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Abstract

We give a unified account of classical secret-sharing goals from a modern cryptographic vantage. Our
treatment encompasses perfect, statistical, and computational secret sharing; static and dynamic adversaries;
schemes with or without robustness; schemes where a participant recovers the secret and those where an
external party does so. We then show that Krawczyk’s 1993 protocol for robust computational secret sharing
(RCSS) isnot secure, even in the random-oracle model and for threshold schemes, when the encryption
primitive it uses satisfies one-query indistinguishability (the notion Krawczyk apparently had in mind);
nonetheless, we show thati# secure, in the random-oracle model and for threshold schemes, under a
slightly strengthened assumption on its encryption scheme. Finally, we prove the security for a variant of
the protocol, in the standard model and for arbitrary access structures, assuming one-query-indistinguishable
encryption and a statistically-hiding / weakly-binding committal scheme. We explain that the latter goal can
be achieved from any one-way function, establishing that a one-way function is enough for efficient RCSS.
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security, robust computational secret-sharing (RCSS).
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1 Introduction

Work on classical secret sharintends to follow the traditions and sensibilities of information theory, combi-
natorics, or coding theory, not those of provable-security cryptography. Even a cursory review at the literature
makes this clear [40]. Consider, for example, that the veahgersarydoes not appear in the most well-known
survey of secret sharing [39] (but the wanflormationappears some 50 times). Or consider that it was nearly 15
years after the invention of secret sharing by Blakley and Shamir [8, 35] until somebody, Krawczyk [25], made
more than passing mention [24] of the fact that there is a natural and useful complexity-theoretic setting for the
secret-sharing problem (and, even then, subsequent work mostly ignored this setting).

CONTRIBUTIONS. Coming at secret-sharing from a modern, provable-security angle, we make two contribu-
tions. First, we recast classical secret-sharing aims to place them squarely in the tradition of provable-security
cryptography. We give concrete-security, advantage-based, adversary-at-the-center definitions that encompas
the perfect secret sharing (PSS) goal of Shamir [35]; the less-than-perfect-privacy variant by Blakley [8]; the
strengthening of PSS tobustschemes as envisioned by McEliece and Sarwate [28]; the alternative version of
robustness described by Tompa and Woll [41]; and the relaxation of much of the above to the computational
setting as considered by Krawczyk [25]. Our definitions handle dynamic adversaries, apparently for the first
time, and unify the information-theoretic and computational-complexity views. Look ahead to Figure 3 for a
preview of some of the secret-sharing definitions encompassed by our framework.

Second, we revisit the basics of robust computational secret sharing (RCSS) [25], which is computational
secret sharing (CSS) where some of the shares submitted to the recovery algorithm might be intentionally cor-
rupted. We show that Krawczyk’s RCSS protocol, which we call ESH (encrypt-share-haslo},Secure,
even for threshold schenfeand the random-oracle (RO) model [6], even if the encryption scheme employed
is a one-time pad, a mechanism that achieves (perfect) one-query indistinguishability (ind1). While Krawczyk
made no formal claims about ESH, the only encryption-scheme security property he mentions [25] is the com-
putational indistinguishability oEncrypt ;- (X) and Encrypt ;- (X') for equal-lengthX and X', which is ind1
in our language. Regardless, ind1-security is all the protocol seems, intuitively, to need. Despite this attack, we
show that ESHs secure, for any threshold scheme, again in the RO model, if one assumes of the encryption
ind1 andkey1l security, the latter being one-query key-unrecoverability. This conjunct follows from two-query
indistinguishability (ind2). The proof is complex and unintuitive, having to sidestep the issues that cause the
one-time-pad instantiation of ESH to fail. We go on to show that making a small change to ESH fixes the
identified deficiencies: the revised protocol, ESX (encrypt-share-commit) becomes provably securarfor an
bitrary access structure (and beyond), in si@ndardmodel, assuming just ind1-secure encryption. The proof
becomes vastly simpler. The main change is to replace the hash functiosthistically-hiding, weakly-
binding (SHWB) commitment scheman object we define. We explain that SHWB commitment is possible
if a one-way function (OWF) exists, establishing that a OWF implies efficient RCSS. Note that conventional
statistically-hiding commitment isot known to be possible from a one-way function; what is different for us
is that a weakened form of the binding requirement suffices. See Figure 1 for a summary of our RCSS results.

BACKGROUND FORRCSS. Let us back up and provide a bit more background for our two contributions,
beginning with the second. Quite informally, in an RCSS scherdeaher, assumed to be honest, breaks a
secretX into sharesXy, ..., X,, and distributes them to differentplayersin such a way that annauthorized

set of players learns nothing abakitfrom their shares, while aauthorizedset of players can reconstrukt

even if some players enter bogus shares. Both guarantees are computational rather than information-theoretic
Thus RCSS relaxes the perfect secret sharing (PSS) goal of Shamir [35] in one dimension—computational

! By classicalsecret-sharing we intend to exclude goals likeifiable secret sharing/SS) [15] andproactive secret sharinfp1],
which have always been treated in the provable-security tradition.

2 An m-out-of-n threshold scheme is a secret-sharing scheme for whichrampcorrupted players can recover the secret but
smaller sets of players cannot. The set of sets of players authorized to recover the secestdegdbeatructuréor the scheme.



’ protocol ‘ encrypt model / further assumption access structure‘ result ‘

ESH ind1 random-oracle model threshold insecure (Sec. 4.2)
ESH |indl + keyl random-oracle model threshold secure(Th. 1, Th. 2)
ESX ind1 statistically hiding, weakly-binding commitment  arbitrary secure(Th. 3, Th. 4)

Figure 1:Summary of our results on Krawczyk's RCSS protocol (ESH) and a variant of it (ESX). By ind1 and keyl we
mean one-query left-or-right indistinguishability and one-query key-unrecoverability, as defined in Appendix 2.

privacy instead of information-theoretic privacy—and strengthens it in another—reconstructability in the face
of incorrect shares instead of reconstructability in the face of missing shares.

The RCSS goal, as well as a candidate solution, was first outlined by Krawczyk [25]. No proofs or formal
definitions ever appeared. Indeed Krawczyk’s focus was not RCSS but CSS, where privacy is computational
and recovery is for correct-or-missing shares. CSS was first mentioned by Karnin, Greene, and Hellman [24],
who also consider the version of CSS where cheating must be detected (not corrected). Robustness was firs
studied, in the information-theoretic setting, by McEliece and Sarwate [28], and later by Tompa and Woll [41].
Krawczyk’s reason to look at CSS and RCSS was to reduce the size of participant shares: his mechanisms
illustrate that, for threshold schemes, it is possible to have shares that are shorter than the secret, something
impossible in the information-theoretic setting [13,24]. In Krawczyk'’s protocols, a CSS scheme with short
shares is achieved using Rabin’s idea ofiflormation-dispersal algorithnflDA) [33]. Robustness is then
added-on using a hash-function-based technique introduced by Krawczyk in a separate paper [26]. Follow-on
work to Krawczyk’s paper has mostly focused on doing CSS for more general access structures [1, 12, 27,42].

Protocols for CSS and RCSS are useful tools for building practical and reliable information-storage sys-
tems; see [23, 32, 43, 44] for work in this direction. The emergence of secret-sharing-based productdfferings
likewise reflect the practicality of these goals.

BACKGROUND FOR SECRETSHARING DEFINITIONS. See Appendix A for a summary of existing PSS and

CSS definitions [8, 25, 28, 35, 41], with and without robustness. The definitions routinely assumpeiamn
distribution on secrets, assume it to be the uniform over a large set, elide the syntax of a secret-sharing scheme
omit mention of any adversary, and make the implicit adversary static, with no simple way to make it dnamic.
The classical PSS definitions are so tailored to the perfect, information-theoretic case that there is no simple
way to relax things to make a complexity-theoretic analog (or even a statistical-security analog). Each definition
is separate from each other, cut from its own cloth. No definition of the RCSS goal has ever appeared.

It is both to facilitate our proofs and to address the issues above that we generalize and reformulate the
notions of [8, 25, 28, 35, 41]. For us, each definition will be a point from a definitional framework, imparting a
unified view of classical secret sharing. In particular, we define the privacy-advantage of an addexttack-
ing secret-sharing scheniie denotedAdv(; " (A4); we define the recoverability-advantage of an advergary
attacking a secret-sharing schemiedenotedAdvyi(B); and we use these to define all notions of interest.

For example, a secret-sharing schelhis a PSS scheme Adv]"(4) = Adv{{(B) = 0 for all “permis-
sible” A and B. There turn out to be four natural constraintsmdv%riV(A) and nine natural constraints on
Advi¢(B). Each classical secret-sharing notion shows up as one of the 36 combinations.

Our work brings out that there have coexisted in the literature two fundamentally different settings for

robustness. In the first, an uncorrupted player recovers the secret [41]; in the second, an external party has

that job [28]. What is achievable in the two settings is very different (eg., external-party reconstructability can

3 Cleversafe Corp. and Security First Corp. are examples of two such companies; see http://www.cleversafe.com (last visited
Oct. 2006) and http://securityfirstcorp.com/about (last visited Oct. 2006).

4 A staticadversary controls a certain set of players from the beginning, whijmamicadversary chooses whom to corrupt as it
corrupts players and learns their shares.



accommodate fewer corrupted players). Our framework encompasses both kinds of robustness.

While arbitrary (monotone) access structures [7, 22] are already quite broad, they aren’t broad enough to
handle the setting where different numbers of players may withhold shares or change them [28]. We encompass
such possibilities by considering classes of adversaries beyond those arising from an access structure.

While our definitional framework is broad, it doeet encompass verifiable secret sharing (VSS) [15]. Ina
VSS scheme the dealer may be dishonest, but for the goals in scope in this paper, the dealer is honest.

2 Preliminaries

ALGORITHMS AND ADVERSARIES When we speak of aalgorithmwe mean an always-halting deterministic
or probabilistic algorithm, possibly with access to one or more named oracles. A probabilistic algorithm can
uniformly choose a random number betwéesnd: for an arbitrary positive integerby executing a statement
a < [i]. If Ais an algorithm themn: < A(---) means to choose according to the distribution induced by

algorithm A, run on the elided arguments. Af is deterministic we writec < A(---) instead. IfA is a finite

set thenz <~ A means to sample uniformly from it. 14 is a probabilistic algorithm them € A(-) means
thatz occurs as an output with nonzero probability. We denot&hyl| --- || X, or X; --- X,, a reasonable
encoding of( X1, ..., X,,) from which the constituents are uniquely recoverable. If the lengths of Each

known then concatenation serves this purpose.

GAMES. We employ code-based game-playing in our proofs, as explored in [4]. In brief, a game is an always-
halting program, written in code or pseudocode, that runs with an adversary. It specifies procedures Initialize,
Finalize, and additional procedures (like Deal, Corrupt, and so forth), which are cafields In the code of

a game, sets are initialized to empty and Boolearfalzse. The output of a game is the output of its Finalize
procedure, or the output of the adversary itself if no Finalize is specified. We Murf@@* = true] for the
probability that Finalize of gamé& outputstrue after the interaction wittd.

ENCRYPTION SCHEMES Adapting the formalization of [2], a (symmetriencryption scheme a pair of
algorithmsII®™ = (Encrypt, Decrypt) where Encrypt is a possibly probabilistic algorithm frorf0, 1}'“ X
{0,1}* to {0,1}* U {_L} and Decrypt is a deterministic algorithm fronf0, 1}* x {0,1}* to {0,1}* U {L}.
We call k& the key lengthof the scheme. We writ&€ncrypt ;- (X) and Decrypt ;- (Y) for Encrypt(K, X) and
Decrypt(K,Y). We assume that whether or nBicrypt ,(X) € {0,1}* (for K e {0,1}"*) depends only
on | X| and we call the set of alk such thatEncrypt;(X) € {0,1}" the domainof II. We require that if
Y < Encrypt - (X) andY # L thenDecrypt (V) = X.

We define two notions of security for an encryption sché@ine (Encrypt, Decrypt): indistinguishability
(formalized in the left-or-right manner) and key-recoverability. For consistent syntax with the rest of this paper,
we describe both notions using games. The indistinguishability Jarhéas procedures Initializé,R, and
Finalize. The first chooses a randaif<- {0,1}* and a random bib <= {0,1}. ProcedureLR, on input

X0, X!, returnsL if |Xo| # | X1] andC <> Encrypt ;- (X?) otherwise. Procedure Finalize, on inplitreturns
true if b = d andfalse otherwise. We leAdvitd(A4) = 2 Pr[Ind”* = true] — 1. The notion is the same as
in [2].
The key-recoverability gamEey has procedures Initialize, Enc, and Finalize. The first chooses a random
K < {0,1}". Procedure Enc, on inpl, returnsC’ <> Encrypt ;- (X ). Procedure Finalize, on inpéf’, returns
the predicate’ = K’. We let Advlﬂey(A) = Pr[Key”? = true] be the probability thatd recovers the
encryption key.
An encryption scheme secure agaigst 2 queries in the indistinguishability sense is also secure against
g — 1 queries in key-recoverability sense. For completeness, we formalize and prove this below. In particular,

two-query indistinguishabilityiq@d2) implies one-query key-recoverability (keyl). But an encryption scheme



secure in the keyl sense need not be secure against key-recovery at all (the one-time pad is an example). Thes
observations are relevant to the privacy of ESH.

Proposition 1 Let IT = (Encrypt, Decrypt) be an encryption scheme with message space including}™
for somem. Let A be a (key-recovery) adversary. Then there exists a (distinguishing) advérsargh that
Adviid(D) > Advlffy(A) — 27" and whereD makes one more oracle query than ddesnd D runs in time
which is A’s running time plus overhead for oecrypt call on anm-bit string. |

Proof: ConstructD as follows. It runsA, answering each E& ) query of A by calling LR(X, X) and
returning the response from that. Whdnhalts with outputK’, have D compute X & {0,1}™, and then
C < LR(X,0™), and thenX’ = Decrypt ;+(C). Let D return 0 if X = X’ and1 otherwise.

Let Left andRight denote the games that are the same aditiegame except the encryption oracle Enc is
replaced by the oracle that always encrypts the left or right queries, respectively. Suppdsepthgs game
Left. Then the probability thab will output true is at IeastAdvl;fy(A). On the other hand, suppose ttiat
plays gam&ight. Then if D outputstrue it means thaD, givennoinformation aboutX’, managed to correctly
guess it. The chance of this is at magt. Now, as is standarddviid(D) = 2Pr[Ind? = true] — 1 =
Pr[Left” = true] — Pr[Right” = true], and so we conclude thatdviid(D) > Advi™ (A) +27™. 1

3 The Definitional Framework

In this section we unify and extend definitions in the literature for perfect secret sharing and computational
secret sharing, both with and without robustness. We break with tradition by handling information-theoretic
secret-sharing neither in terms of entropy nor equality of distributions, but in a way that directly models and
measures the adversary’s aims. For ease of comparison, traditional secret-sharing definitions are recalled in
Appendix A.

OVERVIEW. Secret-sharing schemes have two basic requiremgrivsicy andrecoverability(the latter is also
calledreconstructability. Privacy entails that an unauthorized coalition of players can’t learn anything about
the secret that's been shared. It canchenplexity-theoretior information-theoretic Information-theoretic
schemes maintain privacy no matter how much computing power the adversary has; complexity-theoretic
ones protect the privacy of the shared secret from adversaries with “reasonable” computing resources. In the
information-theoretic setting, security canerfect(absolutely no information is revealed about the secret) or
possibly less than perfect, which is callgdtisticalprivacy. The adversary that is attacking a scheme’s privacy
can bestatic (it decides which players to corrupt at the beginning of its attaclkdymamic(it chooses which
players to attack one-by-one, as it learns shares). Our definition pfitrecy advantagehat an adversaryt

gets in attacking a secret-sharing schdiealenotedAdv};"*(A), encompass and measures all of the above
possibilities.

Recoverability entails that authorized coalitions of players can reconstruct the secret. It can be guaranteed
in the erasure modebr thesubstitution modelin the erasure model, the adversary marks shares of corrupted
players asnissingbut cannot otherwise modify a player’'s shar&ecret-sharing schemes secure in the sub-
stitution model, where the adversanay modify a corrupted player’'s share, are caltetbust. Preserving a
distinction with us since [28, 41], we distinguish two flavors of robustness: the shared secret can be recovered
by anuncorrupted playeor by anexternal party It is easier for an uncorrupted player to recover the secret than
for an external party to do so since an uncorrupted player knows one particular share—his own—that he can
assume to be right (remember that the types of secret sharing dealt with in this paper assume an honest dealer]

5 One could distinguish two variants: the adversamystmark the shares of corrupted players as missing, or the adversary
mark the shares of corrupted players as missing (or may leave them unchanged). We assume the former.



PROCEDUREDeal(S?, S*) PROCEDURECorrupt (i) GamePriv
IF NOT S THEN b < {0,1}, S <= Share(S?) T — TuU{i}
RETURN RETURN.S]¢]

PROCEDUREFinalize ()
RETURN b =d

PROCEDUREDeal(S) PROCEDURECorrupt() GameRec
IF NOT S THEN S <& Share(S) T — TuU{i}
RETURN RETURN.S]¢]

PROCEDUREFinalize (S’, j)
RETURN Recover(S+U S, j) # S

Figure 2:Games used to define privacy and recoverability of secret-sharing sdhemgShare, Recover).

As before, a recoverability-attacking adversary may be static or dynamic. Our definitionretthesrability
advantagethat an adversaryl gets in attacking a secret-sharing schdmealenotedAdvii“(A), encompass
and measures all of the above possibilities. To accomplish this, we regard the erasure model as a special class o
adversarieRec(), where anyd € Rec{) replaces the shares of corrupted players with the distinguishedalue
(missing). We likewise regard recovery-by-an-uncorrupted player as a special class of adv&saljeghere
an A € Recl is obliged to output the identity of some uncorrupted plajyeAdversaries that may arbitrarily
substitute shares for corrupted players live live in the dRess
We will define notions in a way that permits consideration of an arbitrary access structure. Indeed we will be
more general still, defining privacy and recoverability in a way that depends on an arbitrary set of adversaries.
To simplify and strengthen definitions and theorem statements, we focus on concrete (as opposed to asymp-
totic) definitions. But we do explain how to lift the definitions to the asymptotic setting.

SYNTAX . An n-partysecret-sharing schenveith message spaceis a pairll = (Share, Recover) where

—  Share is a probabilistic algorithm that, on inpit € S returns then-vector § <= Share(S) where each
S[i] € {0,1}*. We assuméhare(.5) returnsL (“undefined”) if S & S.

—  Recover is deterministic algorithm that on inp& € ({0,1}* U {0})" and; € [0..n] returns a value
S « Recover(S, j) whereS € SU {{}.

Let us explain the intent of the syntax. A secret-sharing scheme specifies two different algorithms. The first,
Share, is used by alealerwho wants to distribute some secigte S to a group ofn players, numbered
1,...,n. The dealer applieShare to the secret. The result is a vecta$ = (S[1],..., S[n]) with each share

S[i] a string. The dealer giveS]i] to partyi. As Share is probabilistic, different runs a$hare(S) may return
different vectors of shares. When, at some later point, an entity would like to recover the secret, it must first
try to collect up enough shares. It forms arelement vectoS = (S[1],...,S[n]). Thei™ component of

this vector,S|i], is either a stringS[i] € {0,1}" or the distinguished valu@. In the first case the valug([:] is

the purportedshare of party while in the second case the sha&#fg] = ¢ has been marked asissing The

party who wants to recover the shared secret now applies the algditbower to the vectorS and a number

j € [0..n], the number indicating the location of a share thatriswnto be valid. If no particular share is
known valid, setj = 0 and writeRecover(S) for Recover(S,0). To make sense, one must ha§g] # ¢ if

j € [n] = [1..n]. The value that emerges from applyiRgcover will be either the recovered secrgtc S or

the distinguished valué. The latter indicates that the algorithm is unable to recover the underlying secret.

PRIVACY. Fix ann-party secret-sharing scheriie= (Share, Recover) with message spac& Let A be an
adversary. We consider tipeivacy gamePriv of Figure 2. To rund with Priv the following happens. First,
initialize T+ (). Now run adversaryl. The adversary should first make an oracle call DgalS!) satisfy-



Name H AdvPY(A) ‘ when A is in H Advii(A) ‘ when A is in H aka ‘ reference ‘
PSS-PRO 0 AN Priv 0 AN RecO PSS Shamir [35]
PSS-PR2 0 AN Priv 0 AN Rec McEliece, Sarwate [28]
PSS-SR1 0 AN Priv small A N Recl Tompa, Woll [41]
SSS-PRO small AN Priv 0 AN RecO Blakley [8]
CSS-PRO small AN PrivN Prac 0 AN RecO CSS Krawczyk [25]
CSS-CR1 small AN PrivN Prac small ANReclNPrac | RCSS1
CSS-CR2 small AN PrivN Prac small ANRecNPrac | RCSS Krawczyk[25]
NSS-PRO — — 0 AN RecO IDA Rabin [33]
NSS-PR1 — — 0 AN Recl ECC1
NSS-PR2 — — 0 ANRec ECC

priv

Figure 3: Selected ways of combiningdv®™ (A) and Adv>™ (A) constraints to recover significant definitions. For
some notions it is conventional to also demand thdtv;°(A) = 0 for all A € A N Recd.

ing 59,51 € S and|S°| = |St|. The game then chooses a hidderbbit {0, 1} and samples <> Share(S?).
Nothing is returned to the adversadyin response to its De@$?, S') call. Next the adversaryt makes ora-
cle queries of the forn€orrupt (i) where: € [n]. The query is a request trrupt the indicated player. In
response to quer§orrupt(i) the game set¥ « 7' U {:} and returns shar8[i]. When A is done corrupting
players it outputs a bif and halts. Itis said twin if b = d. We measure its success as twice the probability of
its winning minus one; formallyAdv¥ " (A) = 2 Pr[Priv"! = true] — 1. LetPriv be the class of adversaries,

the privacy adversarieshat behave as we have described, regardless of oracle responses.

RECOVERABILITY. Fix ann-party secret-sharing scherfle= (Share, Recover) with message spa& Let A
be an adversary. We consider tfeeoverability gameRec of Figure 2. First, initializel’ < (. Now run
adversaryA. The adversary should first call D¢&l) for someS € S. Note that Deal takes just one argument

this time. The game then selectsawectorS & Share(S). Next the adversary corrupts players. Each time it
callsCorrupt (i) the game set§ <« T'U{:} and returnsS[i]. When the adversary is done corrupting players it
outputs a paifS’, j) wherej € [0..n]\ T andS’ € ({0,1}" U {0})". Let S=L S} be then-vector whose*®
component isS’[4] if i € T andS[i] otherwise. The adversary is saidwin if Recover (S LI S7., j) # S. We
measure the adversary’s success by the real numdefs®(A) = Pr[Rec”® = true]. Let Rec be the class of
adversaries, theecoverability adversarieghat behave as we have described, regardless of oracle responses.

We define a seRec{) C Rec, the erasure adversariesAdversaryA € Rec is in Rec¢ if, wheneverA
outputs(S’, j), we haveS’[i] = ¢ for all i € [n]. The adversary replaces the shares of corrupted playeps by
Similarly, we define a seRecl C Rec, the recoverability-1 adversariesAdversaryA € Rec is in Recl if,
wheneverA outputs(S’, j), we havej > 0. The adversary is obliged to point to an uncorrupted player. As a
mnemonic, the adversary must identify one good player.

We sayA € Rec generates S, S, T, S’, j) if it can call Deal(S), resulting in share§, corrupt? C [n], and
output(S’,j). We say(S, S,T,S’, j) is A-generabldf A generates$sS, S, T,S’, j) for someA € .4 N Rec.

SECRETSHARING DEFINITIONS. LetIl = (Share, Recover) be secret-sharing scheme and.Jebe a class
of adversaries. We can demarddv];"'(A) be: PSS zerofor any privacy adversaries idl; SSS small
for any privacy adversary ind; CSS small for anypractical privacy adversary ind; or NSS no privacy
demands at all. (Lettel®, S, C, andN stand forperfect statistical computational and none while SSis
for secret sharing Similarly, we can demanddv;°(A) be: PRO: zero for anyerasureadversary inA;

PR1: zero for anyrecoverability-ladversary in4; PR2: zero forany recoverability adversary inl; SRO:



small for for any erasure adversary 4y SR1: small for any recoverability-1 adversary i; SR2: small
for any recoverability adversary id; CRO: small for any practical erasure adversary4n CR1: small for
any practical recoverability-1 adversary i or CR2: small for any practical recoverability adversary.in
(LettersP, S, andC are as before, arid is for robustness.) All in all then there ate 9 = 36 possible notions
obtained by combining the named requirementsAatvl; " (A) and Advii®(A4). We single out some of them
in Figure 3.

Several entries in the table are familiar, and several go by other names; these are credited, where appropriate
to the party associated to the basic notion. Some notions are not conventionally regarded as secret-sharing ye
show up in the table: error-correcting codes and Rabin’s information dispersal algorithms [33].

(As we will be using IDAs and ECCs, let us pause and give a concrete instantiation. The simplest IDA
is based on replicationShare(X) = (X, ..., X) andRecover((X1,...,X,),7) = X if { X[i] : X[i] #

O} = {X} while Recover((X1,...,X,),j) = O otherwise. IDAs with shorter share lengths also exist [33]. A
simple ECC scheme again uses replicatisiure( X) = (X, ..., X) andRecover(X, ..., X,) = X if there

is a stringX that occurs more tham/2 times amongXy, . .., X,,, andRecover(X1, ..., X,) = ¢ otherwise.
When.4 N Rec C Recl we can change this t®hare(X) = (X, ..., X) andRecover((X1, ..., X,),j) = X;

if X; # ¢ andRecover((X1,...,X,),j) =01if X; =0.)

Figure 3definesthe PSS, IDA, ECC, and ECCL1 goals. These quantities are simple to deal with because
they enjoyperfectsecurity. A secret-sharing schefflehasperfect privacyover A if Adv}™ (A) = 0 for all
A € An Priv. It hasperfect recoverabilitpver A if Advii(A) =0forall A € AN Rec.

The remaining quantities of Figure 3 containall or Prac, which we haven't yet described. For the sta-
tistical notions g¢mall but noPrac) one can introduce a real number in placesmhll [41]. For example, an
e-robust PSS-SR1 scherieover A has perfect privacy oved andAdvii“(A) < eforall A € AN Recl.

For the computational goals, there are two options. One is to leave the security notion formally undefined
but make concrete-security statements that bohda ;" (A) or Advii°(A) in terms of other quantities. This
is the concrete-security approach, and we adopt it for Theorems 1-4.

A different option (which applies to any of the 36 notions) is to move to the asymptotic setting. For this
one adds in a security parameteiand interpretsmall in Figure 3 asnegligible (vanishing faster than the
inverse of any polynomial) and interpréRgac as the class of probabilistic polynomial time (PPT) algorithms.

A secret-sharing scheme now involveg:) parties and has a message sp@@e C {0,1}". The Share and
Recover algorithms are polynomial-time algorithms that take an additional (first) inpift.ofhe adversaryl

is likewise providedl*. The advantage measurasivy''(A4) and Advii‘(A) of an adversaryd become
functions ofk. Note that in moving to the asymptotic setting we do not use the length of the secret as the
security parameter; see Appendix A.

ACCESS STRUCTURES We defined secret-sharing goals with respect to an adversary class, but the classical
approach is to use an access structure insteada-party access structures a set4 of subsets ofr| that is
monotoneif R C S C [n] andR € AthenS € A. EachS € A is said to beauthorized The most common
access structure is the threshold access structurg wherem,n > 1 and0 < m < n. This is the access
structure defined by saying théite A,, ,, iff S C [n] and|S| > m.

We associate to any-party access structutd two classes of adversaries. The firglf, is all privacy
adversariesA that never corrupt an authorized set fever corrupts a seéf € A). The secondA", is all
recoverability adversaries that always leave uncorrupted an authorized set @ibrruptsT” then[n]\T < A).®
In speaking of the players that can corrupt we quantify over all possible oracle responses (not necessarily
those associated to any particular game) and aldloany collection of oracles. Corruptingmeans calling
Corrupt(i). To access structutd we associate adversary clad8 U A", which we also refer to ad. In this

® These may sound the same, but they are not. For examplezif and. A = {{1,2},{2,3},{1,2,3}} then the adversary that
always corruptd” = {2} is in AP but notinA". If instead A = {{2}, {1, 3}, {1, 2, 3}} then the same adversary is.i but not.A".
For threshold schemesl}, ,, are privacy adversaries that corrupt at mest- 1 players, whileA;, ,, are recoverability adversaries
that corrupt at most — m — 1 players.



way each definition over an adversary class provides the corresponding definition over an access structure.

VALID ADVERSARIES. For our robustness results we need a technical condition on the class of adversaries that
can be handled. 15,5’ € ({0,1}" U {0})™ we say thatS ~ S’ if S[i] = ¢ implies S’[i] = (. We say
that.A C Rec isvalid (with respect to some secret-sharing schéhé the following is true: if(S, S, T, S’, j)
is A-generable an&’ ~ S”, then the following adversarfis r s ; is in A: it calls Deal(S); then it calls
Corrupt(z) for eachi € T (in numerical order); then it outpu{s”, j).

The classA™ associated to any access structutes valid. So too isA,, ¢ N Rec where A, ,, + [28]
is Amn U (A5, ,, N As) and A; is adversaries that can only outpi’, j) with S’ having at most non<
components. Thud € A,, ., is a privacy adversary that can corrupt at mast- 1 playersor a recoverability
adversary that can corrupt at mest- m players, replacing at mosshares with strings and the rest with

SETUP. One can augment a secret-sharing scheme by allowffegu@ algorithm; we would now have a triple
of algorithmsII = (Setup, Share, Recover). Setup is probabilistic and outputsgublic parameter” € {0,1}".
Procedureshare andRecover are providedP, as is any adversary attacking the scheme. Wsiilee could
always install the public parameter in each player’s share, the effect is not the same as aSigling an
one setting, the adversary has to corrupt a player taPgahd in the other it is free; and there are important
efficiency-accounting consequences, as pulling out the public parameter might shorten the shares.

RANDOM-ORACLE SETTING The privacy and recoverability notiom’sdv%“v(A) andAdvii(A) can easily

be lifted to the random-oracle setting [6]. To do so, one adds to gadtiesand Rec an oracle (procedure

call) Hash that realizes a random function from strings of arbitrary length to strings of some desired length.
Algorithms Share andRecover are allowed to calHash, as may the adversary itself.

STATIC ADVERSARIES. Classical definitions of secret sharing assume a static adversary. This is encompassed
by our framework in the sense that it is easy to restrict attention to static adversariésatiebe the set of

all adversariesi for which there is a sef’ associated tal such that, regardless df's input, coins, and oracle
responses, the set of players corruptedilig T'. To consider static adversaries restrict to setshikeN Static.

A static adversaryd can be imagined to deterministically “decide” at the beginning of its execution which
playersT to corrupt. We define adversaries

4 The ESH Protocol — Krawczyk’s Method for RCSS

4.1 The construction

Fix a family of adversariegl. Following Krawczyk [25], we build am-party secret-sharing scheme with mes-
sage spacg from the following five components: (1) a symmetric encryption schHfffe= (Encrypt, Decrypt)
with &-bit keys and message spdte2) ann-party PSS1™S = (Share™’ | Recover™) over A with message
space{0,1}*; (3) ann-party IDA II"™* = (Share™, Recover™) over A with message spacg*; (4) an
n-party ECCII*“ = (Share™“, Recover"*“) over A with message spacg), 1}"; and (5) a hash function
Hash: {0,1}" — {0, 1}h. We callI15, TIPS, T1'™™, T15°“, Hash the underlyingprimitivesof the ESH scheme,
and we say that they are ovd, for n parties, fork-bit keys, and forh-bit hashes. From such a set of prim-
itives we define the secret-sharing scheme EBH, I17%, TI">* TI*““| Hash| = (Share, Recover) as specified
and illustrated in Figure 4. In its line 21, KX [i] = ¢ then our convention is to assighto all variables
on the left-hand side of the assignment statement; otheXigeis parsed into its corresponding, uniquely
defined constituents. Similarly, & = ¢ or C = { when line 29 is executed then our convention is that
X = 0. Let ESHIT®™, IT" TI"™*  TI*“] = (Share, Recover) be the random-oracle variant of this scheme in
which Hash: {0,1}* — {0, 1}" is chosen at random by gamBsiv andRec.



X
PROCEDUREShare(X) Rand (k)
10 K < {0,1}%: € <& Encrypt ;- (X)
11 K <& Share™ (K) K
12 C < Share™ (C) Encrypt
13 FORi «+— 1TOn DO
14 H{i] < Hash(Ki]||C[i]) Share™ Share™
15 S; <> Share™(H]i))

16 FORi «— 1 TOn DO K] K[2]\K3] cl) /o2l |Cf3)
17 X[i| < K[i]C[i] Si[i] - - - Syn[i]
18 RETURN X

PROCEDURERecover(X, j)
20 FORi «+ 1TOn DO

21 K{[i|C[i] S1[i]--- Su[i] — X|i] Hash Hash Hash
22 FORi+ 1TOn DO

23 H{i] < Recover®(S;,j) A M e
24 FOR% + 1TOn DO Sharecc Sharetcc Sharetcc
25 IF X [i] # O AND Hash (K [i]||C[i]) # H]i] l l l l l l l l
26 THEN K[i] < O; CJ[i] — ¢ s s S
27 K — Recover™ (K, ) 1[1] S1(2] S1[3] | S2[1] S2(2] S2[3] | S31] S3[2] S3[3]
28 C' « Recover™ (C,j) 2;{}} g; % g; %
29 X « Decrypt(C) Ss[1] S52] S3[3]
30 RETURNX

X[1] L X[2] y X[3]

Figure 4:Left: definition of the ESH constructioll = (Share, Recover) = ESHII®™ 1175 TI'™ T1¥°“, Hash]. Right:
illustration of the scheme’Share algorithm forn = 3 players.Rand, on inputk, returns a uniformly randork-bit string.

4.2 An attack

Since an encryption key is used by the share algorithm to encrypt just one message, it is natural to expect that
ESH is secure if the encryption scheme is one-query indistinguishable (ind1). Indeed this is what Krawczyk
would seem to have in mind, as the only privacy property he defines is ind1 [25] (which he formulates in terms
of indistinguishability of the ensembles associated to two different messages). But this intuition is false; the
ind1 condition doesiot guarantee privacy of ESH, even in the random-oracle model. We will show that even
one-time-pad encryption, which is certainly ind1-secure, isn’t enough.

For concreteness, assume we have 3 players and wish to use the access structlgg, a 2-out-of-3
threshold scheme. Assume the domain of secreis-is{0, 1}'*® and the domain of messages is the same. In
the RO-based construction EGH™, I17%, I1'** | I1*“], assume we instantiai&™ with one-time-pad encryp-
tion, C' = Encrypt,(X) = K® X. Assume we instantiatH™* with the 2-out-of-3 Shamir secret-sharing
scheme over the finite fielBly12s. Assume we instantiatd™ with replication, saShare™ (C') = (C,C, C).

Assume we likewise instantiaf@*““ with replication, saShare®“(H) = (H, H, H).

To understand the attack we first point out that with Shamir’s secret-sharing scheme [35], not only can you
reconstruct the key (the secret) fram = 2 out of n = 3 shares, but you can also reconstruct a share (say
share 2) given one share (say share 1) and the underlying kbt was dealt. (This is done by interpolation,
in the same manner that the secret is normally recovered.) Specifically, for the 2-out-of-3 scheme there is an al-



gorithmR such thatR(K[1], K) = K[2] for all K € Share™ (K). We will use this fact to violate privacy. Let
the adversary select any two distinct 128-bit string8,and X!, and call Dedlx°, X!). Letb, K, K,C, H,
and X be as specified in gam@riv in response to the Deal query. Next the adversary €aisupt(1) to
get backX [1], from which it parses ouK [1] andC|[1] = C, the latter because the IDA is replication. It now
setskK? = Co» X% andK' = C @ X!. Note thatk® = K. The adversary now defines the candidate share
K'2] = R(K[1], KY) for K" and defines the candidate sh#@[2] = R(K|[1], K!) for K. We know that
K*[2] = K2]. The adversary computdd®[2] = Hash(K°[2] || C) and H'[2] = Hash(K'[2] || C). We
know that H®[2] = H|[2]. But embedded inX[1] is H|[2], since the ECC also was replication, which the
adversary extracts. So the adversary returnsH if2] = H|[2] and 0 otherwise. It's not hard to see that this
adversary has advantage- 27",

One might be tempted to reason that if the ESH construction is wegagwith a one-time pad andven
in the RO model, then certainly it is wrong when any “real” encryption scheme and hash-function are used, as
these will have inferior properties. But this is not the case, as there are ways in which a “real” encryption scheme
is superior to a one-time pad that are of relevance here. The attack above used the fact that with a one-time-
pad, given a plaintext/ciphertext pdik, C') one can recover the key via K = C'® X. Had the encryption
scheme been secure against one-query key-recovery (keyl), meaning that it was computationally infeasible to
find the key from a plaintext/ciphertext pair, we would not have been able to mount the attack. And common
encryption schemes like CBC mode provide security against key recoverability under standard assumptions.

4.3 Privacy (in the RO model)

We now show that ind% key1 security is enough to prove the security of ESH, in the RO model, under certain
conditions on the access structure. Our result applies to threshold access structures or any other adversarn
class.A whereA N Priv = A}, ,,. This includesA,, ,; as the distinction betweeA,, ,,, and.A,, , vanishes

after interacting wittPriv.

Theorem 1 [Privacy of ESH, random-oracle model, threshold schemesl et A = A}, ,, and letll =

ESHIIF 1175 1™ T15¢¢] with primitives over.A, for n-parties, and forh-bit hashes. Letd € A be an
adversary that makes at mastueries to itddash oracle. Then there are adversarigsand B, attacking the
symmetric encryption schemi&™ such that

2¢ +n?

AdV%riv(A) < Advﬁlgw (Bl) —+ 2qn . Advkey (Bg) + oh

HEnc
where adversary3; makes only one query to its left-or-right oracle, adversagymakes only one query to its
encryption oracle, and the running timesi®f and B, are that ofA plus overhead consisting of one execution
of the Share algorithm ofII and, forB5, an additionah executions of th®ecover algorithm ofI1™, |

Demanding ofl1** that Adv%&c(Bl) and Advlngym(Bg) be small (ind1+ keyl security) is asking for less
than two-query indistinguishability (ind2). The proof is standard (see Section 2). Note that a PRP-secure
blockcipher is ind1+ keyl secure (even though it is not ind2-secure), and therefore an appropriate realization

of IT¥* for ESH. Similarly, common modes of operation like CBC are indeyl secure, even for a fixed IV.

PROOF INTUITION. The proofis challenging due to the basic weakness in ESH exploited in our earlier attack—
that the hash function is deterministic and thus may not preserve privacy of the shares to which it is applied.
The full proof, which relies on some lemmas concerning PSS privacy from Appendix B.1, will follow. First we
give a brief sketch.

We begin by highlighting two features of the proof. The first is that it relies not just on the privacy but
also the recoverability dfl™*. (At first glance it may not be clear why the privacyléfshould depend on the
recoverability oflI™S.) The second is that it requires a conditionIaff* that we callshare unpredictability
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This condition is not true for an arbitrary access structure. But it is true for threshold access structures and,
more generally, for all access structures thatetensible We define the latter property in what follows.

Suppose we aim to construct an adversBiyattacking the ind1-property dii*. It would run A. The
difficulty is that B; would not know the keyK and thus it would be unable to reply to oracle queriesiof
because these replies are a function of the shards.oWe can, however, consider a new game where the
plaintext is encrypted undét but the share vectdK is produced from a different kelf’, expecting this to be
perfectly adversarially indistinguishable from the original game due to the privacy of the PSS scheme. It is the
determinism of the hash function that causes difficulties in establishing something like this. The difficulty is in
answering a hash query df that contains the shat& [i] of an uncorrupted player This is addressed in two
steps.

The first is to argue that as long as— 2 or fewer players have been corrupted, the share of an uncorrupted
player is unpredictable and thus has low probability of beingash query of A. This is true because of
the share-unpredictability lemmas of Appendix B.1, which say that even an adversary knowing the secret and
m — 2 or fewer shares cannot predict any remaining share with reasonable advantage. Here the threshold is
meaning privacy of the secret is guaranteed even if the adversary knevisshares, but share-unpredictability
allows the adversary only:, — 2 shares, because we need to assume it might also know the secret.

The second step is to argue that if the adversary has corrupted. players then, if it querieslash on
the share of an uncorrupted player, we havehares of the secret and, via tRecover procedure of the PSS
scheme, can recover the underlying key. This leads to a key-recovery adversary.

We warn that this sketch elides many issues. We now fill them in.

PrROOF OF PRIVACY We will actually show something stronger than what is claimed in the theorem statement,
namely, that the scheme works for aextendible access structyias defined in Appendix B.

Proof of Theorem 1. The proof will use code-based game-playing [4]. A game in this case will consist of
an Initialize procedure, procedures to respond to adversary oracle queries o€Bbealt, andHash, and a
Finalize procedure.

As is usually the case with game-playing proofs, the different games used have many procedures in common.
To compact the game descriptions, we accordingly do not describe each game in full but rather describe all
procedures used individually, putting next to their name the games in which they appear. Boxed code in a
procedure appears in the game if and only if the game name has a box around it. In this way, Figures 5 and 6
describe a total of 10 game&—Gy. As an example of how to read the figures, the upper left Initialize of
Figure 5 occurs in games, G1, G2, G3, G4, Gg, G7, Gg while the upper right Initialize of the same Figure
occurs in the remaining two games, nam@ly, G9. The Corrupt and Finalize procedures are the same for all
games.

We will be building adversaries that will rud as a subroutine, themselves responding to the latter’s oracle
gueries. Gamé&r, moves us towards this perspective. (Gafgis specified by the procedures in the left
column of Figure 5, with the boxed statement included in the Deal procedure.) Our claim is that

AdvPT™(A) = 2-Pr[Gf = true] — 1.

To justify this let us explain what the game does. Its Initialize procedure picks th& keayd generates shares
for it just like in the game defining the privacy ®. While, ideally, we would like to pick the response

to Hash (z) at the timez is queried toHash, the game picks the valuésash (K [i]||C|i]) up-front in the Deal
procedure. (This value is representedibyi]. ThelF statement in procedure Deal ensures consistency, meaning
that Hash (K [i]||C[:]) = Hash (K [j]||C;) in case the arguments Hash are the same in both cases.) It does
this because it may soon need to provi¥i¢i] as a response to@orrupt (i) query, and this share depends on
Hash(K[j]||C;) for all 1 < j < n. The assignment of [i] to Hash(K[i]||C/i]) is done only at the time the
adversary makes hash oracle quéfyi|||C|i], necessitating thes statement in the corresponding procedure.

11



PROCEDUREInitialize Go—G4, Gg—Gs
K <0137 b & {0,1}

K & Share™ (K)

FORi < 1TOnDOYi] — ¢

PROCEDUREInitialize Gs, Gy
K, K'&{0,1}*: b & {0,1}

K <& Share™ (K')

FORi < 1TOnDOY[i] — ¢

PR(;CEDUREDeaKXO’ X1 [Gol G PROCEDUREDeal X°, X!) Go—Gy
C « Encrypt ;. (X") C < Encrypt ;- (X?)
C & Share™* (C) C S Share™* (C)

FOR? «— 1 TOn DO FOR? «— 1 TOn DO

H{[i] < {0,1}" H[i] < {0,1}": §; & Share™ (H]Ji])
IF3j <i: (K[i]||C[i] = K[j]||C[j]) THEN

bad < true; | H[i] — H|j] PROCEDUREHash () , Gs

S; & Share™ (H]i]) Hash(z] < {0,1}"
FORi «+ 1 TOn DO
PROCEDURECorrupt (i) Go—Gy IF Y[i] # O THEN
Yi] — KI[i] IF (z = K[i]||C[i]) THEN Hash[z] — H[i]
X[i] « K[i]C[i] S1[i] - -- Syli] ELSE IF(z = K[i]||C[i]) THEN
RETURN X [i] bad < true; | Hash|x] « H]i] ‘
PROCEDUREHash () Go, G1 RETURN Hash|z]
s h
Hash[z] < {0,1} PROCEDUREHash (z) G4, Gs

FOR% < 1 TOn DO
IF (x = K[i]||C[i]) THEN Hash[z] « H]i]
RETURN Hash x|

Hash[z] < {0,1}"
FORi < 1 TOn DO
IF Y[i] # O THEN
IF (z = K[i]||C]i]) THEN Hash|[z]| «— H[i]
RETURN Hash [z]

PROCEDUREFinalizgd) Go—Gy
RETURN (d = b)

Figure 5:Procedures for games in the RO-based instantiation of the ESH scheme, Theorem 1.

With the goal now being to upper bouﬁd[GOA = truel, let us try to provide some intuition for what follows.
Suppose we aim to construct an adversBrattacking the privacy of[* with advantage at leadtr[G§' =
true]. It would run A to get X°, X! and pass these to its left-or-right encryption oracle, getting back a
ciphertextC' encrypting X<, wherec was the random challenge bit underlying its privacy game. It could
now useC' to constructC' and then continue to rud, answering its oracle queries &g does, and thenl’s
prediction of whether it is seein§® or X! would reveak to B. However, adversar§ can’'t answerd’s oracle
gueries because they depend on shards ahd B does not have access &6, which is chosen by its privacy
game. The obvious way to get around this is to hBvgick some new, randor”’, generateK via Share™®,

and use these, arguing thatwill not know the difference due to the privacy of the PSS scheme. But the Deal
procedure, which we are suggestiBgun, needs to knowll the valuesK[1],. .., K[n] to perform the test in

the IF statement. Similarly, the procedure for replyingHash queries needs to test whether a query contains
Ki] for somei and thus needs to know all the valukstoo. But the PSS scheme does not provide privacy if
all shares are revealed.

So our goal to implement the above idea is to put the game in a form where respondiagjteries is possible
without knowing the shares of any authorized subset of players. (For concreteness, consider the case where the
access structure id = A, ,,. In this case, we want to be able to respondit® queries knowing onlyn — 1
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PROCEDUREHash () Ge
Hash[z] < {0,1}"
FOR% < 1 TOn DO
IF Y[i] # O THEN
IF (x = K[i]|C[i]) THEN Hash[x] « Hi]
ELSE IF(z = K[i]||C[i]) AND Opened(Y) U {i} ¢ A THEN
bad — true
RETURN Hash x|

PROCEDUREHash () Gsg, Gy
Hash[z] < {0,1}"
FORi < 1 TOn DO
IFY[i] # O THEN
IF (x = K[i]||C[i]) THEN
Hash[z] < H]i]

G- ELSE

Y, Y Y,[i] — K;

L — Recover™ (Yy)

IF L = K THEN bad < true
RETURN Hash [x]

PROCEDUREHash (z)
Hash[z] < {0,1}"
FORi « 1 TOn DO
IF Y [i] # O THEN
IF (x = K[i]|C[i]) THEN Hash[z] <« Hi]
ELSE IF(z = K[i]||C[i]) AND Opened(Y) U {i} € A THEN
bad < true
RETURN Hash ]

Figure 6:More procedures for the games in the proof of Theorem 1. AbOpened(Y') denotes the sdti : Y[i] # O }
of all indices at whichy” is defined, and by ||C; «— x we mean that is uniquely parsed into its constituents.

or less shares dk’.) We do this in a few steps. Gamé$, G, differ only in statements following the setting of
the flagbad, meaning are identical-unthad in the terminology of [4], and so by the Fundamental Lemma of
Game Playing from that paper we have

Pr [GS‘ = true] = Pr [G‘f‘ = true| + (Pr [G{;‘ = true| — Pr [G‘f‘ = true|)
< Pr[G{ = true| + Pr [G{ setsbad] .

Consider the experiment in which we piék K as in the Initialize procedure @f;. Forl < j < i < nlet
E;; denote the event th& [j] = K[i]. Consider the adversady;; for gameGSh that makes &@orrupt(j)
query to getK[j], and then outputs K [;]. Then by Lemma 6 we have

1
Pr[E;;] = Pr [GShEﬂ?i = true|] < oF -

So by the union bound,

A . nn—1) 1
Pr[G{ setshad] < Pr[3j<i: Ej;] < Z<:Pr Bjil < =55 -
1<t

Since the outcome @ is not affected by whether or nbad s set, this means that the problematistatement

of the Deal procedure can be removed at the cost of a small loss. The Deal procedumaakes this change.
With the goal of making responses Hash queries possible without having shares of an authorized subset of
players, we split ther statement of the corresponding proceduré/efinto two parts inGs. Now we have

Pr [Gf = true] = Pr [G§4 = true| (1)
= Pr [G? = true| + (Pr [G‘; = true| — Pr [G? = true|)
< Pr [G? = true| + Pr [G? setsbad | , (2)
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the last step again by the Fundamental Lemma of Game Playing. The setting of tibadflag the Hash
procedure of73 does not affect the game outcome and so we have

Pr [G? = true| = Pr [Gf = true| .

Now notice thati, does not make reference to unopened sharés &o at this point we claim that the privacy
of the PSS scheme implies
Pr [Gf = true} = Pr [G? = true] , 3)

where G5 differs from G4 only in the Initialize procedure which now producés by sharing noti” but an
independently and randomly chosen K&

Let us now justify (3). To do this we build an adversdfyattacking the privacy off™ such that
Adv%ﬂzs (P)) = Pr [Gf = true] —Pr [G5A = true] . 4)

But the privacy ofiI* tells us that the advantage Bf is zero, yielding (3). Adversar¥; begins by pickingk’
and K’ at random from{0, 1}* andb at random from{0, 1}. It creates:-vectorY” to have all components.

It then queriesk’, K to its Deal oracle. We know that the latter creates a share V&&tSr Share™* (L) where

L = K’ if the challenge bit’ of the oracle i9) andL = K if ¥’ = 1. Now P, starts running4, responding to
A’s oracle queries as follows. Whehmakes a Deal query?, X!, adversary?, executes the code of the Deal
procedure of gameS,, G5. WhenA makes &orrupt(i) query, P, itself makes a&orrupt(i) query to obtain
shareK[i|. It then setsX[i] — K[i|C[i] Si[i]---Sy,[i] andY [i] «— K]i], and returnsX[i] to A. WhenA
makes aHash (x) query, P; executes the code of thidash procedure of game&, G5 and returnsHash [z]

to A. WhenA halts and outputs a bit, adversaryP; returns 1 ifb = d and 0 otherwise. It is easy to see that
(4) is true.

GameG usesC, an encryption of® underk, but makes no other referencefto This puts us in the position
we wanted above where we can use the privadj®f. Namely, we will now specifyB; so that

2-Pr [G’? = true] -1 < Advirr[lf:lm(Bl) . (5)

AdversaryB; picks K’ at random and let& & Share™* (K'). It createsi-vectorY to have all components.

It then runsA. WhenA makes a quenX?, X! to its Deal oracleB; queriesX?, X! to its own left-or-right
encryption oracle to get back a ciphertékti Encrypt ;-(X?), whereb is the challenge bit chosen by the left-
or-right encryption oracle. NouB; executes the last three lines of the Deal procedure of gagmaVhen A
makes &orrupt (i) query,B; can execute the code of tierrupt procedure of gamé&'s since it knowsK [i].
When A makes aHash (x) query, By can similarly execute the code of procedifesh of G5 to obtain the
reply and return it tad. When A halts and outputs a bit, adversaryB; returnsd. The advantage aB; is
2Pr[b =d] — 1, so (5) is true.

To summarize, at this point we have shown that

n(n—1)

AV (4) < Adviie(Br) + = +2- Pr Gl setsbad] . ()

The difficult part of the proof is to bounlr[G4' setsbad ]. For this we use the key-recovery securityiBf<.

Let us again first try to give some intuition. The difficulty with applying the privacy of the PSS scheme i that
has information abouf’. Indeed, in the worst case, the ECC could be replication, meatijig= C for all

1 <7 < n, so thatd would haveC after oneCorrupt query. If the encryption scheme, like in our one-time-pad
example, permitted recovery of the key from a ciphertext, theould sethad in G 3 with high probability. For
example, suppose the access structus,is, and we are using Shamir's PSS scheme. Adverdargn obtain
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m — 1 shares of(, then useX” and these shares to compute an unopened diéie and queryK [i]||C:]

to Hash. In this case, however, we could obtdihfrom this last oracle query and the opened shares by using
the recovery procedure of the PSS scheme. But we can't apply this stratégseisbad after opening only

m — 2 or fewer shares. In that case, however, Lemma 7 applies, saying that even thngivs K, it has low
probability of predicting an unopened share.

However, in implementing this we face the same difficulties as above. We can’t build a key-recovery adversary
if it needs to know shares of the challenge K€yto simulateA. We want instead to use shares of a different,
randomK”’. But for this to be justifiable via the security of the PSS scheme, the game must refer only to opened
shares, and:; does not do this. We now proceed to resolve these problems.

We begin by splitting the bad event into two, one for the case where the set of corrupted players together with
the player indicated in the query settibgd do not form an authorized subset, and the other where they do:

Pr [G4 setsbad]| = Pr [G{ setsbad ] + Pr [G# setsbad ] .

To get some intuition, consider again the case where the access structyyg,isThen the first case corre-
sponds tabad being set withm — 2 or less shares opened, and the second the case wheré shares were
open.

We claim Lemma 7 implies

q
Pr [G§ setsbad | < o @)

Let us justify this. For eacli in the rangel < j < ¢ we consider the following adversa#y; for the GSh,
game. It gets as input a key chosen at random frorD, 1}’“ by the game, and, via@orrupt(i) query, can
obtainK [i], whereK < Share™*(K) were generated by tH@Sh., game.F; begins by creating-vectorY to
have all components. It then picks a bib at random, and initializing a counteto 0. It then runsA. WhenA
makes a quer’, X; to its Deal oracleF; executes the code of the Deal procedure of géfenhich it can
do since it knowsK'. WhenA makes a query to its Corrupt oracle,F; obtainsK i via a corrupt query and
then executes the code of therrupt procedure ofis. WhenA makes a query to its Hash oracle,F}; does
the following:

¢« ¢+ 1; Hash[z] < {0,1}"
FORi < 1 TOn DO
IF Y[i] # O THEN
IF (z = K[i]||C[i]) THEN Hash[x] « H]i]
ELSE IF(c = j) THEN Kj||C}j «— x
RETURN Hash|[x]

Above, by K;||C; «— = we mean that: is uniquely parsed into its constituents. Whedrhas terminated,
algorithm F; returnsk; and halts. Then

g q
, 1
Pr[Gyl setsbad] < " Pr|GShY = true| < 3 = .
J=1 J=1

yielding (7). Above, the second inequality is by Lemma 7.

If bad is setinG7 thenOpened(Y;) = {7 : Y;[i] # O } is an authorized subset and hence by the recoverability
properties ofl 1%, applyingRecover™ to Y, is guaranteed to return the seckéin Gs. Thus

Pr [G# setsbad] < Pr |Gy setsbad] . (8)
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Now, once again, we have managed to create a game, nérgetizat does not reference any unopened share,
and are thus in a position to apply the privacy B, which we claim implies

Pr [G§ setsbad| = Pr[G§ setsbad] . (9)

Note Gy differs fromGg only in the Initialize procedure which generat&snot from K but from an indepen-
dently choser”’. To justify (9) we can again build an adversdry such that

AdVPS (Py) = Pr[GY setsbad] — Pr [Gy setsbad] | (10)

obtaining (9) because the advantageibfis 0 due to the assumed privacy Of%. AdversaryP, begins by
picking K and K’ at random from{0, 1}* andb at random from{0, 1}. It createsn-vectorY to have all
components). It then queriesk”’, K to its Deal oracle. The latter creates shakés® Share™ (L) where
L = K'if the challenge bit/ of the oracle i) andL = K if ¥/ = 1. Now P, starts running4, responding
to A’s oracle queries as follows. Whetimakes a Deal query(?, X!, adversaryP, executes the code of the
Deal procedure of gamesg, Gg. When A makes aCorrupt(i) query, P, itself makes & orrupt(:) query
to obtain shard[i]. It then setsX [i] — K[i|C[i] Si[i]---Sy[i] andY[i] — K]i], and returnsX[i] to A.
When A makes aHash (x) query, P, executes the code of tHidash procedure of game&g, Gy and returns
Hash[z] to A. When A halts and outputs a bit, adversaryP, ignoresd and returns 1 ifbad was set when it
responded to somBash query. Itis easy to see that (10) is true.

We will now specifyB; so that

Pr [G§ setsbad] < qn- Adviy. (Bs) . (11)

Recall that the key-recovery game picks at random a Kewnd providesB,; with an encryption oracle
Encrypt . (-). AdversaryB, picks K’ at random and let& < Share(K’). It creates:-vectorY to have all
components) and picks bith at random. It initializes a counterto 0. It then picks a guesg & [¢q] and a
guessy, & [n]. It then runsA. WhenA makes a quernX®, X! to its Deal oracle, adversaiy, queriesX?®

to its encryption oracle to get back an encrypti@rof X under k. Now B, executes the last three lines of
the Deal procedure of gant&y. WhenA makes &Corrupt(i) query, adversary, can execute the code of the
Corrupt procedure of gamé’s since it knowsK [i]. When A makes aHash(x) query, adversary3, does the
following:

¢ — ¢+ 1; Hash[z] < {0,1}"
FORi < 1 TOn DO
IF Y[i] # O THEN
IF (x = Ki]||C[i]) THEN Hash[z] — H][i]
ELSE IF(¢,i) = (g1, g2) THEN
Ki||C; —z; Y, < Y ; Y,[i| — K;; L < Recover™(Yy,)
RETURN Hash[x]

That is, when(c, i) is equal to(g1, g2), adversaryBs records the candidate key &s When A has terminated,
adversaryB; returnsL and halts. One can check that (11) is true.

In summary, this second part of the proof has shown that
Pr (G4 < 4 AdvEY (B
r (G4 setsbad | < o5 Han- Vi (B2) -

Combining this with (6) completes the proof of the theordim.
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4.4 Recoverability (in the RO model)

We prove recoverability for any (valid) class of adversaries, which includes the adversaries associated to any
access structure, andl,, ,, ; as well.

Theorem 2 [Recoverability of ESH, random-oracle model] Let .4 be a valid class of adversaries, and let
IT = ESHII®, I17%, T4, TI5“] with primitives over.A, for n parties, and foh-bit hashes. Led € A be an
adversary that asks at mastjueries to itsHash oracle. ThePAdv{s(A) < (q+2n)2/20+1 . |

The recoverability of ESH actually requires only the collision-intractability of the hash funéfish; it is

possible to restate the theorem above and adjust its proof to show that an attack on the recoverability of ESH
implies an equally effective method to find collisionsHash. We didn’t express the result this way since the
proof of privacy was already in the random-oracle model.

Proof of Theorem 2: LetIT = (Share, Recover), IT" = (Encrypt, Decrypt), I1"S = (Share"™’, Recover™®),
[T = (Share™, Recover™), andII*“ = (Share"““, Recover® ). Consider runningd with gameRec. Let
K,C K,C H,S,...,S,, X denote the quantities chosen by Steire algorithm when it is executed by the
Deal procedure in responseAds Deal query ofX . Let(X’, j) denote the outputod. LetK’,C’, K',C’, H',

1,---, 8, X" denote, respectively, the quantitiEsC, K,C, H, S, ..., Sy, X as defined bRecover( XL
X, j) when it is executed by the Finalize procedureiet:, whereT is the set of players that corrupted.
We consider the following events:

Ey: 3¢ e [n] suchthatH[¢] # H'[{]

Ey: I eT suchthatK'[(] || C'[] € {0]|0, K[{] || C[4]}

B3 K#K'

Ey: C#£C
If C = C’"andK = K’ then the secreX’ that is recovered equals so

Advii¢(A) Pr[E3 V E4]
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(12)

We bound each addend above in turn. Egt, be the event thall [¢] # H'[{]. If i ¢ T then( X7 L X7)[i] =
X [i] and henceS)[i] = S,[i] by line 21 in Figure 4. ButS, is an output ofShare"“(H [¢]) andT € A, so
Recover®™© (S}, j) = H[(] by Lemma 8 applied t&I**“, meaningH'[¢(] = H[(]. SoPr[E; ¢] = 0. Now by
the union bound we have

Pr{Ey] < Y PriEy) = 0. (13)
=1
Next we claim that ( )2
q+2n
Pr[Ey] < TRt (14)

We justify this as follows. Supposee T and K'[(]||C’'[(] # ¢||¢. By lines 21 and 25 of Figure 4 it must
be thatHash (K'[(]||C'[¢]) = H|{]. Butif E; thenH'[¢] = H[¢], and by line 14 of Figure 4 we know that
H{[/) = Hash(K|[{]||C[{]). So we haveHash(K'[/]|C’|¢]) = Hash(K|{]||C[¢]). Thus if K'[{]|C"[¢] #
K/]||C[¢] then we have a collision ilash. Thus if E; A E> we have found a collision iffash. At this point
we need only bound the probability of a collisionkfash. The random-oraclé&lash is invoked at mosy + 2n

times, justifying (14).
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Next we claim that
PI[EQ NEs]=0. (15)

We justify this as follows. Ifi ¢ T then (X7 U X7,)[i] = X[i] and henceK'[i] = K[i] by line 21 of
Figure 4. Ifi € T andE holds thenK'[i] € {0, K[i]}. But K is an output ofShare™* (K) andT € A, so
Recover™ (K', j) = K by Lemma 8 applied tdI™*, meaningk’ = K. So E5 cannot hold.

Finally, we claim that
PT[EQ ANE4 =0. (16)

We justify this as follows. Ifi ¢ T then (X7 U X7.)[i] = X[i] and henceC'[i] = CIi] by line 21 of
Figure 4. Ifi € T and E5 holds thenC'[i] € {0, C[i]}. But C is an output ofShare™ (C') andT € A, so
Recover™ (C', j) = C by Lemma 8 applied tdI"™, meaningC’ = C. So E, cannot hold.

Putting together equations (12)—(16) completes the prpof.

5 The ESX Protocol — Provable Security Without ROs

In this section we alter ESH by replacing its deterministic hash fundiiot with a randomized commitment
scheme. This changes the protocol, as the randomness used in the commitment must be inserted into the share
We are then able to show that the new protocol, ESX, is a good RCSS under standard assumptions.

5.1 The construction

COMMITMENT SCHEMES. We formalize a (noninteractive) commitment scheme as a deterministic algo-
rithm Comm: {0,1}* x Coins(Comm) — {0,1}" U { L} whereCoins(Comm) is a finite set and. € N is the
commitment lengthThe domainDom(Comm) C {0,1}" of Comm is the set of allM € {0,1}* such that
Comm(M, R) € {0,1}" for all R € Coins(Comm). We assume that whether or @mm (M, R) € {0,1}"
does not depend oR (which ensures that it is easy to check if a point is in the domain). There are two security
propertieshiding andbinding each defined by a game.

For the hiding game Hide, the Initialize procedure chooses a bit {0,1}. The game has only one
oracle, LR, which, on input of stringsM, M; € Dom(Comm) (not necessarily of equal length), picks
R & Coins(Comm), setsY «— Comm(M,, R), and returng”. (Multiple queries to this oracle are allowed.)
The adversary returns a hitand Finalize returns the predicdie= d. The advantage ofl in attacking the
hiding-property of the commitment schemeAislviide (A4) = 2Pr[HideA = true] — 1. We say thaComm

Comm

is e(-)-hiding if Advlide (4) < ¢(q) for any adversaryl that makes at most oracle queries. Note that the
adversary is not computationally restricted; we have given a statistical notion of privacy.

For thebinding gameBind, there is no Initialize procedure. It has one oraClenmit, that, on inputM, €
Dom(Comm), picks Ry < Coins(Comm) and returnsR,. The Finalize procedure, givel; € Dom(Comm)
and R; € Coins(Comm) returns the predicaté/, # M; AND Comm(My, Ry) = Comm(M;, R;). We
define the advantage of in attacking the binding-property of the commitment scheme&dsf‘éigln?m(A) =
Pr[Bind? = true]. The notion is weaker than the classical notion of binding, which would speak to
the computational infeasibility to find any/y, Ry, M, R; such thatMy # M; but Comm(My, Ry) =
Comm (M, R1). The conventional notion is analogous to the collision resistance of a hash function while

our notion is more like a UOWHF [30] (also called TCR hash-function [5]).

THE ESX CONSTRUCTION Fix a family of adversaries!. We proceed to build an-party secret-sharing
scheme with message sp&#&om the following five components: (1) a symmetric encryption schBiffie=
(Encrypt, Decrypt) with k-bit keys and a message spdte(2) ann-party secret-sharing scheni&ss =
(Share™’ | Recover™) over A with message spad@, 1}*; (3) ann-party IDA T = (Share™, Recover™)
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PROCEDUREShare (X)) PROCEDURERecover(X, j)

10 Ki{o 1}k 20 FOR% < 1TOn DO

11 C < Enerypt o (X) 21 R[Z]K[Z}C[z] Sili] - - - Splt] — X[i]
s B O b Share (C 22 FORi + 1TO7n DO

12 K« Share™(K); C « Share™(C) 23 H{i] < Recover®™“(S;,j)

13 FOR? «— 1 TOn DO 24 FOR?7 «+— 1TOn DO

14 Rli] < Coins(Comm) 25 IF X[i] # O AND Comm(K][i]||C]i], R[i]) # H]i]
15 HJi] — Comm(K]i]||Cli], R[i]) 26 THEN K [i] — O C[i] — 0

16 S; <& Share® (H]i]) 27 K < Recover™ (K, j)

17 FORi <+ 1 TOn DO 28 C « Recover™(C,j)

18 X|[i] < R[i{|K[i]Ci] S1[i]--- Snli] 29 X « Decrypt ;- (C)

19 RETURNX 30 RETURNX

Figure 7:Definition of the ESX constructiofl = (Share, Recover) = ESX[ITf T175 T1'"* T, Comm].

over A with message space*; (4) ann-party ECCIT*“ = (Share®, Recover®c) over A with message
space{0,1}"; and (5) a commitment schem@mm : Dom(Comm) x Coins(Comm) — {0,1}" where
K]Ji]|C[i] € Dom(Comm) if K € Share™(K) andC € Share™ (C) for someK € {0,1}*, X € S,
andC' € Encrypt;(X). We callI1P, I17%, I1"™* T1°°“, Comm the underlyingprimitivesof the ESX scheme,
and we say that they are ovdr for n parties, fork-bit keys, and forh-bit committals. From such a set of prim-
itives we define the secret-sharing scheme EBX, 11755 TI"** T1*““, Comm|] = (Share, Recover) as specified
by Figure 7. The figure uses the same conventions as those of Figure 4.

5.2 Privacy (in the standard model)

The difficulty in establishing privacy in the standard model is that our adversary is dynamic, and so we run
into the selective-decommitment problesee Dwork, Naor, and Reingold [17]. One could always pretend

the adversary to be static and take a hidfin the security bound when the adversary is dynamic, but we
don’t want to do this, as we are interested in concrete security and results with good asymptotic counterparts.
Another way around this is to use a statistically-hiding chameleon commitment-scheme. Instead we make do
with a weaker requirement, just the statistical hiding. We comment that for the case of static adversaries, it
would suffice that the commitment be computationally rather than statistically hiding.

Theorem 3 [Privacy of ESX] Let.A be an adversary class and Iét= ESX[IT®, II?% TI"** T1““, Comm]
with primitives overA, for n parties, and with aa(-)-hiding Comm. Let A € A N Priv be an adversary for
attacking the privacy ofl. Then there is an adversaByfor attacking the privacy off** such that

AdvEY(A) < Advi.(B) + 4e(n)

where B makes only one query to its left-or-right oracle and the running timB ¢ that of A plus overhead
consisting of one execution of tt#hare algorithm ofII. |

Proof of Theorem 3: The proof relies on the games in Figure 8. The figure shows many procedures, indicating
next to each in which games it is included. For example, géimés defined by the procedures on the left-
hand-side of the figure. We note that

AdvE(A) = 2-Pr[Gf = true] —1. (17)
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PROCEDUREInitialize Go—Go

K< {013 b 0,1} PROCEDUREInitialize Gs—Gs
K <& Share™(K) K K {0,1)"; b {0,1}
RETURN K <& Share™ (K')
PROCEDUREDeal X°, X1) Go,G1,G4, G5 PROCEDUREDeal X", X'1) G2, G
C < Encrypt ;- (X?) C < Encrypt  (X?)
C < Share™ (C) C < Share™ (C)
FORi + 1 TOn DO FORi + 1 TOn DO

RJ[i] < Coins(Comm) RJ[i] < Coins(Comm)

HJi]| — Comm (Ki]||C[i], R]i]) H]i] < Comm(0||C[i], R]i])

S; <& Share®™°(HTi)) S; <& Share (H]i])
PROCEDURECorrupt() Go, G5 PROCEDURECorrupt () G1—Gy
X[i] — R[i]||K[i]C[i] S1[t]--- Snli] RJ[i]<{R € Coins(Comm) :
RETURN X{i] Comm (K[i]||C[i], R)=H][i]}

- X[i] — R[] K[i][|Ci] S1ld]- - - Snli]

PROCEDUREFinalize(d) Go—Gs RETURN X [i]

RETURN (d = b)

Figure 8:Games for proving Theorem 3, the privacy of the ESX scheme.

Game(, differs from game&= only in theCorrupt procedure, which resampldg[:] as shown. Clearly,

Pr [Gé = true] = Pr [Gf = true] (18)
= Pr [G? = true| + (Pr [Gf = true| — Pr [G? = true)) . (19)

We will construct an adversay; attacking the hiding-property @omm such that
Pr [G‘f‘ = true| — Pr [G‘; = true| = Advide (D). (20)

AdversaryD; picksb <= {0,1} and runsA. WhenA makes a quenk®, X' to its Deal oracle, adversary,
picks K < {0,1}* andC' & Encrypt ;- (X?). It then picksK <= Share™(K). Fori running from1 to n, it
querie®||C[i], K[i]||C[i] to itsLR oracle, letsH [i] denote the value returned, and I8ts<- Share™ ( H[i]).
When A makes aCorrupt (i) query, adversany); computes its reply according to the code of therupt
procedure of gameS, GGo. Note that this step is not necessarily efficient, bytdoes not have to be compu-
tationally bounded. Whed halts without outputl, adversaryD returnsl if d = b and0 otherwise. One can
check that (20) is true.

Next we have
Pr [GQA = true| = Pr [G? = true| + (Pr [G‘; = true| — Pr [G? = true|), (21)

where G5 differs from G2 only in the Initialize procedure which now producéS by sharing notK” but an
independently and randomly chosen K& We claim that

Pr [G? = true] = Pr [G? = true| . (22)
To justify the above, we build an adversapyattacking the privacy of the PSS schehi&® such that
AdVP (P) = Pr[G4 = true] — Pr[G§ = true] . (23)
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But the privacy ofilI*S tells us that the advantage Bfis zero, yielding (22). Adversark begins by pickingk’
and K’ at random from{0, 1}* andb at random from{0, 1}. It then queriesk”, K to its Deal oracle. We

know that the latter creates shadss<- Share™ (L) whereL = K if the challenge bit chosen by ganieiv

is zero andl, = K if itis one. Now P starts running4, responding tod’s oracle queries as follows. Wheh
queries DedlX", X!) adversaryP executes the code of the Deal procedure of gaffes:s. WhenA makes a
Corrupt(z) query, adversary itself makes &orrupt(i) query to obtain shar&[i], producesX [i] as per the
code of theCorrupt procedure of gamesS,, G'3, and returnsX [i] to A. As before, this step is not necessarily
efficient, butP need not be computationally bounded. Whehalts and outputs a hit, adversaryP returns 1

if b = d and0 otherwise. It is easy to see that (23) is true.

Next we have
Pr [G§4 = true] = Pr [Gf = true] + (Pr [G? = true| — Pr [Gf = true]) . (24)
We next construct an adversaby attacking the hiding-property @omm such that

Pr [Gé4 = true| — Pr [G4A = true| = Advide (D,) . (25)

Comm

The construction oDs is similar to that ofD; and is therefore omitted. Gamés differs fromG4 only in its
Corrupt procedure as shown. Clearly

Pr [Gf = true] = Pr [G? = true| . (26)
We now construct adversary attacking the privacy ofl* such that
2-Pr[GE = true] -1 < Advii.(B). (27)

Adversary B picks K’ at random and letd < Share™S(K’). It then runsA. When A makes a query

Deal X°, X!), B queriesX?, X" to its own left-or-right encryption oracle to get ba€k<- Encrypt ;-(X?),
whereb is the challenge bit an& the key chosen by thind game defining the privacy di*. Now B ex-
ecutes the last five lines of the Deal procedure of géipeWhen A makes &Corrupt (i) query, adversarB
can execute the code of ti&rrupt procedure of gamé's since it knowsK [i]. When A halts and outputs a
bit d, adversaryB returnsd. The advantage @B is 2 Pr[b = d] — 1, so (27) is true.

Let D be the hiding-adversary that flips a fair coin and, if it lands heads, 2ynstherwise,D,. Clearly
Adviide (D) = 0.5- Advlide (D)) +0.5- Advid (D,) . (28)
SinceComm is assumed to be-)-hiding andD makes at most oracle queries we have

Advide (D) < e(n). (29)

Comm

Putting together (17)—(29) concludes the probf.

5.3 Recoverability (in the standard model)

We now establish the recoverability of ESX. The theorem applies to any valid adversary class and assumes a
weakly-binding committal.

Theorem 4 [Recoverability of ESX] Let A be a valid adversary class and [&t= ESX[II® IT"¢ 11",
I1%¢, Comm] with primitives overA and forn parties. LetA € A. Then there is an adversaByattacking the
binding-property oiComm such thatAdvi¢(A) < n - Advird (B) and where the running time @ is that

of A plus overhead consisting of an execution of $thare andRecover algorithms ofl1. |
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PROCEDUREDeal X)

¢ n); K& {0,13; ¢ & Encrypt o (X)
PROCEDURECorrupt() K & Share™ (K); C <& Share™ (C)
RETURN X [7] FORi «+ 1 TOn DO

IF i = £ THEN R[(] < Commit(K[(]|C[(])

PROCEDUREFinalize( X', j) S
FORi < 1 TO 1 DO ELSE R]i] < Coins(Comm)

R[IK'[C'[i] S;[)S4[i] -+~ Sy fi]  X'[i) | HL] — Comm(KUJ[CLil, i)
RETURN (K'[(]||C"[¢], R'[€)) S; « Share™* (H[i])
FOR? «— 1 TOn DO

X[i] — R[{|K[i]C[i] Si[i] - - Sp]i]

Figure 9:Procedures used by adversatyy, to respond to oracle queries dfin the proof of Theorem 4.

Proof of Theorem 4: LetII = (Share, Recover), IT"* = (Encrypt, Decrypt), II*S = (Share™’, Recover™®),
1™ = (Share™, Recover™ ), andII*“ = (Share"“, Recover"“). Consider runningd with gameRec. Let
K,C,K,C,H,S,...,S,, X denote the quantities chosen by Stere algorithm when it is executed by the
Deal procedure in responseAds Deal query ofX. Let(X’, j) denote the outputod. LetK',C’, K/, C', H',
S1,..., S, X' denote, respectively, the quantiti€sC, K,C, H, S, ..., S,, X as defined bRecover( XL
X7’.,7) when it is executed by the Finalize procedureRuf:, whereT is the set of players that corrupted.
We consider the following events:

Ey: 3¢ € [n] suchthatH[¢] # H'[(]

Ey: 3 eT suchthatK'[(] || C'[] € {0]|0, K[(] || C[€]}

By K#K'

By C 75 c’
If C =’ andK = K’ then the secreX”’ that is recovered equal$ so

Ade—[eC (A) r|E3 Vv E4]

Pr|

Pr[E; V Ep V B3 V By
[
[

IA A

Pr E1] + PI‘[El AN EQ] + Pr[El A EQ VAN E3] + Pr[Fl A\ EQ A Eg VAN E4]
Pr[E{] + Pr[E| A Es] + Pr[Es A E3] + Pr[Es A Ey] . (30)

IN

We bound each addend above in turn. Egt, be the event thall [¢] # H'[(]. If i ¢ T then(X7U X)[i] =
X [i] and henceS)[i] = S,[i] by line 21 in Figure 7. ButS, is an output ofShare*“(H [¢]) andT € A, so
Recover®™© (S}, j) = H[(] by Lemma 8 applied t&I**“, meaningH'[¢(] = H[(]. SoPr[E; ¢] = 0. Now by
the union bound we have

Pr(Ey] < ) Pr[Ey,] = 0. (31)
=1
Next we construct adversafy such that
Pr[E| A Fs] < n-AdvPird (B). (32)

AdversaryB runs A, responding to its Deal andorrupt oracle calls via the procedures of Figure 9. Whken
halts with output{ X', j), adversanyB runs the Finalize procedure of the same figure.

Next we claim that
PI'[EQ ANE3]=0. (33)
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We justify this as follows. Ifi ¢ T then (X7 U X7,)[i] = X[i] and henceK'[i] = K[i] by line 21 of
Figure 7. Ifi € T and E, holds thenK'[i] € {0, K[i]}. But K is an output ofShare™* (K) andT € A, so
Recover™ (K', j) = K by Lemma 8 applied tdI™*, meaningk’ = K. So E5 cannot hold.

Finally, we claim that
PI[EQ VAN E4] =0. (34)

We justify this as follows. Ifi ¢ T then (X7 U X7.)[i] = X[i] and henceC’[i] = CIi] by line 21 of
Figure 7. Ifi € T and E, holds thenC'[i] € {0, C|i]}. But C is an output ofShare™ (C') andT € A, so
Recover™ (C', j) = C by Lemma 8 applied toI"™, meaningC’ = C. So E, cannot hold.

Putting together equations (30)—(34) completes the prbof.

5.4 RCSS from any one-way function

Our requirements on the statistically-hiding (SH) commitment scheme are weaker than standard ones in a
couple of ways. First, as we noted earlier, the standard binding requirement for a commitment scheme is
stronger than ours. Second, our definition effectively models the situation where the committer (for us, the

dealer) is honest. On the other hand, our scheme must be noninteractive.

Building a standard SH commitment-scheme is well-studied. Naor, Ostrovsky, Venkatesan, and Yung [29]
have an interactive solution based on a one-way-permutation. &amBedersen, and Pfitzmann [16], and
later Halevi and Micali [20], present efficient variants of this based on a family of collision-resistant hash-
functions. An OWF solution remains open. But due to the goal-relaxations we discussed above, we can alter
the constructions of [16, 20] to achieve our notion of a (noninteractive) statistically-hiding, weakly-binding
(SHWB) commitment scheme. We simply replace the family of collision-resistant hash-functions by a family
of UOWHFs [30] and let the committer (rather than the receiver as in [16, 20]) choose the key for this family.
(This works because the committer is honest.)

In slightly more detail, in this scheme the coiRs used to commit to a messagdé, specify keysJ, L
for functions from the UOWHF family¥’, a member from a family of universal hash functions, and a ran-
dom pointz, and the committal i§J, L, F'.(x), h(x) & F;(M)). Since UOWHFs exist given any OWF [34],
we obtain a OWF-based SHWB commitment scheme, which suffices to implement ESX. Thus we obtain a
provably-secure, OWF-based RCSS.

However, for the result to be nontrivial the RCSS scheme needs to have shares shorter than the messages—
otherwise the RCSS goal is achievable information-theoretically (for appropriate adversary classes) [28, 41].
The scheme above will not have short shares because the keys for the UOWHF family are long. We can address
this by making the UOWHF key&/J, L) public parameters that are chosen up front once and for all, and are
made available to all parties (think of them as embedded in the software of the algorithms). This means the
same.J and L will be used not just for committals to different parties but also across multiple invocations
of the Share and Recover algorithms. Now the committal is mere(yf'. (x), h(x) & F;(M)), which is short.
Formally, this means we will be in the withetup setting of Section 3, with th8etup algorithm choosing/, L.
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A Prior Definitions for Secret Sharing

BLAKLEY AND SHAMIR (1979). A threshold scheme with parametetsandn (that is, a secret-sharing
scheme for the access structutg, ,,) was defined by Shamir [35] as follofsOur goal is to divideS into n
piecesS, ..., S, in such a way that: (1) knowledge of anyor more S; pieces makes§ easily computable;
and (2) knowledge of any. — 1 or fewerS; pieces leaves completely undetermined (in the sense that all its
possible values are equally likely).

The definition above is somewhat informal, and admits multiple, basically equivalent formalizations. The
two most prominent are thaonditional-probability formulatiorand theentropy formulation Both approaches
assume that the finite set of possible sec8dtsendowed with a distribution; in effect, they define a threshold
schemeéfor this distribution. (Of course one can always say afterwards that the specified requirement should
hold for any distributiors, although this seems to be explicitly said only rarely.) For both formulations; let
denote the random variable that takes on values S@wocording to the associated distribution andSigibe the
random variable that takes on values of the shidoei € [n].

For the conditional-probability formulation one requires that for any disjact. ..} C [n] and any
(Siys-- -, i) such thatPr[(S;,, ..., S ) = (siy,---,si,.)] > 0, we have that: (1) if- > m then there exists
a uniques € S such thatPr[S = s |S;;, = si;, A---AS;, = s;,] = 1; and (2) ifr < m then, for each
s € Swe have thaPr[S = s | S;; = s;; A--- A S, = s;,] = Pr[S = s]. The statement we have just given
paraphrases [31].

For the entropy formalization [24] one requires that: (1) for amyuple of distinct indicesq, ..., i, €
[n] we have thatH (S | S;,,...,Si,) = 0; and (2) for anyr < m and for anyr-tuple of distinct in-
dicesiy,...,i, € [n] we have that (S | S1,...,S,) = H(S). HereH(X) = = _x p(z)lgp(x) and
H(X|Y) = =% cxyey P@)p(z | y)lgp(z | y) andX andY are random variables andz) denotes the
probability thatX = z andp(y) denotes the probability thdt = y andp(x | y) denotes the probability
thatX = z given thatY” = y. Both formulations of the PSS notion readily lift to define secret-sharing schemes
over an arbitrary access structude

MCELIECE AND SARWATE (1981). These authors were interested in threshold schemes that are secure against
computationally-unbounded adversaries that can arbitrarily replace the shares eéfcfdheeplayers [28]. An

external party, not a protocol participant, recovers the secret. It is not possible to say precisely what notion
the authors aim for because their work is stated in terms of characteristics of schemes achievable using Reed:
Solomon codes, not general characteristics sought in a secret-sharing scheme. That said, the authors seem to t
interested in achieving the PSS-PR2 goal of Figure 3 with respect to the adversary class wd galled

TomPA AND WOLL (1986). These authors are interestedrirout-of-n threshold schemes that are secure
against computationally-unbounded adversaries that can arbitrarily replace the shares ef theorrupted

players and where some uncorrupted protocol participant is the entity that is recovering the secret [41]. The
envisaged adversary is static. The authors state the problem like this (changing only some variable names):
Divide a secretS € {0,1,...,s — 1} into “shares” Sy, Sy, ..., S, such that: (a) Knowledge of any shares

is sufficient to reconstruct efficiently. (b) Knowledge ofi — 1 shares provides no more information about

the value ofS that was known before. (c) There is only a small probabdity 0 that anym — 1 partici-
pantsiy, iz, ..., im—1 Can fabricate new shares; , S; ,...,S; | that deceive an'® participanti,,. Here,

127 °
deceiving then'" participant means that, frons; ,S,,...,S; _,andS; , the secrets’ reconstructed is

“legal” (i.e., S’ € {0,1,...,s — 1}), but “incorrect” (i.2e., S’ # S). This model is investigated in works like
[14, 31], which also close minor issues of informality (for example, the definition above does not make clear if
the underlying secref is uniform or if one is instead maximizing over &l).

The above goal is approximately translated into our definition for PSS-SR1 (and also demanding perfect-

recoverability for erasure adversaries). Note that in a setting like this, with concrete security and a statistical

" For consistency with the rest of this paper, we have changed the names of variables.
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error bound, the difference between static and dynamic adversdlidse relevant: one could easily construct
an (artificial) secret-sharing scheme with a larger smallest-possible robustness par#roatequantifies over
the class of static adversaries instead of dynamic ones.

KRAWCZYK (1993)AND OTHERS. A definition for CSS, for the case of anout-of-m threshold scheme, was
sketched by Krawczyk [25]. It is stated like this, apart from minor changes in notdtietril be ann-party
secret-sharing scheme. For any secfetnd for any set of indices < i; < --- <, < nletDn(S,i1,...,i,)

denote the probability distribution on the sequence of shéyesS;,, . . ., S;, induced by the output of running

the Share algorithm onS. The requirement is that for any pair of equal-length sec&#tand.S” and any set

of indicesiy, io, . . ., i, With r < m, the distributionsDyy(5’, i1, 42, . . ., 4,) and Dy (S”, i1, 42, . . ., 4,) must be
polynomially indistinguishableKrawczyk earlier indicates that indistinguishability is in termgloé lengths

of messages or secretih Krawczyk'’s definitional sketch, he omits mention of recoverability. Parameterizing
security by in the length of the secret might be unfortunate, effectively excluding a treatment of protocols that
share a one-bit secret, say, an apparently legitimate thing to want to do.

A somewhat different approach to formalizing CSS is given by Cachin [12] and refined by Vinod et al. [42].
For privacy one requires that the probability that an adversary can guess the shared secret is negligible (in the
security parameterized, which is again the length of the secret). One effectively assumes that the set of secrets
is large and that secrets are chosen uniformly from that set (assumptions that seem undesirable). Regardless, a
inability to guess the shared secret, an idea going back to Blakley [8], seems to make for an overly weak notion
of security, as a huge amount of partial information about the secret might be leaked while the secret remains
hard-to-guess. Such considerations are well-known from the context of encryption-scheme privacy, going back
to Goldwasser and Micali [19], and they are just as relevant here.

As for the RCSS goal, Krawczyk says only that thisisecret-sharing scheme that can correctly recover
the secret even in the presence of a (bounded) number of corrupted shares, while keeping the secrecy require-
ment[25]. Comments in the paper make it clear that the author was thinking in terms of the model of robustness,
where an external party recovers the secret.

Krawczyk clearly had further ideas along the lines of those pursued in the current paper. In particular, he
indicates thaa stronger definition can be stated in terms of a dynamic and adaptive adversary that progressively
chooses the:—1 shares to be revealed to him depending on previously opened shirasso indicates thatbe
traditional notion of perfect secret sharing can be defined in an analogous wéy replacing “polynomially
indistinguishable” with “identical” (or equivalently, by replacing polynomial-time distinguishability tests with
computationally unlimited test§25].

B Secret-Sharing Lemmas

B.1 Share-prediction lemmas

Assume that a secret is uniformly chosen from a finite set of possible secrets. We consider the probability
that an adversary, without having corrupted an authorized subset of players, predicts either the secret that was
distributed or the share of an uncorrupted player. The probability of the first is easily shown to be low by the
privacy of the scheme, essentially confirming that our definition implies previous ones. Share prediction is
more subtle since whether or not it is hard depends on the access structure. We provide sufficient conditions
on the access structure for share prediction to have low probability. We give two lemmas, one for adversaries
that don’t know the secret and one for adversaries that do. The latter is used in our proof of privacy of the ESH
construction (Theorem 1). We consider dynamic adversaries throughout, and in that sense our statements are
stronger than in traditional treatments of secret sharing.

We formalize the claims via the games of Figure 10. The Figure shows different procedures, listing next to
each the games in which this procedure appears, so that a total of four games are described. For our first lemma
we consider the gam@Se whose Initialize procedure picks a random secret from the (finite) messageSspace
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PROCEDUREInitialize GSh
SES; § & Share™ (S)

PROCEDUREInitialize GSe, GSh RETURN S

SES; 8§ & Share™s(S)

PROCEDUREInitialize G
PROCEDURECorrupt(i)  GSe, GSh,GSh,G S0 51 ES: § & Share™s(S1)
T« TU{i} RETURN SY
RETURN STi]

PROCEDUREFinalizej,Y") GSh
PROCEDUREFinalizgY') GSe RETURN (S[j]=Y) AND (¢T) AND T ¢ A
RETURN(Y =S)AND T ¢ A

PROCEDUREFinalize(j,Y) GShy, G

RETURN (S[j]=Y) AND (j¢T) AND TU{j} € A

Figure 10:Procedures for games in the PSS lemmas. This Figure defines four gasee§;Sh, GSh ., and an auxiliary
gameG to be used in the proofs.

of the given PSS scheni&®s and creates shares for it. The game answkensupt queries and declares the
adversary to have won if its outplit equals the secret but the set of corrupted players is not authorized. The
following says that the probability that the adversary wins is at mps§y.

Lemma5 Let II™ = (Share™®, Recover™) be an-party PSS scheme over message sifhemd access
structureA. Then for any adversarf

1
Pr [GSeD = true] < @ . (35)
Proof of Lemma 5: We will specify an adversary attacking the privacy ofl™* such that
riv 1
AdvPi(P) > Pr[GSe” = true| — R (36)

Since the advantage @f is 0 by the assumed privacy of the PSS scheme, equation (36) implies equation (35).
AdversaryP picks S°, S at random fronS and queriess®, S* to its Deal oracle. It then starts running
When A makes aCorrupt(i) query, adversary itself makes a&orrupt(:) query, and returns the response

to D. WhenD halts with outputy’, adversaryP returnsl if Y = S! and0 otherwise. Denoting the output

of P by d and the challenge bit chosen by gafév by b we have

AdVPS(P) = Pr[d=1|b=1]-Pr[d=1|b=0].

Now we claim

Prid=1|b=1] = Pr[GSe” = true] (37)
Prid=1]|b=0] < ‘é‘, (38)

from which (36) follows. Equality (37) is evident from the definitions. In the dase0, adversaryP has no
information aboutS* which is chosen at random frofhand hence the probability that = S* is at mostl/|S],
justifying (38). 1
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Our next lemma considers the gai@&h whose Initialize procedure picks a random secret from the (finite)
message spa&of the given PSS scheni&€®s and creates shares for it. The game answeisupt queries
and declares the adversary to have won if it outguis such thafy” equals thej-th share of the secret but no
Corrupt(j) query was made. We are interested in bounding the probability that the adversary wins.

However, this probability is not always small. It depends on the access structure. Consider for example the
access structurgl that contains just the sets — 1] and[n] and letS = {0,1}". Let algorithmShare®’(S)
return S whereS[1],..., S[n — 1] are chosen at random frofhsubject toS[1] & --- & S[n — 1] = S and
S[n] = 0*. Then an adversary that outputs0* wins with probability 1.

This type of anomaly seems however absent for “natural” access structures, and in particular for the thresh-
old one A,, . To be general, we define a property of access structures that is sufficient to ensure that the
probability of the adversary winning th@Sh game is small. We say that is extendiblef for every T' C [n]
such thatl” ¢ A, and everyj ¢ T, there exists &’ C [n| suchthatr UT' ¢ AbutT UT' U {j} € A.

That is, T can be extended to an unauthorized subset such that additjomaies it authorized. We cdll an
extensiorof T, j.

Note that thed of our example above is not extendible. Indeed if wejsetn andT = () thenT’, j has no
extension. Howevetd,, ,, is extendible, as are many other natural access structures. The following says that
the probability of winningGSh is at mostl/|S| if the access structure is extendible. The interesting aspect of
the proof is that it relies on the recoverability of the PSS scheme, not just its privacy. BelBwsif share
vector therOpened(Y') denotes the sdti : Y[i] # ¢ } of all indices at whichy” is defined.

Lemma 6 Let II* = (Share™, Recover™) be an-party PSS scheme over message s|Saard extendible
access structurd. Then for any adversarg

1

< S (39)

Pr [GSh” = true]

Proof of Lemma 5: Consider the following adversary for the GSe game. Itinitializes:-vectorY to have all
component, and then rungl. WhenE makes &orrupt(i) query, so doe®). It stores the response &3]
and also returns this responsefio Eventually, adversary halts with outputj, Y. We say this output igalid

if Opened(Y') ¢ Aandj ¢ Opened(Y). If the output is not valid the® returns something arbitrary like ¢.
Else, itletsY [j] < Y and letsI” be an extension df, j, which we know exists by the extendibility assumption
on A. For each € T" it makes aCorrupt(i) query and stores the responséiii|. The extendibility property
now guarantees th&ipened(Y') € A, soD runsRecover™ (Y) to get back a secret’, outputsS’, and halts.
The extendibility property also guarantees that 7’ ¢ A so thatD has not corrupted an authorized subset in
the case the output df is valid. Now if the outputj, Y of E is valid and satisfie$[j] = Y thenS’ = S. If

the output ofF is not valid thenE' does not win. This means that

Pr [GShE = true] < Pr [GSeD = true] , (40)

whence (39) follows from Lemma A

An adversary in th€xSh, game has the same share-prediction objective as an adversarydfiihgame but

differs in that it gets the secret as input. (The secret is the output of the Initialize procedure which by definition
becomes the input to the adversary.) Thus we are now asking how hard it is to predict a share when you know
the secret. The following lemma bounds the probability that the adversary wins under the same conditions as in
Lemma 6. The crucial difference is that in tB&h game, the adversary wins only if not justout 7' U {;} is

not authorized. In the casé = A,, ,,, this means that we allow it to corrupt only — 2 players, notn — 1 as

in Lemma 6. Intuitively, this says that giving the adversary the secret is like giving it one extra share from the
point of view of its ability to predict other shares.
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Lemma 7 Let 1™ = (Share™®, Recover™®) be an-party PSS scheme over message siSaaad extendible
access structurd. Then for any adversary

1

Pr [GShY = true] < R (41)
Proof of Lemma 7; We first claim that
Pr [GShi = true] = Pr [GF = true] , (42)

where gamé is defined via Figure 10. Intuitively, this says that providifighe shared secret as input does not
help it; it does equally well with a random, independent secret as input. To justify (42) we provide an adversary
P attacking the privacy ofI** such that

Advtﬁf»;; (P) = Pr [GShi = true] —Pr [GF = true] . (43)

Since the advantage @ is 0 by the assumed privacy @f**, (43) implies (42). Adversary’ picks S°, St
at random fronS and queriess®, S! to its Deal oracle. It initializes séf to empty and starts running on
input S*. When A makes aCorrupt(i) query, P putsi in T, itself makes a&orrupt(i) query, and returns
the response té". WhenF' halts with output(;, V'), adversaryP makes aCorrupt(j) query to obtainS|[j].
If S[j] =Y andj ¢ T thenP returnsl, else0. Equation (43) follows because

Pr{d=1|b=1]=Pr[GSh] = true] and Pr[d=1|b=0]=Pr[G" = true] ,

whered denotes the output bit d? andb the challenge bit chosen by garReiv.

Note that the set of players corrupted Byis T' U {j} whereT is the set of players corrupted @y. But if

T U {j} is not authorized, as is required fér to win, thenP has not corrupted an authorized player, as is
required for it to win. This is where we use the assumption fhatins only if not just7 but7 U {j} is not
authorized.

To complete the proof we specify an adversarfor gameGSh such that
Pr [GF = true] < Pr [GShE = true] .

Now (41) follows from Lemma 6. Adversark picks S’ at random fronf and runsF' on inputS’. It answers
F’s Corrupt queries via its owrCorrupt oracle. Wher¥F' halts with outpuy, Y, adversary also outputg, Y
and halts.l

B.2 A recoverability lemma

The following result lets one think of perfect recoverability in a more conventional, adversary-free way.

Lemma 8 [adversary-free recoverability] Let IT = (Share, Recover) be a secret-sharing scheme over mes-
sage spacs that achieves perfect recoverability over the valid access strugtuBuppose€ S, S, T, S’,j) is
A-generable an®’ ~ S”. ThenRecover(S7 U ST, j) = S. |

Proof: By the validity of A there is an adversanfsr s ; € A that calls DedlS), calls Corrupt () for each
i € T, then outputgS”, j). Now Agr s ; Will win the Rec game iff Recover outputs anS* # S. But
AgT,s,; never wins thelRec game becausAdvi®(Asrs,;) = 0. It follows thatRecover(S% U S7, j) =
Recover(S7U S7,7) = S. 1
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