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Abstract. Kim et al. [4] and Contini et al. [3] studied on the security of
HMAC and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1.
Especially, they considered the distinguishing attacks. However, they did
not describe a generic distinguishing attack on NMAC and HMAC. In
this paper, we describe the generic distinguisher to distinguish NMAC
and HMAC when the underlying compression function is the random
oracle with the birthday attack complexity.
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1 Introduction.

Since MD4-style hash functions were broken, evaluations on the security of
HMAC and NMAC have been required. Kim et al. [4] and Contini et al. [3]
showed the security analyses on them. However, Kim et al.’ distinguishing at-
tack complexity is far from the birthday attack complexity. Contini et al. also
suggested 284 as the distinguishing attack complexity of NMAC and HMAC on
the reduced SHA-1, which is bigger than the birthday attack complexity. In this
paper, we describe the generic distinguisher to distinguish NMAC and HMAC
based on the random oracle with the birthday attack complexity.

2 NMAC and HMAC

Fig. 1 and 2 show NMAC and HMAC based on a compression function f
from {0, 1}n × {0, 1}b to {0, 1}n. K1 and K2 are n bits. K = K||0b−n where
K is n bits. opad is formed by repeating the byte ‘0x36’ as many times as
needed to get a b-bit block, and ipad is defined similarly using the byte ‘0x5c’.
H : {IV } × ({0, 1}b)∗ → {0, 1}n is the iterated hash function. H is defined
as follows : H(IV, x1||x2|| · · · ||xt) = f(· · · f(f(IV, x1), x2) · · · , xt) where xi is
b bits. Let g be a padding method. g(x) = x||10t||bin64(x) where t is smallest
non-negative integer such that g(x) is a multiple of b. Then, NMACK1,K2(x) =
H(K2, g(H(K1, g(x)))) and HMACK(x) = H(IV, g(K⊕opad||H(IV, g(K⊕ipad||x)))).
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Fig. 1. NMAC

…

⊕

⊕

Fig. 2. HMAC

3 General Distinguishing Attack On NMAC and HMAC

Here, we describe two types of distinguishers A1 and A2. In case of A1, we will
prove the lower bound of A1’s advantage. On the other hand, A2 distinguishes
heuristically without proving exact proof of security bound. Practically, A2 is
reasonable. For both of distinguishers, queries are same as follows. Let q is the
number of queries whose length is fixed and its padded message is l-block (l > 3).
Each block is b bits such that b > c + 65 and c = ⌈log2l⌉. bini(x) is the i-bit
binary representation of x. q queries are denoted by M1, M2, · · · , Mq such that
g(Mi) = Xi||binc(1)||0b−c||binc(2)||0b−c|| · · · ||binc(l−1)||10b−c−64||bin64(Mi) and
Xi is b bits and {X1, X2, · · · , Xq} ∩ {1, 2, · · · , l − 1} = ∅. Pr[Ci] denotes the
probability that for q queries there exist a internal output collision of compression
function where i-th block of each query is applied.

Distinguisher A1

A1 has an access to oracle O which is NMAC (or HMAC) or the random func-
tion from {0, 1}∗ → {0, 1}n. A1 makes q queries as described above. Then A1

outputs ‘1’ if there is a collision among q queries, otherwise outputs ‘0’. We
want to compute the bound of the advantage of A1. For this, we compute the
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Fig. 3. queries for Distinguishing Attack

probability that there is a collision for both NMAC (or HMAC) and the ran-
dom function. We denote Pr0[Ci] for NMAC or HMAC and Pr1[C] for the ran-

dom function. Let N = 2n. Then Pr0[¬C1] = N(N−1)···(N−q+1)
Nq because all Xi

(1 6 i 6 q) are different. Since the first message blocks for q queries are dif-
ferent from the second message blocks for q queries, if there is no collision in

(1) of Fig. 3, Pr0[¬C1 ∧ ¬C2] = Pr0[¬C2|¬C2]Pr0[¬C1] = N(N−1)···(N−q+1)
Nq ·

N(N−1)···(N−q+1)
Nq =(N(N−1)···(N−q+1)

Nq )2. Similarly, Pr0[¬C1 ∧ ¬C2 ∧ · · · ∧ ¬Cl ∧
¬Cl+1] = (N(N−1)···(N−q+1)

Nq )l+1. Since Pr0[Cl+1] = 1 − Pr0[¬C1 ∧ ¬C2 ∧ · · · ∧
¬Cl ∧¬Cl+1], Pr0[Cl+1] = 1− (N(N−1)···(N−q+1)

Nq )l+1. On the other hand, in case

of the random function, Pr1[C] = 1− N(N−1)···(N−q+1)
Nq . With using 1− x 6 e−x

for x 6 1, N(N−1)···(N−q+1)
Nq = (1 − 1

N )(1 − 2
N ) · · · (1 − q−1

N ) 6 e
1
N

+ 2
N

+···+ q−1
N =

e−
q(q−1)

2N . If q 6
√

2N then q(q−1)
2N 6 1 [1]. With using e−x 6 1 − (1 − e−1)x for

x 6 1, we know that e−
q(q−1)

2N 6 1 − (1 − e−1) q(q−1)
2N . Since 1 − e−1 > 0.632,

e−
q(q−1)

2N < 1− 0.632 · q(q−1)
2N . And N(N−1)···(N−q+1)

Nq > 1− q(q−1)
2N by the result of

[1]. Therefore, 1 − q(q−1)
2N 6

N(N−1)···(N−q+1)
Nq < 1 − 0.632 · q(q−1)

2N .

AdvA1(q) = |Pr[AHMAC or NMAC
1 = 1] − Pr[ARand

1 = 1]|

= |N(N − 1) · · · (N − q + 1)

N q
− (

N(N − 1) · · · (N − q + 1)

N q
)l+1|

> |(1 − q(q − 1)

2N
) − (1 − 0.632 · q(q − 1)

2N
)l+1|

In case of q =
√

N , AdvA1(q) ≈ |12 − 0.684l+1|. And in case of l = 11,
AdvA1(q) ≈ 0.49.

Distinguisher A2

See Fig. 3. We know that there is an internal collision pair in (1) with the
following probability.

(

2n/2

2

)

· 2−n =
1

2
− 2(2−n)/2



Then automatically the pair becomes also an internal collision pair in from (2) to
(l) in Fig. 3. Except the pair, we also know that there exist an internal collision
pair which is collided in (2) with above probability. By this logic, we can get l
internal collision pairs in (l). In case of NMAC and HMAC, since the value in
(l) is applied to f once more, we can get (l + 1) · (1

2 − 2(2−n)/2) collision pairs of
NMAC and HMAC on average. On the other hand, in case of random function,
we can get only (1

2 − 2(2−n)/2) collision pair on average.

NMAC or HMAC Random Function

Average (l + 1) · (1
2 − 2(2−n)/2) ≈ l+1

2 (1
2 − 2(2−n)/2) ≈ 1

2

Standard Deviation ≈
√

2/2 ≈
√

2 · (l + 1)/2

Then, distinguisher A says ‘1’ (NMAC or HMAC) if there are l+1
2 −

√

2(l + 1)
collision pairs at least. Otherwise A says ‘0’ (random function). So, with high
probability A can distinguish NMAC and HMAC from the random function. In
case l = 31, Advantage of A is

AdvA(2n/2) = |Pr[ANMAC or HMAC = 1] − Pr[ARand = 1]|
≈ |0.977− 0| = 0.977.

4 Conclusion

In this paper, we described a generic distinguishing attack on NMAC and HMAC
where a compression function f is used iteratively and the size of the internal
state is same as that of the hash output. Therefore, we can know that the security
bound of NMAC and HMAC is the birthday attack complexity in case that the
size of the internal state is same as that of the hash output.

References

1. M. Bellare, J. Kilian, and P. Rogaway, The Security of the Cipher Block Chaining

Message Authentication Code, Appears in Journal of Computer and System Sciences,
Vol. 61, No. 3, Dec 2000, pp. 362-399.

2. M. Bellare, New Proofs for NMAC and HMAC: Security without Collision-

Resistance, Advances in Cryptology - CRYPTO’06, LNCS ??, Springer-Verlag, pp.
??-??, ??.

3. S. Contini and Y. L. Yin, Forgery and Partial Key-Recovery Attacks on HMAC and

NMAC Using Hash Collisions, Advances in Cryptology - Asiacrypt’06, LNCS 4284,
Springer-Verlag, pp. 37-53, 2006.

4. J. Kim, A. Biryukov, B. Preneel, and S. Hong, On the Security of HMAC and

NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1, SCN’06, to appear.
(http://eprint.iacr.org/2006/187).


