stands
for the integer addition (modulo 2k when needs to fit a k bit value), and ¿ and À are the
usual shift operators. The value f(a, i) in Algorithm 1.1 is a 32-bit word, defined for all a and
i ∈ {0, . . . , 255} as:

f(a, i) =

a ¿ 13 if i ≡ 0 mod 4
a À 6 if i ≡ 1 mod 4
a ¿ 2 if i ≡ 2 mod 4
a À 16 if i ≡ 3 mod 4

.

Input: a, b, c, and the internal state s, an array of 256 32-bit words
Output: an array r of 256 32-bit words
1: c← c + 1
2: b← b + c
3: for i = 0, . . . , 255 do
4: x← si

5: a← f(a, i) + si+128 mod 256

6: si ← a + b + sxÀ2 mod 256

7: ri ← x + ssiÀ10 mod 256

8: b← ri

9: end for
10: return r

Algorithm 1.1. ISAAC algorithm for an arbitrary round.

For a better understanding of the following developments, we give the redundant Algo-
rithm 1.2, which shows more clearly how the initial state α is used to produce the first array
ω,

Input: a, b, c, and the initial state α, an array of 256 32-bit words
Output: an array ω of 256 32-bit words
1: b← b + c + 1
2: for i = 0, . . . , 255 do
3: si ← αi

4: end for
5: for i = 0, . . . , 255 do
6: a← f(a, i) + si+128 mod 256

7: si ← a + b + sαiÀ2 mod 256

8: ωi ← αi + ssiÀ10 mod 256

9: b← ωi

10: end for
11: return ω

Algorithm 1.2. ISAAC algorithm computing the first ouput ω from the initial state α.

Distinguishing attacks on ISAAC 3

1.2 Observations

We report here some undesirable properties of ISAAC at the origin of the weak states pre-
sented in the next section, verified experimentally with the source code provided by ISAAC’s
author [2]. From now, ≡ symbolizes the equivalence modulo 232.

Fact 1. For a random initial state α, and fixed a, b, and c, the following statements are
verified.

Pr [∃i ∈ {1, . . . , 255}, ω0 ≡ α0 + αi] ≥ 255
256

. (1)

Pr [∃i ∈ {1, . . . , 255}, ω0 − ω1 ≡ α0 − αi] ≥ 254
2562

. (2)

Proof. (1): let µ = f(a, 0) + α128 + b + c + 1 + α(α0À2) mod 256, the value obtained at line 7
of Algorithm 1.2 at the first iteration (i = 0). At line 8 , when i = 0, we get ω0 = α0 + λ,
where λ = µ if (µ À 10) mod 256 6= 0, and λ = α(µÀ10) mod 256 otherwise. Since α0 is random,
(α0 À 2) mod 256 is a random value in {0, . . . , 255}. Since α128 is random, then µ is a random
value in {0, . . . , 232 − 1}. Hence µ À 10 mod 256 6= 0 with probability 255/256, which proves
the result.
(2): the result is straightforward, one simply needs to apply the previous reasoning to the two
following situations.

• ω0 ≡ α0 + αj and ω1 ≡ α1 + αj , for some j ∈ {2, . . . , 255}.
• ω0 ≡ α0 + α1 and ω1 ≡ α1 + αj , for some j ∈ {2, 255}.

ut
Fact 2. When there exists i ∈ {2, . . . , 255} such that ω0 = α0 + αi, α0 and i are correctly
guessed with probability respectively 2−32 and 1/255. Thus for a random α, one recovers α0

and αi for a certain i, with probability 2−32 · 1/255 · 255/256 = 2−40, whereas ideally this
probability should be 2−64.

Fact 3. Let N ∈ {0, . . . , 127}, and set αi = X for all i > N , and αi = Y for all i ≤ N , with
fixed positive integers X < 29 and Y < 210. If a = b = c = 0, then

ω0 =
{

X + 2Y + 1 if Y ∈ {0, . . . , M}
2X + Y + 1 if Y ∈ {M + 1, . . . , 210 − 1} ,with M = max

0<m<29
{m, (m À 2) < N}.

The above result directly follows from Algorithm 1.2; the limitation of X to a 9-bit value
comes from the fact that above this bound, αi À 10 6= 0 (cf. line 8 of Algorithm 1.2). We
also need Y < 210 so that, at line 7, we do not pick an index less than N , that is, for which
αi = Y . For the general case, the bound M comes from the fact that, at the line 7, we shall
pick the value Y as soon as Y À 2 is less than N − 1, and X otherwise. Finally, we need
N < 128 in order to get i+128 > N mod 256 for all i ∈ {0, . . . , N−1} (line 6), and so a = X.
We obtain exactly 29 · 210 · 27 = 226 such states.

2 The weak states

Basically, the weak states considered have a fraction of random elements, and the remaining
elements are fixed to the same value. We divide them into four non-disjoint sets: W1,W2,W3

and W4. This section defines each set, then presents the bias induced by its elements, and
provides a few comments. We keep the notation α for the initial state, and ω for the first
array that the algorithm outputs.

4 Jean-Philippe Aumasson

2.1 Set W1

Definition. α ∈ W1 ⇐⇒ α0 = α1.

Bias. For a random α ∈ W1,
Pr[ω0 = ω1] ≥ 254/2562.

Indeed, for states of W1, ω0 = ω1 holds as soon as a same element of index greater than 2 is
picked at the first and second rounds (first has index ≥ 2 with probability 254/256, then is
picked again with conditional probability 1/256).

Comments. We will meet these states when building the distinguisher D1.
There are 232·254 · 232 = 28 160 states in W1.

2.2 Set W2

Definition. α ∈ W2 ⇐⇒ ∃N ∈ {2, . . . , 256}, ∃X ∈ {0, . . . , 232 − 1}, α0 = X, #{0 < i <
256, αi = X} = N − 1.

Bias. For a random α ∈ W2,

Pr[ω0 = 2X] ≥ N − 1
256

.

Indeed, at the first round of the algorithm, a random value v of the state is picked, which is
X with probability (N − 1)/256, then ω0 = α0 + v is returned.

Comments. A high statistical bias appears in the distribution of the first 32 bits. For
example, if N is set to 6, Pr[ω0 ≡ 2X] ≈ 0.02, and there are 28 033 states of W2 with N = 5.

There are more than 255 · 232·254 · 232 ≥ 28 167.99 states in W2.

2.3 Set W3

Definition. α ∈ W3 ⇐⇒ ∃N ∈ {2, . . . , 256},∃X ∈ {0, . . . , 232−1},∀i ∈ {0, . . . , N−1}, αi =
X.

Bias. For a random α ∈ W3,

Pr[ωi ≡ 2X] ≥ N − 1− i

256
, i = 0, . . . , N − 1.

Indeed, at line 8 of Algorithm 1.2, x = X holds, and so ααiÀ10 mod 256 is equal to X if
αi À 10 mod 256 is greater than i and strictly less than N , which occurs with probability
greater than (N − 1− i)/256, cf. Fact 1.

Comments. Clearly, W3 ⊂ W2. Again, the value 2X shall appear with high probability,
compared to a random bitstream, but not only in ω0. For example, if N = 64 and X = 0:
the last 192 elements of α are random, and the 64 first ones set to 0, then Pr[ω0 = ω1 =
0] ≈ 0.06 ≈ 2−4. If N is as small as 2, Pr[ω0 ≡ 2X] ≈ 2−8, much higher than the 2−32 of
an ideal generator. If N is greater than, say, 216, then 2X appears in average more than 90
times, thus X is recovered with high probability, and the random elements remaining can be
computed by exhaustive search in 248.

There are more than 232·254 · 232 = 28 160 states in W2.

Distinguishing attacks on ISAAC 5

2.4 Set W4

Definition. α ∈ W4 ⇐⇒ ∃X ∈ {0, . . . , 232 − 1}, ∀i ∈ {0, . . . , 255}, αi = X.

Bias. For a random α ∈ W4,

Pr[ωi ≡ 2X] ≥= 1− i + 1
256

.

This result comes as a particular case of W1 states. Moreover, the expected number of i such
that ωi ≡ 2X is greater than

255∑

i=0

(1− i + 1
256

) = 127.5,

that is, more than half of the elements produced at the first round are ≡ 2X in average, when
αi = X for i = 0, . . . , 255.

Comments. It is straightforward to distinguish between a real random bitstream and a one
produced by ISAAC initialised with a state with constant value, since the latter shall have
about half of the ωi equal to 2X. The full state can even be trivially recovered in a few seconds
with a paper and a pen.

There are exactly 232 states in W4.

3 The strong distinguishers

Briefly, a strong distinguisher (see Chapter 3 of [1]) is a probabilistic polynomially bounded
algorithm, querying two black boxes, each one returning a bit sample of fixed length; for one
box this sample is truly random, while the other’s is produced by a pseudo-random generator
with a random (unknown) initial state. The algorithm returns either 0 or 1 to designate the
box which it “believes” to be the pseudo-random generator. An estimation of the number of
samples required for a distinguisher to get a significant probability of success is given in the
following theorem by Mantin and Shamir.

Theorem 1 ([4]). Let D and D′ be distributions, and suppose that the event E happens in D
with probability p and in D′ with probability p(1+ q). Then for small p and q, O(1

pq2) samples
suffice to distinguish D from D′ with constant probability of success.

We present below the distinguishers D1 and D2, and evaluate the number of samples required
with regard to this theorem.

3.1 Distinguisher D1

Recall that for a random state in W1, Pr[ω0 = ω1] ≈ 2−8. Thus for a random state of ISAAC,

Pr[ω0 = ω1] ≥ 2−32(2−8 + 2−32) + (1− 2−32)2−32 = 2−32 + 2−40,

whereas this probability is 2−32 for a truly random bitstream.
Here the boxes shall output 64-bit samples at each query, and the algorithm shall select

as the “ISAAC box” the one where the first 32 bits are the most frequently equal to the last
32’s (that is, when ω0 = ω1 in ISAAC), and a random box if there is equality of occurences.
Applying Theorem 1, we get p = 2−32 and q = 2−8, so the distinguisher requires about 248

samples to get a significant advantage. At most 112 bits of memory are necessary (64 to read
the black boxes’ output, and at most 48 to count the occurences).

6 Jean-Philippe Aumasson

3.2 Distinguisher D2

For a random state in W2 with N = 2 (α0 = αi for some i > 0), Pr[ω0 = 2X] ≥ 2−8. Since
2X is even, the least significant bit of ω0 is 0 with probability 1

2 + 2−8. Let ζ be this bit, for
a random ISAAC state, we get

Pr[ζ = 0] ≥ (1− 2−25)
1
2

+ 2−25(
1
2

+ 2−8) =
1
2

+ 2−33,

since a random state is in W2 with probability 2−25. The distinguisher algorithm shall query
for 32-bit samples, and choose as ISAAC box the one where the 32-th bit is the most often
0. By Theorem 1 we get p = 1

2 and q = 2−32, thus 264 samples of 32-bits are required by the
algorithm, so it runs in time about 264, and requires at most 96 bits of memory.

4 ISAAC+

To fix the weaknesses presented, we modify ISAAC’s algorithm, and get Algorithm 1.3. We
call the corresponding pseudo-random generator ISAAC+. The modifications: we add ⊕a (line
7 of Algorithm 1.3) to avoid the biases observed, perform rotations (symbols ≪, ≫) instead
of shifts, so as to get more diffusion from the state bits, and replace an addition by a XOR
(line 6) to reduce the linearity over Z232 .

Input: a, b, c, and the internal state s, an array of 256 32-bit words
Output: an array r of 256 32-bit words
1: c← c + 1
2: b← b + c
3: for i = 0, . . . , 255 do
4: x← si

5: a← f ′(a, i) + si+128 mod 256

6: si ← a⊕ b + sx≫2 mod 256

7: ri ← x + a⊕ ssi≫10 mod 256

8: b← ri

9: end for
10: return r

Algorithm 1.3. ISAAC+’s algorithm for an arbitrary round.

ISAAC+has the following properties.

• The properties stated in Section 1.2 do not hold: we get ω0 = α0 + αi ⊕ (a ¿ 13 + α128),
for a random state, α128 is random in {0, . . . , 232 − 1}, thus so is a ¿ 13 + α128. This
contradicts the first proposition, and thereby the followings.

• The states presented in Section 2 lose their undesirable biases, for analog reasons. Conse-
quently, the distinguishers D1 and D2 do not apply since the bias is deleted.

• ISAAC+ runs with roughly the same algorithmic complexity.
• Like ISAAC, ISAAC+ successfully passes all the Diehard [5] and NIST [6] statistical tests

(this guarantees a minimal statistical quality of the pseudo-random bitstream).

Distinguishing attacks on ISAAC 7

5 Comment on a Previous Attack

At Asiacrypt’06, Paul and Preneel presented [7] distinguishers for several stream ciphers and
pseudo-random generators with RC4-like construction, including ISAAC. However their anal-
ysis is based on a incorrect version of the algorithm, probably due to the hardly understandable
code given in [3]: in their paper, at line 4 of Algorithm 3, the internal state updated is not
the current one, but the next; they wrote “4 : m[i + 1] = . . . ” instead of “4 : m[i] = . . . ”. In
ISAAC’s code, the statement *(m++) = <some expression> indeed affects the current value
pointed by m at the expression given, then increments the pointer.

Based on this incorrect algorithm, the authors observe that the output at iteration i
comes equal to 2si with probability 1

2(1 + 2−8). From the bias over the parity they construct
a distinguisher running in time ≈ 217. However this does not apply to the real algorithm of
ISAAC, where the value si (denoted m[i] in [7]) is updated before picking the output (cf. line
7 of Algorithm 1.2), and so the previous value of si is not picked with the probability they
considered.

6 Conclusion

We have shown that the bits generated by random states of ISAAC could be distinguished
from true random bits in reasonable time, due to the existence of huge sets of weak states.
Those results also apply to the generators IA and IBAA [3], whose algorithms are very close
to ISAAC’s. Although we managed to repair the problems pointed out, the new generator
ISAAC+ does not offer much more security guarantees than its brother, and so should not be
considered as a proposal for a new pseudo-random generator. We hope that our results will
help to fill the lack of study of ISAAC.

References

1. Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press, 2001.
2. Robert J. Jenkins. http://www.burtleburtle.net/bob/rand/isaacafa.html.
3. Robert J. Jenkins. ISAAC. In D. Gollmann, editor, FSE’96, volume 1039 of Lecture Notes in Computer

Science, pages 41–49. Springer, 1996.
4. Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In M. Matsui, editor, FSE’01, volume

2355 of Lecture Notes in Computer Science, pages 152–164. Springer, 2001.
5. Georges Marsaglia. The Diehard Battery of Tests of Randomness, 1995. Available at

http://stat.fsu.edu/pub/diehard/.
6. National Institue of Standards and Technology. Statistical Test Suite 1.8, 2005. Available at

http://http://csrc.nist.gov/rng/.
7. Souradyuti Paul and Bart Preneel. On the (in)security of stream ciphers based on arrays and modular

addition. In Xuejia Lai, editor, ASIACRYPT’06, Lecture Notes in Computer Science, page ? Springer,
2006.

8. Marina Pudovkina. A known plaintext attack on the ISAAC keystream generator. IACR ePrint Archive,
Report 2001/049, 2001. Available at http://eprint.iacr.org/2001/049.

