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Abstract

We give a unified account of classical secret-sharing goals from a modern cryptographic vantage. Our
treatment encompasses perfect, statistical, and computational secret sharing; static and dynamic adversaries;
schemes with or without robustness; schemes where a participant recovers the secret and those where an
external party does so. We then show that Krawczyk’s 1993 protocol for robust computational secret sharing
(RCSS) isnot secure, even in the random-oracle model and for threshold schemes, when the encryption
primitive it uses satisfies one-query indistinguishability (the notion Krawczyk apparently had in mind);
nonetheless, we show that itis secure, in the random-oracle model and for threshold schemes, under a
slightly strengthened assumption on its encryption scheme. Finally, we prove the security for a variant of
the protocol, in the standard model and for arbitrary access structures, assuming one-query-indistinguishable
encryption and a statistically-hiding / weakly-binding committal scheme. We explain that the latter goal can
be achieved from any one-way function, establishing that a one-way function is enough for efficient RCSS.
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1 Introduction

Work on classical secret sharing1 tends to follow the traditions and sensibilities of information theory, combi-
natorics, or coding theory, not those of provable-security cryptography. Even a cursory review at the literature
makes this clear [40]. Consider, for example, that the wordadversarydoes not appear in the most well-known
survey of secret sharing [39] (but the wordinformationappears some 50 times). Or consider that it was nearly 15
years after the invention of secret sharing by Blakley and Shamir [8, 35] until somebody, Krawczyk [25], made
more than passing mention [24] of the fact that there is a natural and useful complexity-theoretic setting for the
secret-sharing problem (and, even then, subsequent work mostly ignored this setting).

CONTRIBUTIONS. Coming at secret-sharing from a modern, provable-security angle, we make two contribu-
tions. First, we recast classical secret-sharing aims to place them squarely in the tradition of provable-security
cryptography. We give concrete-security, advantage-based, adversary-at-the-center definitions that encompass
the perfect secret sharing (PSS) goal of Shamir [35]; the less-than-perfect-privacy variant by Blakley [8]; the
strengthening of PSS torobustschemes as envisioned by McEliece and Sarwate [28]; the alternative version of
robustness described by Tompa and Woll [41]; and the relaxation of much of the above to the computational
setting as considered by Krawczyk [25]. Our definitions handle dynamic adversaries, apparently for the first
time, and unify the information-theoretic and computational-complexity views. Look ahead to Figure 3 for a
preview of some of the secret-sharing definitions encompassed by our framework.

Second, we revisit the basics of robust computational secret sharing (RCSS) [25], which is computational
secret sharing (CSS) where some of the shares submitted to the recovery algorithm might be intentionally cor-
rupted. We show that Krawczyk’s RCSS protocol, which we call ESH (encrypt-share-hash), isnot secure,
even for threshold schemes2 and the random-oracle (RO) model [6], even if the encryption scheme employed
is a one-time pad, a mechanism that achieves (perfect) one-query indistinguishability (ind1). While Krawczyk
made no formal claims about ESH, the only encryption-scheme security property he mentions [25] is the com-
putational indistinguishability ofEncryptK(X) andEncryptK(X ′) for equal-lengthX andX ′, which is ind1
in our language. Regardless, ind1-security is all the protocol seems, intuitively, to need. Despite this attack, we
show that ESHis secure, for any threshold scheme, again in the RO model, if one assumes of the encryption
ind1 andkey1 security, the latter being one-query key-unrecoverability. This conjunct follows from two-query
indistinguishability (ind2). The proof is complex and unintuitive, having to sidestep the issues that cause the
one-time-pad instantiation of ESH to fail. We go on to show that making a small change to ESH fixes the
identified deficiencies: the revised protocol, ESX (encrypt-share-commit) becomes provably secure for anar-
bitrary access structure (and beyond), in thestandardmodel, assuming just ind1-secure encryption. The proof
becomes vastly simpler. The main change is to replace the hash function by astatistically-hiding, weakly-
binding (SHWB) commitment scheme, an object we define. We explain that SHWB commitment is possible
if a one-way function (OWF) exists, establishing that a OWF implies efficient RCSS. Note that conventional
statistically-hiding commitment isnot known to be possible from a one-way function; what is different for us
is that a weakened form of the binding requirement suffices. See Figure 1 for a summary of our RCSS results.

BACKGROUND FOR RCSS. Let us back up and provide a bit more background for our two contributions,
beginning with the second. Quite informally, in an RCSS scheme adealer, assumed to be honest, breaks a
secretX into sharesX1, . . . , Xn and distributes them ton differentplayersin such a way that anunauthorized
set of players learns nothing aboutX from their shares, while anauthorizedset of players can reconstructX
even if some players enter bogus shares. Both guarantees are computational rather than information-theoretic.
Thus RCSS relaxes the perfect secret sharing (PSS) goal of Shamir [35] in one dimension—computational

1 By classicalsecret-sharing we intend to exclude goals likeverifiable secret sharing(VSS) [15] andproactive secret sharing[21],
which have always been treated in the provable-security tradition.

2 An m-out-of-n threshold scheme is a secret-sharing scheme for which anym uncorrupted players can recover the secret but
smaller sets of players cannot. The set of sets of players authorized to recover the secret is theaccess structurefor the scheme.
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protocol encrypt model / further assumption access structure result

ESH ind1 random-oracle model threshold insecure (Sec. 4.2)

ESH ind1 + key1 random-oracle model threshold secure(Th. 1, Th. 2)

ESX ind1 statistically hiding, weakly-binding commitment arbitrary secure(Th. 3, Th. 4)

Figure 1:Summary of our results on Krawczyk’s RCSS protocol (ESH) and a variant of it (ESX). By ind1 and key1 we
mean one-query left-or-right indistinguishability and one-query key-unrecoverability, as defined in Appendix 2.

privacy instead of information-theoretic privacy—and strengthens it in another—reconstructability in the face
of incorrect shares instead of reconstructability in the face of missing shares.

The RCSS goal, as well as a candidate solution, was first outlined by Krawczyk [25]. No proofs or formal
definitions ever appeared. Indeed Krawczyk’s focus was not RCSS but CSS, where privacy is computational
and recovery is for correct-or-missing shares. CSS was first mentioned by Karnin, Greene, and Hellman [24],
who also consider the version of CSS where cheating must be detected (not corrected). Robustness was first
studied, in the information-theoretic setting, by McEliece and Sarwate [28], and later by Tompa and Woll [41].
Krawczyk’s reason to look at CSS and RCSS was to reduce the size of participant shares: his mechanisms
illustrate that, for threshold schemes, it is possible to have shares that are shorter than the secret, something
impossible in the information-theoretic setting [13, 24]. In Krawczyk’s protocols, a CSS scheme with short
shares is achieved using Rabin’s idea of aninformation-dispersal algorithm(IDA) [33]. Robustness is then
added-on using a hash-function-based technique introduced by Krawczyk in a separate paper [26]. Follow-on
work to Krawczyk’s paper has mostly focused on doing CSS for more general access structures [1, 12, 27, 42].

Protocols for CSS and RCSS are useful tools for building practical and reliable information-storage sys-
tems; see [23, 32, 43, 44] for work in this direction. The emergence of secret-sharing-based product offerings3

likewise reflect the practicality of these goals.

BACKGROUND FOR SECRET-SHARING DEFINITIONS. See Appendix A for a summary of existing PSS and
CSS definitions [8, 25, 28, 35, 41], with and without robustness. The definitions routinely assume ana priori
distribution on secrets, assume it to be the uniform over a large set, elide the syntax of a secret-sharing scheme,
omit mention of any adversary, and make the implicit adversary static, with no simple way to make it dynamic.4

The classical PSS definitions are so tailored to the perfect, information-theoretic case that there is no simple
way to relax things to make a complexity-theoretic analog (or even a statistical-security analog). Each definition
is separate from each other, cut from its own cloth. No definition of the RCSS goal has ever appeared.

It is both to facilitate our proofs and to address the issues above that we generalize and reformulate the
notions of [8, 25, 28, 35, 41]. For us, each definition will be a point from a definitional framework, imparting a
unified view of classical secret sharing. In particular, we define the privacy-advantage of an adversaryA attack-
ing secret-sharing schemeΠ, denotedAdvpriv

Π (A); we define the recoverability-advantage of an adversaryB
attacking a secret-sharing schemeΠ, denotedAdvrec

Π (B); and we use these to define all notions of interest.
For example, a secret-sharing schemeΠ is a PSS scheme ifAdvpriv

Π (A) = Advrec
Π (B) = 0 for all “permis-

sible” A andB. There turn out to be four natural constraints onAdvpriv
Π (A) and nine natural constraints on

Advrec
Π (B). Each classical secret-sharing notion shows up as one of the 36 combinations.

Our work brings out that there have coexisted in the literature two fundamentally different settings for
robustness. In the first, an uncorrupted player recovers the secret [41]; in the second, an external party has
that job [28]. What is achievable in the two settings is very different (eg., external-party reconstructability can

3 Cleversafe Corp. and Security First Corp. are examples of two such companies; see http://www.cleversafe.com (last visited
Oct. 2006) and http://securityfirstcorp.com/about (last visited Oct. 2006).

4 A staticadversary controls a certain set of players from the beginning, while adynamicadversary chooses whom to corrupt as it
corrupts players and learns their shares.
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accommodate fewer corrupted players). Our framework encompasses both kinds of robustness.
While arbitrary (monotone) access structures [7, 22] are already quite broad, they aren’t broad enough to

handle the setting where different numbers of players may withhold shares or change them [28]. We encompass
such possibilities by considering classes of adversaries beyond those arising from an access structure.

While our definitional framework is broad, it doesnot encompass verifiable secret sharing (VSS) [15]. In a
VSS scheme the dealer may be dishonest, but for the goals in scope in this paper, the dealer is honest.

2 Preliminaries

ALGORITHMS AND ADVERSARIES. When we speak of analgorithmwe mean an always-halting deterministic
or probabilistic algorithm, possibly with access to one or more named oracles. A probabilistic algorithm can
uniformly choose a random number between1 andi for an arbitrary positive integeri by executing a statement
a

$← [i]. If A is an algorithm thenx
$←A(· · · ) means to choosex according to the distribution induced by

algorithmA, run on the elided arguments. IfA is deterministic we writex ← A(· · · ) instead. IfA is a finite

set thenx
$←A means to sample uniformly from it. IfA is a probabilistic algorithm thenx ∈ A(·) means

thatx occurs as an output with nonzero probability. We denote byX1 ‖ · · · ‖ Xn or X1 · · ·Xn a reasonable
encoding of(X1, . . . , Xn) from which the constituents are uniquely recoverable. If the lengths of eachXi is
known then concatenation serves this purpose.

GAMES. We employ code-based game-playing in our proofs, as explored in [4]. In brief, a game is an always-
halting program, written in code or pseudocode, that runs with an adversary. It specifies procedures Initialize,
Finalize, and additional procedures (like Deal, Corrupt, and so forth), which are calledoracles. In the code of
a game, sets are initialized to empty and Booleans tofalse. The output of a game is the output of its Finalize
procedure, or the output of the adversary itself if no Finalize is specified. We writePr[GA ⇒ true] for the
probability that Finalize of gameG outputstrue after the interaction withA.

ENCRYPTION SCHEMES. Adapting the formalization of [2], a (symmetric)encryption schemeis a pair of
algorithmsΠEnc = (Encrypt , Decrypt) whereEncrypt is a possibly probabilistic algorithm from{0, 1}k ×
{0, 1}∗ to {0, 1}∗ ∪ {⊥} andDecrypt is a deterministic algorithm from{0, 1}k × {0, 1}∗ to {0, 1}∗ ∪ {⊥}.
We call k the key lengthof the scheme. We writeEncryptK(X) andDecryptK(Y ) for Encrypt(K, X) and
Decrypt(K, Y ). We assume that whether or notEncryptK(X) ∈ {0, 1}∗ (for K ∈ {0, 1}k) depends only
on |X| and we call the set of allX such thatEncryptK(X) ∈ {0, 1}∗ the domainof Π. We require that if

Y
$← EncryptK(X) andY 6= ⊥ thenDecryptK(Y ) = X.
We define two notions of security for an encryption schemeΠ = (Encrypt , Decrypt): indistinguishability

(formalized in the left-or-right manner) and key-recoverability. For consistent syntax with the rest of this paper,
we describe both notions using games. The indistinguishability gameInd has procedures Initialize,LR, and
Finalize. The first chooses a randomK

$←{0, 1}k and a random bitb
$←{0, 1}. ProcedureLR, on input

X0, X1, returns⊥ if |X0| 6= |X1| andC
$← EncryptK(Xb) otherwise. Procedure Finalize, on inputd, returns

true if b = d andfalse otherwise. We letAdvind
Π (A) = 2 Pr[IndA ⇒ true]− 1. The notion is the same as

in [2].
The key-recoverability gameKey has procedures Initialize, Enc, and Finalize. The first chooses a random

K
$←{0, 1}k. Procedure Enc, on inputX, returnsC

$← EncryptK(X). Procedure Finalize, on inputK ′, returns
the predicateK = K ′. We let Advkey

Π (A) = Pr[KeyA ⇒ true] be the probability thatA recovers the
encryption key.

An encryption scheme secure againstq ≥ 2 queries in the indistinguishability sense is also secure against
q − 1 queries in key-recoverability sense. For completeness, we formalize and prove this below. In particular,
two-query indistinguishability (ind2) implies one-query key-recoverability (key1). But an encryption scheme
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secure in the key1 sense need not be secure against key-recovery at all (the one-time pad is an example). These
observations are relevant to the privacy of ESH.

Proposition 1 Let Π = (Encrypt , Decrypt) be an encryption scheme with message space including{0, 1}m
for somem. Let A be a (key-recovery) adversary. Then there exists a (distinguishing) adversaryD such that
Advind

Π (D) ≥ Advkey
Π (A)− 2−m and whereD makes one more oracle query than doesA andD runs in time

which isA’s running time plus overhead for oneDecrypt call on anm-bit string.

Proof: ConstructD as follows. It runsA, answering each Enc(X) query of A by calling LR(X, X) and

returning the response from that. WhenA halts with outputK ′, haveD computeX
$←{0, 1}m, and then

C
$← LR(X, 0m), and thenX ′ = DecryptK′(C). Let D return 0 ifX = X ′ and1 otherwise.

Let Left andRight denote the games that are the same as theInd game except the encryption oracle Enc is
replaced by the oracle that always encrypts the left or right queries, respectively. Suppose thatD plays game
Left. Then the probability thatD will output true is at leastAdvkey

Π (A). On the other hand, suppose thatD
plays gameRight. Then ifD outputstrue it means thatD, givenno information aboutX, managed to correctly
guess it. The chance of this is at most2m. Now, as is standard,Advind

Π (D) = 2Pr[IndD ⇒ true] − 1 =
Pr[LeftD ⇒ true]− Pr[RightD ⇒ true], and so we conclude thatAdvind

Π (D) ≥ Advkey
Π (A) + 2−m.

3 The Definitional Framework

In this section we unify and extend definitions in the literature for perfect secret sharing and computational
secret sharing, both with and without robustness. We break with tradition by handling information-theoretic
secret-sharing neither in terms of entropy nor equality of distributions, but in a way that directly models and
measures the adversary’s aims. For ease of comparison, traditional secret-sharing definitions are recalled in
Appendix A.

OVERVIEW. Secret-sharing schemes have two basic requirements:privacyandrecoverability(the latter is also
calledreconstructability). Privacy entails that an unauthorized coalition of players can’t learn anything about
the secret that’s been shared. It can becomplexity-theoreticor information-theoretic. Information-theoretic
schemes maintain privacy no matter how much computing power the adversary has; complexity-theoretic
ones protect the privacy of the shared secret from adversaries with “reasonable” computing resources. In the
information-theoretic setting, security can beperfect(absolutely no information is revealed about the secret) or
possibly less than perfect, which is calledstatisticalprivacy. The adversary that is attacking a scheme’s privacy
can bestatic (it decides which players to corrupt at the beginning of its attack) ordynamic(it chooses which
players to attack one-by-one, as it learns shares). Our definition of theprivacy advantagethat an adversaryA
gets in attacking a secret-sharing schemeΠ, denotedAdvpriv

Π (A), encompass and measures all of the above
possibilities.

Recoverability entails that authorized coalitions of players can reconstruct the secret. It can be guaranteed
in theerasure modelor thesubstitution model. In the erasure model, the adversary marks shares of corrupted
players asmissingbut cannot otherwise modify a player’s share.5 Secret-sharing schemes secure in the sub-
stitution model, where the adversarymaymodify a corrupted player’s share, are calledrobust. Preserving a
distinction with us since [28, 41], we distinguish two flavors of robustness: the shared secret can be recovered
by anuncorrupted playeror by anexternal party. It is easier for an uncorrupted player to recover the secret than
for an external party to do so since an uncorrupted player knows one particular share—his own—that he can
assume to be right (remember that the types of secret sharing dealt with in this paper assume an honest dealer).

5 One could distinguish two variants: the adversarymustmark the shares of corrupted players as missing, or the adversarymay
mark the shares of corrupted players as missing (or may leave them unchanged). We assume the former.
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PROCEDUREDeal(S0, S1) PROCEDURECorrupt(i) GamePriv

IF NOT S THEN b
$←{0, 1}, S

$← Share(Sb) T ← T ∪ {i}
RETURN RETURNS[i]

PROCEDUREFinalize (d)
RETURN b = d

PROCEDUREDeal(S) PROCEDURECorrupt(i) GameRec

IF NOT S THEN S
$← Share(S) T ← T ∪ {i}

RETURN RETURNS[i]

PROCEDUREFinalize (S′, j)
RETURN Recover(ST t S′

T , j) 6= S

Figure 2:Games used to define privacy and recoverability of secret-sharing schemeΠ = (Share, Recover).

As before, a recoverability-attacking adversary may be static or dynamic. Our definition of therecoverability
advantagethat an adversaryA gets in attacking a secret-sharing schemeΠ, denotedAdvrec

Π (A), encompass
and measures all of the above possibilities. To accomplish this, we regard the erasure model as a special class of
adversaries,Rec♦, where anyA ∈ Rec♦ replaces the shares of corrupted players with the distinguished value♦
(missing). We likewise regard recovery-by-an-uncorrupted player as a special class of adversaries,Rec1, where
anA ∈ Rec1 is obliged to output the identity of some uncorrupted playerj. Adversaries that may arbitrarily
substitute shares for corrupted players live live in the classRec.

We will define notions in a way that permits consideration of an arbitrary access structure. Indeed we will be
more general still, defining privacy and recoverability in a way that depends on an arbitrary set of adversaries.

To simplify and strengthen definitions and theorem statements, we focus on concrete (as opposed to asymp-
totic) definitions. But we do explain how to lift the definitions to the asymptotic setting.

SYNTAX . An n-partysecret-sharing schemewith message spaceS is a pairΠ = (Share, Recover) where

Share is a probabilistic algorithm that, on inputS ∈ S returns then-vectorS
$← Share(S) where each

S[i] ∈ {0, 1}∗. We assumeShare(S) returns⊥ (“undefined”) ifS 6∈ S.
Recover is deterministic algorithm that on inputS ∈

(
{0, 1}∗ ∪ {♦}

)n
andj ∈ [0 .. n] returns a value

S ← Recover(S, j) whereS ∈ S ∪ {♦}.
Let us explain the intent of the syntax. A secret-sharing scheme specifies two different algorithms. The first,
Share, is used by adealer who wants to distribute some secretS ∈ S to a group ofn players, numbered
1, . . . , n. The dealer appliesShare to the secretS. The result is a vectorS = (S[1], . . . ,S[n]) with each share
S[i] a string. The dealer givesS[i] to partyi. As Share is probabilistic, different runs ofShare(S) may return
different vectors of shares. When, at some later point, an entity would like to recover the secret, it must first
try to collect up enough shares. It forms ann-element vectorS = (S[1], . . . ,S[n]). The ith component of
this vector,S[i], is either a stringS[i] ∈ {0, 1}∗ or the distinguished value♦. In the first case the valueS[i] is
thepurportedshare of partyi while in the second case the shareS[i] = ♦ has been marked asmissing. The
party who wants to recover the shared secret now applies the algorithmRecover to the vectorS and a number
j ∈ [0 .. n], the number indicating the location of a share that isknownto be valid. If no particular share is
known valid, setj = 0 and writeRecover(S) for Recover(S, 0). To make sense, one must haveS[j] 6= ♦ if
j ∈ [n] = [1 .. n]. The value that emerges from applyingRecover will be either the recovered secretS ∈ S or
the distinguished value♦. The latter indicates that the algorithm is unable to recover the underlying secret.

PRIVACY. Fix ann-party secret-sharing schemeΠ = (Share, Recover) with message spaceS. Let A be an
adversary. We consider theprivacy gamePriv of Figure 2. To runA with Priv the following happens. First,
initialize T ← ∅. Now run adversaryA. The adversary should first make an oracle call Deal(S0, S1) satisfy-
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Name Advpriv
Π (A) whenA is in Advrec

Π (A) whenA is in aka reference

PSS-PR0 0 A ∩ Priv 0 A ∩ Rec♦ PSS Shamir [35]

PSS-PR2 0 A ∩ Priv 0 A ∩ Rec McEliece, Sarwate [28]

PSS-SR1 0 A ∩ Priv small A ∩ Rec1 Tompa, Woll [41]

SSS-PR0 small A ∩ Priv 0 A ∩ Rec♦ Blakley [8]

CSS-PR0 small A ∩ Priv ∩ Prac 0 A ∩ Rec♦ CSS Krawczyk [25]

CSS-CR1 small A ∩ Priv ∩ Prac small A ∩ Rec1 ∩ Prac RCSS1

CSS-CR2 small A ∩ Priv ∩ Prac small A ∩ Rec ∩ Prac RCSS Krawczyk[25]

NSS-PR0 — — 0 A ∩ Rec♦ IDA Rabin [33]

NSS-PR1 — — 0 A ∩ Rec1 ECC1

NSS-PR2 — — 0 A ∩ Rec ECC

Figure 3:Selected ways of combiningAdvpriv
Π (A) andAdvpriv

Π (A) constraints to recover significant definitions. For
some notions it is conventional to also demand thatAdvrec

Π (A) = 0 for all A ∈ A ∩ Rec♦.

ing S0, S1 ∈ S and|S0| = |S1|. The game then chooses a hidden bitb
$←{0, 1} and samplesS

$← Share(Sb).
Nothing is returned to the adversaryA in response to its Deal(S0, S1) call. Next the adversaryA makes ora-
cle queries of the formCorrupt(i) wherei ∈ [n]. The query is a request tocorrupt the indicated player. In
response to queryCorrupt(i) the game setsT ← T ∪ {i} and returns shareS[i]. WhenA is done corrupting
players it outputs a bitd and halts. It is said towin if b = d. We measure its success as twice the probability of
its winning minus one; formally,Advpriv

Π (A) = 2 Pr[PrivA ⇒ true]−1. LetPriv be the class of adversaries,
theprivacy adversaries, that behave as we have described, regardless of oracle responses.

RECOVERABILITY. Fix ann-party secret-sharing schemeΠ = (Share, Recover) with message spaceS. Let A
be an adversary. We consider therecoverability gameRec of Figure 2. First, initializeT ← ∅. Now run
adversaryA. The adversary should first call Deal(S) for someS ∈ S. Note that Deal takes just one argument

this time. The game then selects ann-vectorS
$← Share(S). Next the adversary corrupts players. Each time it

callsCorrupt(i) the game setsT ← T ∪{i} and returnsS[i]. When the adversary is done corrupting players it
outputs a pair(S′, j) wherej ∈ [0 .. n] \T andS′ ∈ ({0, 1}∗ ∪{♦})n. LetST tS′

T be then-vector whoseith

component isS′[i] if i ∈ T andS[i] otherwise. The adversary is said towin if Recover(ST t S′
T , j) 6= S. We

measure the adversary’s success by the real numberAdvrec
Π (A) = Pr[RecA ⇒ true]. Let Rec be the class of

adversaries, therecoverability adversaries, that behave as we have described, regardless of oracle responses.
We define a setRec♦ ⊆ Rec, the erasure adversaries. AdversaryA ∈ Rec is in Rec♦ if, wheneverA

outputs(S′, j), we haveS′[i] = ♦ for all i ∈ [n]. The adversary replaces the shares of corrupted players by♦.
Similarly, we define a setRec1 ⊆ Rec, the recoverability-1 adversaries. AdversaryA ∈ Rec is in Rec1 if,
wheneverA outputs(S′, j), we havej > 0. The adversary is obliged to point to an uncorrupted player. As a
mnemonic, the adversary must identify one good player.

We sayA ∈ Rec generates(S, S, T, S′, j) if it can call Deal(S), resulting in sharesS, corruptT ⊆ [n], and
output(S′, j). We say(S, S, T, S′, j) isA-generableif A generates(S, S, T, S′, j) for someA∈A ∩ Rec.

SECRET-SHARING DEFINITIONS. Let Π = (Share, Recover) be secret-sharing scheme and letA be a class
of adversaries. We can demandAdvpriv

Π (A) be: PSS: zero for any privacy adversaries inA; SSS: small
for any privacy adversary inA; CSS: small for anypractical privacy adversary inA; or NSS: no privacy
demands at all. (LettersP, S, C, andN stand forperfect, statistical, computational, andnone, while SS is
for secret sharing.) Similarly, we can demandAdvrec

Π (A) be: PR0: zero for anyerasureadversary inA;
PR1: zero for anyrecoverability-1adversary inA; PR2: zero forany recoverability adversary inA; SR0:
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small for for any erasure adversary inA; SR1: small for any recoverability-1 adversary inA; SR2: small
for any recoverability adversary inA; CR0: small for any practical erasure adversary inA; CR1: small for
any practical recoverability-1 adversary inA; or CR2: small for any practical recoverability adversary inA.
(LettersP, S, andC are as before, andR is for robustness.) All in all then there are4 · 9 = 36 possible notions
obtained by combining the named requirements onAdvpriv

Π (A) andAdvrec
Π (A). We single out some of them

in Figure 3.
Several entries in the table are familiar, and several go by other names; these are credited, where appropriate,

to the party associated to the basic notion. Some notions are not conventionally regarded as secret-sharing yet
show up in the table: error-correcting codes and Rabin’s information dispersal algorithms [33].

(As we will be using IDAs and ECCs, let us pause and give a concrete instantiation. The simplest IDA
is based on replication:Share(X) = (X, . . . , X) andRecover((X1, . . . , Xn), j) = X if {X[i] : X[i] 6=
♦} = {X} while Recover((X1, . . . , Xn), j) = ♦ otherwise. IDAs with shorter share lengths also exist [33]. A
simple ECC scheme again uses replication:Share(X) = (X, . . . , X) andRecover(X1, . . . , Xn) = X if there
is a stringX that occurs more thann/2 times amongX1, . . . , Xn, andRecover(X1, . . . , Xn) = ♦ otherwise.
WhenA ∩ Rec ⊆ Rec1 we can change this toShare(X) = (X, . . . , X) andRecover((X1, . . . , Xn), j) = Xj

if Xj 6= ♦ andRecover((X1, . . . , Xn), j) = ♦ if Xj = ♦.)
Figure 3definesthe PSS, IDA, ECC, and ECC1 goals. These quantities are simple to deal with because

they enjoyperfectsecurity. A secret-sharing schemeΠ hasperfect privacyoverA if Advpriv
Π (A) = 0 for all

A ∈ A ∩ Priv. It hasperfect recoverabilityoverA if Advrec
Π (A) = 0 for all A ∈ A ∩ Rec.

The remaining quantities of Figure 3 containsmall or Prac, which we haven’t yet described. For the sta-
tistical notions (small but noPrac) one can introduce a real number in place ofsmall [41]. For example, an
ε-robust PSS-SR1 schemeΠ overA has perfect privacy overA andAdvrec

Π (A) ≤ ε for all A ∈ A ∩ Rec1.
For the computational goals, there are two options. One is to leave the security notion formally undefined

but make concrete-security statements that boundAdvpriv
Π (A) or Advrec

Π (A) in terms of other quantities. This
is the concrete-security approach, and we adopt it for Theorems 1–4.

A different option (which applies to any of the 36 notions) is to move to the asymptotic setting. For this
one adds in a security parameterk and interpretssmall in Figure 3 asnegligible (vanishing faster than the
inverse of any polynomial) and interpretsPrac as the class of probabilistic polynomial time (PPT) algorithms.
A secret-sharing scheme now involvesn(k) parties and has a message spaceS(k) ⊆ {0, 1}∗. TheShare and
Recover algorithms are polynomial-time algorithms that take an additional (first) input of1k. The adversaryA
is likewise provided1k. The advantage measuresAdvpriv

Π (A) andAdvrec
Π (A) of an adversaryA become

functions ofk. Note that in moving to the asymptotic setting we do not use the length of the secret as the
security parameter; see Appendix A.

ACCESS STRUCTURES. We defined secret-sharing goals with respect to an adversary class, but the classical
approach is to use an access structure instead. Ann-partyaccess structureis a setA of subsets of[n] that is
monotone: if R ⊆ S ⊆ [n] andR ∈ A thenS ∈ A. EachS ∈ A is said to beauthorized. The most common
access structure is the threshold access structureAm,n wherem,n ≥ 1 and0 ≤ m ≤ n. This is the access
structure defined by saying thatS ∈ Am,n iff S ⊆ [n] and|S| ≥ m.

We associate to anyn-party access structureA two classes of adversaries. The first,Ap, is all privacy
adversariesA that never corrupt an authorized set (A never corrupts a setS ∈ A). The second,Ar, is all
recoverability adversariesA that always leave uncorrupted an authorized set (ifA corruptsT then[n]\T ∈ A).6

In speaking of the players thatA can corrupt we quantify over all possible oracle responses (not necessarily
those associated to any particular game) and allowA any collection of oracles. Corruptingi means calling
Corrupt(i). To access structureA we associate adversary classAp ∪ Ar, which we also refer to asA. In this

6 These may sound the same, but they are not. For example, ifn = 3 andA = {{1, 2}, {2, 3}, {1, 2, 3}} then the adversary that
always corruptsT = {2} is inAp but not inAr. If insteadA = {{2}, {1, 3}, {1, 2, 3}} then the same adversary is inAr but notAp.
For threshold schemes,Ap

m,n are privacy adversaries that corrupt at mostm − 1 players, whileAr
m,n are recoverability adversaries

that corrupt at mostn−m− 1 players.
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way each definition over an adversary class provides the corresponding definition over an access structure.

VALID ADVERSARIES. For our robustness results we need a technical condition on the class of adversaries that
can be handled. IfS,S′ ∈ ({0, 1}∗ ∪ {♦})n we say thatS ; S′ if S[i] = ♦ implies S′[i] = ♦. We say
thatA ⊆ Rec is valid (with respect to some secret-sharing schemeΠ) if the following is true: if(S, S, T, S′, j)
is A-generable andS′ ; S′′, then the following adversaryAS,T,S′,j is in A: it calls Deal(S); then it calls
Corrupt(i) for eachi ∈ T (in numerical order); then it outputs(S′′, j).

The classAr associated to any access structureA is valid. So too isAm,n,t ∩ Rec whereAm,n,t [28]
is Ap

m,n ∪ (Ar
m,n ∩ At) andAt is adversaries that can only output(S′, j) with S′ having at mostt non-♦

components. ThusA ∈ Am,n,t is a privacy adversary that can corrupt at mostm− 1 playersor a recoverability
adversary that can corrupt at mostn−m players, replacing at mostt shares with strings and the rest with♦.

SETUP. One can augment a secret-sharing scheme by allowing aSetup algorithm; we would now have a triple
of algorithmsΠ = (Setup, Share, Recover). Setup is probabilistic and outputs apublic parameterP ∈ {0, 1}∗.
ProceduresShare andRecover are providedP , as is any adversary attacking the scheme. WhileShare could
always install the public parameter in each player’s share, the effect is not the same as adding aSetup: in
one setting, the adversary has to corrupt a player to getP and in the other it is free; and there are important
efficiency-accounting consequences, as pulling out the public parameter might shorten the shares.

RANDOM-ORACLE SETTING. The privacy and recoverability notionsAdvpriv
Π (A) andAdvrec

Π (A) can easily
be lifted to the random-oracle setting [6]. To do so, one adds to gamesPriv andRec an oracle (procedure
call) Hash that realizes a random function from strings of arbitrary length to strings of some desired length.
AlgorithmsShare andRecover are allowed to callHash , as may the adversary itself.

STATIC ADVERSARIES. Classical definitions of secret sharing assume a static adversary. This is encompassed
by our framework in the sense that it is easy to restrict attention to static adversaries. LetStatic be the set of
all adversariesA for which there is a setT associated toA such that, regardless ofA’s input, coins, and oracle
responses, the set of players corrupted byA is T . To consider static adversaries restrict to sets likePriv∩Static.
A static adversaryA can be imagined to deterministically “decide” at the beginning of its execution which
playersT to corrupt. We define adversaries

4 The ESH Protocol — Krawczyk’s Method for RCSS

4.1 The construction

Fix a family of adversariesA. Following Krawczyk [25], we build ann-party secret-sharing scheme with mes-
sage spaceS from the following five components: (1) a symmetric encryption schemeΠEnc = (Encrypt , Decrypt)
with k-bit keys and message spaceS; (2) ann-party PSSΠPSS = (SharePSS , RecoverPSS) overA with message
space{0, 1}k; (3) an n-party IDA ΠIDA = (Share IDA , Recover IDA) overA with message spaceΣ∗; (4) an
n-party ECCΠECC = (ShareECC , RecoverECC) overA with message space{0, 1}h; and (5) a hash function
Hash : {0, 1}∗ → {0, 1}h. We callΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Hash the underlyingprimitivesof the ESH scheme,
and we say that they are overA, for n parties, fork-bit keys, and forh-bit hashes. From such a set of prim-
itives we define the secret-sharing scheme ESH[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Hash ] = (Share, Recover) as specified
and illustrated in Figure 4. In its line 21, ifX[i] = ♦ then our convention is to assign♦ to all variables
on the left-hand side of the assignment statement; otherwiseX[i] is parsed into its corresponding, uniquely
defined constituents. Similarly, ifK = ♦ or C = ♦ when line 29 is executed then our convention is that
X = ♦. Let ESH[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC ] = (Share, Recover) be the random-oracle variant of this scheme in
which Hash : {0, 1}∗ → {0, 1}h is chosen at random by gamesPriv andRec.
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PROCEDUREShare(X)
10 K

$←{0, 1}k ; C
$← EncryptK(X)

11 K
$← SharePSS(K)

12 C
$← Share IDA(C)

13 FOR i← 1 TO n DO

14 H[i]← Hash(K[i]‖C[i])
15 Si

$← ShareECC(H[i])
16 FOR i← 1 TO n DO

17 X[i]←K[i]C[i] S1[i] · · ·Sn[i]
18 RETURN X

PROCEDURERecover(X, j)
20 FOR i← 1 TO n DO

21 K[i]C[i] S1[i] · · ·Sn[i]←X[i]
22 FOR i← 1 TO n DO

23 H[i]← RecoverECC(Si, j)
24 FOR i← 1 TO n DO

25 IF X[i] 6= ♦ AND Hash(K[i]‖C[i]) 6= H[i]
26 THEN K[i]← ♦ ; C[i]← ♦
27 K ← RecoverPSS(K, j)
28 C ← Recover IDA(C, j)
29 X ← DecryptK(C)
30 RETURN X
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Figure 4:Left: definition of the ESH constructionΠ = (Share, Recover) = ESH[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Hash ]. Right:
illustration of the scheme’sShare algorithm forn = 3 players.Rand , on inputk, returns a uniformly randomk-bit string.

4.2 An attack

Since an encryption key is used by the share algorithm to encrypt just one message, it is natural to expect that
ESH is secure if the encryption scheme is one-query indistinguishable (ind1). Indeed this is what Krawczyk
would seem to have in mind, as the only privacy property he defines is ind1 [25] (which he formulates in terms
of indistinguishability of the ensembles associated to two different messages). But this intuition is false; the
ind1 condition doesnot guarantee privacy of ESH, even in the random-oracle model. We will show that even
one-time-pad encryption, which is certainly ind1-secure, isn’t enough.

For concreteness, assume we haven = 3 players and wish to use the access structureA2,3, a 2-out-of-3
threshold scheme. Assume the domain of secrets isS = {0, 1}128 and the domain of messages is the same. In
the RO-based construction ESH[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC ], assume we instantiateΠEnc with one-time-pad encryp-
tion, C = EncryptK(X) = K ⊕X. Assume we instantiateΠPSS with the 2-out-of-3 Shamir secret-sharing
scheme over the finite fieldF2128 . Assume we instantiateΠIDA with replication, soShare IDA(C) = (C,C,C).
Assume we likewise instantiateΠECC with replication, soShareECC(H) = (H,H, H).

To understand the attack we first point out that with Shamir’s secret-sharing scheme [35], not only can you
reconstruct the key (the secret) fromm = 2 out of n = 3 shares, but you can also reconstruct a share (say
share 2) given one share (say share 1) and the underlying keyK that was dealt. (This is done by interpolation,
in the same manner that the secret is normally recovered.) Specifically, for the 2-out-of-3 scheme there is an al-

9



gorithmR such thatR(K[1],K) = K[2] for all K ∈ SharePSS(K). We will use this fact to violate privacy. Let
the adversary select any two distinct 128-bit strings,X0 andX1, and call Deal(X0, X1). Let b, K,K,C,H,
andX be as specified in gamePriv in response to the Deal query. Next the adversary callsCorrupt(1) to
get backX[1], from which it parses outK[1] andC[1] = C, the latter because the IDA is replication. It now
setsK0 = C ⊕X0 andK1 = C ⊕X1. Note thatKb = K. The adversary now defines the candidate share
K0[2] = R(K[1],K0) for K0 and defines the candidate shareK1[2] = R(K[1],K1) for K1. We know that
Kb[2] = K[2]. The adversary computesH0[2] = Hash(K0[2] ‖ C) andH1[2] = Hash(K1[2] ‖ C). We
know thatHb[2] = H[2]. But embedded inX[1] is H[2], since the ECC also was replication, which the
adversary extracts. So the adversary returns 1 ifH1[2] = H[2] and 0 otherwise. It’s not hard to see that this
adversary has advantage1− 2−h.

One might be tempted to reason that if the ESH construction is wrongevenwith a one-time pad andeven
in the RO model, then certainly it is wrong when any “real” encryption scheme and hash-function are used, as
these will have inferior properties. But this is not the case, as there are ways in which a “real” encryption scheme
is superior to a one-time pad that are of relevance here. The attack above used the fact that with a one-time-
pad, given a plaintext/ciphertext pair(X, C) one can recover the keyK via K = C ⊕X. Had the encryption
scheme been secure against one-query key-recovery (key1), meaning that it was computationally infeasible to
find the key from a plaintext/ciphertext pair, we would not have been able to mount the attack. And common
encryption schemes like CBC modedoprovide security against key recoverability under standard assumptions.

4.3 Privacy (in the RO model)

We now show that ind1+ key1 security is enough to prove the security of ESH, in the RO model, under certain
conditions on the access structure. Our result applies to threshold access structures or any other adversary
classA whereA ∩ Priv = Ap

m,n. This includesAm,n,t as the distinction betweenAm,n,t andAm,n vanishes
after interacting withPriv.

Theorem 1 [Privacy of ESH, random-oracle model, threshold schemes]Let A = Ap
m,n and letΠ =

ESH[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC ] with primitives overA, for n-parties, and forh-bit hashes. LetA ∈ A be an
adversary that makes at mostq queries to itsHash oracle. Then there are adversariesB1 andB2 attacking the
symmetric encryption schemeΠEnc such that

Advpriv
Π (A) ≤ Advind

ΠEnc (B1) + 2qn ·Advkey
ΠEnc (B2) +

2q + n2

2h

where adversaryB1 makes only one query to its left-or-right oracle, adversaryB2 makes only one query to its
encryption oracle, and the running times ofB1 andB2 are that ofA plus overhead consisting of one execution
of theShare algorithm ofΠ and, forB2, an additionaln executions of theRecover algorithm ofΠPSS .

Demanding ofΠEnc that Advind
ΠEnc (B1) andAdvkey

ΠEnc (B2) be small (ind1+ key1 security) is asking for less
than two-query indistinguishability (ind2). The proof is standard (see Section 2). Note that a PRP-secure
blockcipher is ind1+ key1 secure (even though it is not ind2-secure), and therefore an appropriate realization
of ΠEnc for ESH. Similarly, common modes of operation like CBC are ind1+ key1 secure, even for a fixed IV.

PROOF INTUITION. The proof is challenging due to the basic weakness in ESH exploited in our earlier attack—
that the hash function is deterministic and thus may not preserve privacy of the shares to which it is applied.
The full proof, which relies on some lemmas concerning PSS privacy from Appendix B.1, will follow. First we
give a brief sketch.

We begin by highlighting two features of the proof. The first is that it relies not just on the privacy but
also the recoverability ofΠPSS . (At first glance it may not be clear why the privacy ofΠ should depend on the
recoverability ofΠPSS .) The second is that it requires a condition onΠPSS that we callshare unpredictability.
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This condition is not true for an arbitrary access structure. But it is true for threshold access structures and,
more generally, for all access structures that areextensible. We define the latter property in what follows.

Suppose we aim to construct an adversaryB1 attacking the ind1-property ofΠEnc . It would runA. The
difficulty is that B1 would not know the keyK and thus it would be unable to reply to oracle queries ofA
because these replies are a function of the shares ofK. We can, however, consider a new game where the
plaintext is encrypted underK but the share vectorK is produced from a different keyK ′, expecting this to be
perfectly adversarially indistinguishable from the original game due to the privacy of the PSS scheme. It is the
determinism of the hash function that causes difficulties in establishing something like this. The difficulty is in
answering a hash query ofA that contains the shareK[i] of an uncorrupted playeri. This is addressed in two
steps.

The first is to argue that as long asm− 2 or fewer players have been corrupted, the share of an uncorrupted
player is unpredictable and thus has low probability of being aHash query of A. This is true because of
the share-unpredictability lemmas of Appendix B.1, which say that even an adversary knowing the secret and
m− 2 or fewer shares cannot predict any remaining share with reasonable advantage. Here the threshold ism,
meaning privacy of the secret is guaranteed even if the adversary knowsm−1 shares, but share-unpredictability
allows the adversary onlym− 2 shares, because we need to assume it might also know the secret.

The second step is to argue that if the adversary has corruptedm − 1 players then, if it queriesHash on
the share of an uncorrupted player, we havem shares of the secret and, via theRecover procedure of the PSS
scheme, can recover the underlying key. This leads to a key-recovery adversary.

We warn that this sketch elides many issues. We now fill them in.

PROOF OF PRIVACY. We will actually show something stronger than what is claimed in the theorem statement,
namely, that the scheme works for anyextendible access structure, as defined in Appendix B.

Proof of Theorem 1: The proof will use code-based game-playing [4]. A game in this case will consist of
an Initialize procedure, procedures to respond to adversary oracle queries of Deal,Corrupt, andHash , and a
Finalize procedure.

As is usually the case with game-playing proofs, the different games used have many procedures in common.
To compact the game descriptions, we accordingly do not describe each game in full but rather describe all
procedures used individually, putting next to their name the games in which they appear. Boxed code in a
procedure appears in the game if and only if the game name has a box around it. In this way, Figures 5 and 6
describe a total of 10 games,G0–G9. As an example of how to read the figures, the upper left Initialize of
Figure 5 occurs in gamesG0, G1, G2, G3, G4, G6, G7, G8 while the upper right Initialize of the same Figure
occurs in the remaining two games, namelyG5, G9. TheCorrupt and Finalize procedures are the same for all
games.

We will be building adversaries that will runA as a subroutine, themselves responding to the latter’s oracle
queries. GameG0 moves us towards this perspective. (GameG0 is specified by the procedures in the left
column of Figure 5, with the boxed statement included in the Deal procedure.) Our claim is that

Advpriv
Π (A) = 2 · Pr

[
GA

0 ⇒ true
]
− 1 .

To justify this let us explain what the game does. Its Initialize procedure picks the keyK and generates shares
for it just like in the game defining the privacy ofΠ. While, ideally, we would like to pick the response
to Hash(x) at the timex is queried toHash , the game picks the valuesHash(K[i]‖C[i]) up-front in the Deal
procedure. (This value is represented byH[i]. TheIF statement in procedure Deal ensures consistency, meaning
thatHash(K[i]‖C[i]) = Hash(K[j]‖Cj) in case the arguments toHash are the same in both cases.) It does
this because it may soon need to provideX[i] as a response to aCorrupt(i) query, and this share depends on
Hash(K[j]‖Cj) for all 1 ≤ j ≤ n. The assignment ofH[i] to Hash(K[i]‖C[i]) is done only at the time the
adversary makes hash oracle queryK[i]‖C[i], necessitating theIF statement in the corresponding procedure.
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PROCEDUREInitialize G0–G4, G6–G8

K
$←{0, 1}k ; b

$←{0, 1}
K

$← SharePSS(K)
FOR i← 1 TO n DO Y [i]← ♦

PROCEDUREDeal(X0, X1) G0 , G1

C
$← EncryptK(Xb)

C
$← Share IDA(C)

FOR i← 1 TO n DO

H[i] $←{0, 1}h
IF ∃ j < i : (K[i]‖C[i] = K[j]‖C[j]) THEN

bad← true ; H[i]←H[j]

Si
$← ShareECC(H[i])

PROCEDURECorrupt(i) G0–G9

Y [i]←K[i]
X[i]←K[i]C[i] S1[i] · · ·Sn[i]
RETURN X[i]

PROCEDUREHash(x) G0, G1

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF (x = K[i]‖C[i]) THEN Hash [x]←H[i]
RETURN Hash [x]

PROCEDUREFinalize(d) G0–G9

RETURN (d = b)

PROCEDUREInitialize G5, G9

K, K ′ $←{0, 1}k ; b
$←{0, 1}

K
$← SharePSS(K ′)

FOR i← 1 TO n DO Y [i]← ♦

PROCEDUREDeal(X0, X1) G2–G9

C
$← EncryptK(Xb)

C
$← Share IDA(C)

FOR i← 1 TO n DO

H[i] $←{0, 1}h ; Si
$← ShareECC(H[i])

PROCEDUREHash(x) G2 , G3

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i]‖C[i]) THEN Hash [x]←H[i]
ELSE IF (x = K[i]‖C[i]) THEN

bad← true ; Hash [x]←H[i]
RETURN Hash [x]

PROCEDUREHash(x) G4, G5

Hash [x] $←{0, 1}h
FOR i← 1 TOn DO

IF Y [i] 6= ♦ THEN

IF (x = K[i]‖C[i]) THEN Hash [x]←H[i]
RETURN Hash [x]

Figure 5:Procedures for games in the RO-based instantiation of the ESH scheme, Theorem 1.

With the goal now being to upper boundPr[GA
0 ⇒ true], let us try to provide some intuition for what follows.

Suppose we aim to construct an adversaryB attacking the privacy ofΠEnc with advantage at leastPr[GA
0 ⇒

true]. It would run A to get X0, X1 and pass these to its left-or-right encryption oracle, getting back a
ciphertextC encryptingXc, wherec was the random challenge bit underlying its privacy game. It could
now useC to constructC and then continue to runA, answering its oracle queries asG0 does, and thenA’s
prediction of whether it is seeingX0 or X1 would revealc to B. However, adversaryB can’t answerA’s oracle
queries because they depend on shares ofK andB does not have access toK, which is chosen by its privacy
game. The obvious way to get around this is to haveB pick some new, randomK ′, generateK via SharePSS ,
and use these, arguing thatA will not know the difference due to the privacy of the PSS scheme. But the Deal
procedure, which we are suggestingB run, needs to knowall the valuesK[1], . . . ,K[n] to perform the test in
the IF statement. Similarly, the procedure for replying toHash queries needs to test whether a query contains
K[i] for somei and thus needs to know all the valuesK too. But the PSS scheme does not provide privacy if
all shares are revealed.

So our goal to implement the above idea is to put the game in a form where responding toA’s queries is possible
without knowing the shares of any authorized subset of players. (For concreteness, consider the case where the
access structure isA = Am,n. In this case, we want to be able to respond toA’s queries knowing onlym − 1
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PROCEDUREHash(x) G6

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i]‖C[i]) THEN Hash [x]←H[i]
ELSE IF (x = K[i]‖C[i]) AND Opened(Y ) ∪ {i} 6∈ A THEN

bad← true
RETURN Hash [x]

PROCEDUREHash(x) G7

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i]‖C[i]) THEN Hash [x]←H[i]
ELSE IF (x = K[i]‖C[i]) AND Opened(Y ) ∪ {i} ∈ A THEN

bad← true
RETURN Hash [x]

PROCEDUREHash(x) G8, G9

Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i]‖C[i]) THEN

Hash [x]←H[i]
ELSE

Ki‖Ci ← x
Yx ← Y ; Yx[i]← Ki

L← RecoverPSS(Yx)
IF L = K THEN bad← true

RETURN Hash [x]

Figure 6:More procedures for the games in the proof of Theorem 1. Above,Opened(Y ) denotes the set{i : Y [i] 6= ♦}
of all indices at whichY is defined, and byKi‖Ci ← x we mean thatx is uniquely parsed into its constituents.

or less shares ofK.) We do this in a few steps. GamesG0, G1 differ only in statements following the setting of
the flagbad, meaning are identical-until-bad in the terminology of [4], and so by the Fundamental Lemma of
Game Playing from that paper we have

Pr
[
GA

0 ⇒ true
]

= Pr
[
GA

1 ⇒ true
]
+ (Pr

[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
]
)

≤ Pr
[
GA

1 ⇒ true
]
+ Pr

[
GA

1 setsbad
]

.

Consider the experiment in which we pickK, K as in the Initialize procedure ofG1. For1 ≤ j < i ≤ n let
Ej,i denote the event thatK[j] = K[i]. Consider the adversaryEj,i for gameGSh that makes aCorrupt(j)
query to getK[j], and then outputsi, K[j]. Then by Lemma 6 we have

Pr [Ej,i] = Pr
[
GShEj,i ⇒ true

]
≤ 1

2k
.

So by the union bound,

Pr
[
GA

1 setsbad
]
≤ Pr [∃ j < i : Ej,i] ≤

∑
j<i

Pr [Ej,i] ≤
n(n− 1)

2
1
2k

.

Since the outcome ofG1 is not affected by whether or notbad is set, this means that the problematicIF statement
of the Deal procedure can be removed at the cost of a small loss. The Deal procedure ofG2 makes this change.
With the goal of making responses toHash queries possible without having shares of an authorized subset of
players, we split theIF statement of the corresponding procedure ofG1 into two parts inG2. Now we have

Pr
[
GA

1 ⇒ true
]

= Pr
[
GA

2 ⇒ true
]

(1)

= Pr
[
GA

3 ⇒ true
]
+ (Pr

[
GA

2 ⇒ true
]
− Pr

[
GA

3 ⇒ true
]
)

≤ Pr
[
GA

3 ⇒ true
]
+ Pr

[
GA

3 setsbad
]

, (2)
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the last step again by the Fundamental Lemma of Game Playing. The setting of the flagbad by the Hash
procedure ofG3 does not affect the game outcome and so we have

Pr
[
GA

3 ⇒ true
]

= Pr
[
GA

4 ⇒ true
]

.

Now notice thatG4 does not make reference to unopened shares ofK. So at this point we claim that the privacy
of the PSS scheme implies

Pr
[
GA

4 ⇒ true
]

= Pr
[
GA

5 ⇒ true
]

, (3)

whereG5 differs from G4 only in the Initialize procedure which now producesK by sharing notK but an
independently and randomly chosen keyK ′.

Let us now justify (3). To do this we build an adversaryP1 attacking the privacy ofΠPSS such that

Advpriv
ΠPSS (P1) = Pr

[
GA

4 ⇒ true
]
− Pr

[
GA

5 ⇒ true
]

. (4)

But the privacy ofΠPSS tells us that the advantage ofP1 is zero, yielding (3). AdversaryP1 begins by pickingK
andK ′ at random from{0, 1}k andb at random from{0, 1}. It createsn-vectorY to have all components♦.

It then queriesK ′,K to its Deal oracle. We know that the latter creates a share vectorK
$← SharePSS(L) where

L = K ′ if the challenge bitb′ of the oracle is0 andL = K if b′ = 1. Now P1 starts runningA, responding to
A’s oracle queries as follows. WhenA makes a Deal queryX0, X1, adversaryP1 executes the code of the Deal
procedure of gamesG4, G5. WhenA makes aCorrupt(i) query,P1 itself makes aCorrupt(i) query to obtain
shareK[i]. It then setsX[i] ← K[i]C[i] S1[i] · · ·Sn[i] andY [i] ← K[i], and returnsX[i] to A. WhenA
makes aHash(x) query,P1 executes the code of theHash procedure of gamesG4, G5 and returnsHash [x]
to A. WhenA halts and outputs a bitd, adversaryP1 returns 1 ifb = d and 0 otherwise. It is easy to see that
(4) is true.

GameG5 usesC, an encryption ofXb underK, but makes no other reference toK. This puts us in the position
we wanted above where we can use the privacy ofΠEnc . Namely, we will now specifyB1 so that

2 · Pr
[
GA

5 ⇒ true
]
− 1 ≤ Advind

ΠEnc (B1) . (5)

AdversaryB1 picksK ′ at random and letsK
$← SharePSS(K ′). It createsn-vectorY to have all components♦.

It then runsA. WhenA makes a queryX0, X1 to its Deal oracle,B1 queriesX0, X1 to its own left-or-right
encryption oracle to get back a ciphertextC

$← EncryptK(Xb), whereb is the challenge bit chosen by the left-
or-right encryption oracle. NowB1 executes the last three lines of the Deal procedure of gameG5. WhenA
makes aCorrupt(i) query,B1 can execute the code of theCorrupt procedure of gameG5 since it knowsK[i].
WhenA makes aHash(x) query,B1 can similarly execute the code of procedureHash of G5 to obtain the
reply and return it toA. WhenA halts and outputs a bitd, adversaryB1 returnsd. The advantage ofB1 is
2 Pr[b = d]− 1, so (5) is true.

To summarize, at this point we have shown that

Advpriv
Π (A) ≤ Advind

ΠEnc (B1) +
n(n− 1)

2k
+ 2 · Pr

[
GA

3 setsbad
]

. (6)

The difficult part of the proof is to boundPr[GA
3 setsbad ]. For this we use the key-recovery security ofΠEnc .

Let us again first try to give some intuition. The difficulty with applying the privacy of the PSS scheme is thatA
has information aboutC. Indeed, in the worst case, the ECC could be replication, meaningC[i] = C for all
1 ≤ i ≤ n, so thatA would haveC after oneCorrupt query. If the encryption scheme, like in our one-time-pad
example, permitted recovery of the key from a ciphertext, thenA could setbad in G3 with high probability. For
example, suppose the access structure isAm,n and we are using Shamir’s PSS scheme. AdversaryA can obtain
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m − 1 shares ofK, then useK and these shares to compute an unopened shareK[i], and queryK[i]‖C[i]
to Hash . In this case, however, we could obtainK from this last oracle query and the opened shares by using
the recovery procedure of the PSS scheme. But we can’t apply this strategy ifA setsbad after opening only
m− 2 or fewer shares. In that case, however, Lemma 7 applies, saying that even thoughA knowsK, it has low
probability of predicting an unopened share.

However, in implementing this we face the same difficulties as above. We can’t build a key-recovery adversary
if it needs to know shares of the challenge keyK to simulateA. We want instead to use shares of a different,
randomK ′. But for this to be justifiable via the security of the PSS scheme, the game must refer only to opened
shares, andG3 does not do this. We now proceed to resolve these problems.

We begin by splitting the bad event into two, one for the case where the set of corrupted players together with
the player indicated in the query settingbad do not form an authorized subset, and the other where they do:

Pr
[
GA

3 setsbad
]

= Pr
[
GA

6 setsbad
]
+ Pr

[
GA

7 setsbad
]

.

To get some intuition, consider again the case where the access structure isAm,n. Then the first case corre-
sponds tobad being set withm − 2 or less shares opened, and the second the case wherem − 1 shares were
open.

We claim Lemma 7 implies

Pr
[
GA

6 setsbad
]
≤ q

2k
. (7)

Let us justify this. For eachj in the range1 ≤ j ≤ q we consider the following adversaryFj for theGSh+

game. It gets as input a keyK chosen at random from{0, 1}k by the game, and, via aCorrupt(i) query, can
obtainK[i], whereK

$← SharePSS(K) were generated by theGSh+ game.Fj begins by creatingn-vectorY to
have all components♦. It then picks a bitb at random, and initializing a counterc to 0. It then runsA. WhenA
makes a queryX0, X1 to its Deal oracle,Fj executes the code of the Deal procedure of gameG6, which it can
do since it knowsK. WhenA makes a queryi to its Corrupt oracle,Fj obtainsK[i] via a corrupt query and
then executes the code of theCorrupt procedure ofG6. WhenA makes a queryx to its Hash oracle,Fj does
the following:

c← c + 1 ; Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i]‖C[i]) THEN Hash [x]←H[i]
ELSE IF (c = j) THEN Kj‖Cj ← x

RETURN Hash [x]

Above, byKj‖Cj ← x we mean thatx is uniquely parsed into its constituents. WhenA has terminated,
algorithmFj returnsKj and halts. Then

Pr
[
GA

6 setsbad
]
≤

q∑
j=1

Pr
[
GShFj

+ ⇒ true
]
≤

q∑
j=1

1
2k

=
q

2k
,

yielding (7). Above, the second inequality is by Lemma 7.

If bad is set inG7 thenOpened(Yx) = {i : Yx[i] 6= ♦} is an authorized subset and hence by the recoverability
properties ofΠPSS , applyingRecoverPSS to Yx is guaranteed to return the secretK in G8. Thus

Pr
[
GA

7 setsbad
]
≤ Pr

[
GA

8 setsbad
]

. (8)
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Now, once again, we have managed to create a game, namelyG8, that does not reference any unopened share,
and are thus in a position to apply the privacy ofΠPSS , which we claim implies

Pr
[
GA

8 setsbad
]

= Pr
[
GA

9 setsbad
]

. (9)

NoteG9 differs fromG8 only in the Initialize procedure which generatesK not fromK but from an indepen-
dently chosenK ′. To justify (9) we can again build an adversaryP2 such that

Advpriv
ΠPSS (P2) = Pr

[
GA

8 setsbad
]
− Pr

[
GA

9 setsbad
]

, (10)

obtaining (9) because the advantage ofP2 is 0 due to the assumed privacy ofΠPSS . AdversaryP2 begins by
picking K andK ′ at random from{0, 1}k and b at random from{0, 1}. It createsn-vectorY to have all

components♦. It then queriesK ′,K to its Deal oracle. The latter creates sharesK
$← SharePSS(L) where

L = K ′ if the challenge bitb′ of the oracle is0 andL = K if b′ = 1. Now P2 starts runningA, responding
to A’s oracle queries as follows. WhenA makes a Deal queryX0, X1, adversaryP2 executes the code of the
Deal procedure of gamesG8, G9. WhenA makes aCorrupt(i) query,P2 itself makes aCorrupt(i) query
to obtain shareK[i]. It then setsX[i] ← K[i]C[i] S1[i] · · ·Sn[i] andY [i] ← K[i], and returnsX[i] to A.
WhenA makes aHash(x) query,P2 executes the code of theHash procedure of gamesG8, G9 and returns
Hash [x] to A. WhenA halts and outputs a bitd, adversaryP2 ignoresd and returns 1 iffbad was set when it
responded to someHash query. It is easy to see that (10) is true.

We will now specifyB2 so that

Pr
[
GA

9 setsbad
]
≤ qn ·Advkey

ΠEnc (B2) . (11)

Recall that the key-recovery game picks at random a keyK and providesB2 with an encryption oracle
EncryptK(·). AdversaryB2 picksK ′ at random and letsK

$← SharePSS(K ′). It createsn-vectorY to have all
components♦ and picks bitb at random. It initializes a counterc to 0. It then picks a guessg1

$← [q] and a
guessg2

$← [n]. It then runsA. WhenA makes a queryX0, X1 to its Deal oracle, adversaryB2 queriesXb

to its encryption oracle to get back an encryptionC of Xb underK. Now B2 executes the last three lines of
the Deal procedure of gameG9. WhenA makes aCorrupt(i) query, adversaryB2 can execute the code of the
Corrupt procedure of gameG5 since it knowsK[i]. WhenA makes aHash(x) query, adversaryB2 does the
following:

c← c + 1 ; Hash [x] $←{0, 1}h
FOR i← 1 TO n DO

IF Y [i] 6= ♦ THEN

IF (x = K[i]‖C[i]) THEN Hash [x]←H[i]
ELSE IF (c, i) = (g1, g2) THEN

Ki‖Ci ← x ; Yx ← Y ; Yx[i]← Ki ; L← RecoverPSS(Yx)
RETURN Hash [x]

That is, when(c, i) is equal to(g1, g2), adversaryB2 records the candidate key asL. WhenA has terminated,
adversaryB2 returnsL and halts. One can check that (11) is true.

In summary, this second part of the proof has shown that

Pr
[
GA

3 setsbad
]
≤ q

2k
+ qn ·Advkey

ΠEnc (B2) .

Combining this with (6) completes the proof of the theorem.
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4.4 Recoverability (in the RO model)

We prove recoverability for any (valid) class of adversaries, which includes the adversaries associated to any
access structure, andAm,n,t as well.

Theorem 2 [Recoverability of ESH, random-oracle model] Let A be a valid class of adversaries, and let
Π = ESH[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC ] with primitives overA, for n parties, and forh-bit hashes. LetA ∈ A be an
adversary that asks at mostq queries to itsHash oracle. ThenAdvrec

Π (A) ≤ (q + 2n)2/2h+1 .

The recoverability of ESH actually requires only the collision-intractability of the hash functionHash ; it is
possible to restate the theorem above and adjust its proof to show that an attack on the recoverability of ESH
implies an equally effective method to find collisions inHash . We didn’t express the result this way since the
proof of privacy was already in the random-oracle model.

Proof of Theorem 2: Let Π = (Share, Recover), ΠEnc = (Encrypt , Decrypt), ΠPSS = (SharePSS , RecoverPSS),
ΠIDA = (Share IDA , Recover IDA), andΠECC = (ShareECC , RecoverECC). Consider runningA with gameRec. Let
K, C, K,C,H,S1, . . . ,Sn,X denote the quantities chosen by theShare algorithm when it is executed by the
Deal procedure in response toA’s Deal query ofX. Let(X ′, j) denote the output ofA. LetK ′, C ′,K ′,C ′,H ′,
S′

1, . . . ,S
′
n, X ′ denote, respectively, the quantitiesK, C, K,C,H,S1, . . . ,Sn, X as defined byRecover(XTt

X ′
T , j) when it is executed by the Finalize procedure ofRec, whereT is the set of players thatA corrupted.

We consider the following events:

E1: ∃` ∈ [n] such thatH[`] 6= H ′[`]
E2: ∃` ∈ T such thatK ′[`] ‖ C ′[`] 6∈ {♦‖♦,K[`] ‖ C[`]}
E3: K 6= K ′

E4: C 6= C ′

If C = C ′ andK = K ′ then the secretX ′ that is recovered equalsX so

Advrec
Π (A) ≤ Pr[E3 ∨ E4]

≤ Pr[E1 ∨ E2 ∨ E3 ∨ E4]

= Pr[E1] + Pr[E1 ∧ E2] + Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ E2 ∧ E3 ∧ E4]

≤ Pr[E1] + Pr[E1 ∧ E2] + Pr[E2 ∧ E3] + Pr[E2 ∧ E4] . (12)

We bound each addend above in turn. LetE1,` be the event thatH[`] 6= H ′[`]. If i 6∈ T then(XT tX ′
T )[i] =

X[i] and henceS′
`[i] = S`[i] by line 21 in Figure 4. ButS` is an output ofShareECC(H[`]) andT ∈ A, so

RecoverECC(S′
`, j) = H[`] by Lemma 8 applied toΠECC , meaningH ′[`] = H[`]. SoPr[E1,`] = 0. Now by

the union bound we have

Pr[E1] ≤
n∑

`=1

Pr[E1,`] = 0 . (13)

Next we claim that

Pr[E2] ≤
(q + 2n)2

2h+1
. (14)

We justify this as follows. Supposè∈ T andK ′[`]‖C ′[`] 6= ♦‖♦. By lines 21 and 25 of Figure 4 it must
be thatHash(K ′[`]‖C ′[`]) = H[`]. But if E1 thenH ′[`] = H[`], and by line 14 of Figure 4 we know that
H[`] = Hash(K[`]‖C[`]). So we haveHash(K ′[`]‖C ′[`]) = Hash(K[`]‖C[`]). Thus if K ′[`]‖C ′[`] 6=
K[`]‖C[`] then we have a collision inHash . Thus ifE1 ∧E2 we have found a collision inHash . At this point
we need only bound the probability of a collision inHash . The random-oracleHash is invoked at mostq + 2n
times, justifying (14).
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Next we claim that
Pr[E2 ∧ E3] = 0 . (15)

We justify this as follows. Ifi 6∈ T then (XT t X ′
T )[i] = X[i] and henceK ′[i] = K[i] by line 21 of

Figure 4. Ifi ∈ T andE2 holds thenK ′[i] ∈ {♦,K[i]}. But K is an output ofSharePSS(K) andT ∈ A, so
RecoverPSS(K ′, j) = K by Lemma 8 applied toΠPSS , meaningK ′ = K. SoE3 cannot hold.

Finally, we claim that
Pr[E2 ∧ E4] = 0 . (16)

We justify this as follows. Ifi 6∈ T then (XT t X ′
T )[i] = X[i] and henceC ′[i] = C[i] by line 21 of

Figure 4. If i ∈ T andE2 holds thenC ′[i] ∈ {♦,C[i]}. But C is an output ofShare IDA(C) andT ∈ A, so
Recover IDA(C ′, j) = C by Lemma 8 applied toΠIDA , meaningC ′ = C. SoE4 cannot hold.

Putting together equations (12)–(16) completes the proof.

5 The ESX Protocol — Provable Security Without ROs

In this section we alter ESH by replacing its deterministic hash functionHash with a randomized commitment
scheme. This changes the protocol, as the randomness used in the commitment must be inserted into the shares.
We are then able to show that the new protocol, ESX, is a good RCSS under standard assumptions.

5.1 The construction

COMMITMENT SCHEMES. We formalize a (noninteractive) commitment scheme as a deterministic algo-
rithm Comm: {0, 1}∗ × Coins(Comm)→ {0, 1}h ∪ {⊥} whereCoins(Comm) is a finite set andh ∈ N is the
commitment length. ThedomainDom(Comm) ⊆ {0, 1}∗ of Comm is the set of allM ∈ {0, 1}∗ such that
Comm(M,R) ∈ {0, 1}h for all R ∈ Coins(Comm). We assume that whether or notComm(M,R) ∈ {0, 1}h
does not depend onR (which ensures that it is easy to check if a point is in the domain). There are two security
properties,hidingandbinding, each defined by a game.

For thehiding game, Hide, the Initialize procedure chooses a bitb
$←{0, 1}. The game has only one

oracle, LR, which, on input of stringsM0,M1 ∈ Dom(Comm) (not necessarily of equal length), picks

R
$← Coins(Comm), setsY ← Comm(Mb, R), and returnsY . (Multiple queries to this oracle are allowed.)

The adversary returns a bitd and Finalize returns the predicateb = d. The advantage ofA in attacking the
hiding-property of the commitment scheme isAdvhide

Comm(A) = 2 Pr[HideA ⇒ true]− 1. We say thatComm
is ε(·)-hiding if Advhide

Comm(A) ≤ ε(q) for any adversaryA that makes at mostq oracle queries. Note that the
adversary is not computationally restricted; we have given a statistical notion of privacy.

For thebinding game, Bind, there is no Initialize procedure. It has one oracle,Commit, that, on inputM0 ∈
Dom(Comm), picksR0

$← Coins(Comm) and returnsR0. The Finalize procedure, givenM1 ∈ Dom(Comm)
andR1 ∈ Coins(Comm) returns the predicateM0 6= M1 AND Comm(M0, R0) = Comm(M1, R1). We
define the advantage ofA in attacking the binding-property of the commitment scheme asAdvbind

Comm(A) =
Pr[BindA ⇒ true]. The notion is weaker than the classical notion of binding, which would speak to
the computational infeasibility to find anyM0, R0,M1, R1 such thatM0 6= M1 but Comm(M0, R0) =
Comm(M1, R1). The conventional notion is analogous to the collision resistance of a hash function while
our notion is more like a UOWHF [30] (also called TCR hash-function [5]).

THE ESX CONSTRUCTION. Fix a family of adversariesA. We proceed to build ann-party secret-sharing
scheme with message spaceS from the following five components: (1) a symmetric encryption schemeΠEnc =
(Encrypt , Decrypt) with k-bit keys and a message spaceS; (2) an n-party secret-sharing schemeΠPSS =
(SharePSS , RecoverPSS) overA with message space{0, 1}k; (3) ann-party IDA ΠIDA = (Share IDA , Recover IDA)
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PROCEDUREShare(X)
10 K

$←{0, 1}k

11 C
$← EncryptK(X)

12 K
$← SharePSS(K) ; C

$← Share IDA(C)
13 FOR i← 1 TO n DO

14 R[i] $← Coins(Comm)
15 H[i]← Comm (K[i]‖C[i],R[i])
16 Si

$← ShareECC(H[i])
17 FOR i← 1 TO n DO

18 X[i]← R[i]K[i]C[i] S1[i] · · ·Sn[i]
19 RETURN X

PROCEDURERecover(X, j)
20 FOR i← 1 TO n DO

21 R[i]K[i]C[i] S1[i] · · ·Sn[i]←X[i]
22 FOR i← 1 TO n DO

23 H[i]← RecoverECC(Si, j)
24 FOR i← 1 TO n DO

25 IF X[i] 6= ♦ AND Comm(K[i]‖C[i],R[i]) 6= H[i]
26 THEN K[i]← ♦ ; C[i]← ♦
27 K ← RecoverPSS(K, j)
28 C ← Recover IDA(C, j)
29 X ← DecryptK(C)
30 RETURN X

Figure 7:Definition of the ESX constructionΠ = (Share, Recover) = ESX[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Comm].

overA with message spaceΣ∗; (4) ann-party ECCΠECC = (ShareECC , RecoverECC) overA with message
space{0, 1}h; and (5) a commitment schemeComm : Dom(Comm) × Coins(Comm) → {0, 1}h where
K[i]‖C[i] ∈ Dom(Comm) if K ∈ SharePSS(K) andC ∈ Share IDA(C) for someK ∈ {0, 1}k, X ∈ S,
andC ∈ EncryptK(X). We callΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Comm the underlyingprimitivesof the ESX scheme,
and we say that they are overA, for n parties, fork-bit keys, and forh-bit committals. From such a set of prim-
itives we define the secret-sharing scheme ESX[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Comm] = (Share, Recover) as specified
by Figure 7. The figure uses the same conventions as those of Figure 4.

5.2 Privacy (in the standard model)

The difficulty in establishing privacy in the standard model is that our adversary is dynamic, and so we run
into theselective-decommitment problem; see Dwork, Naor, and Reingold [17]. One could always pretend
the adversary to be static and take a hit of2n in the security bound when the adversary is dynamic, but we
don’t want to do this, as we are interested in concrete security and results with good asymptotic counterparts.
Another way around this is to use a statistically-hiding chameleon commitment-scheme. Instead we make do
with a weaker requirement, just the statistical hiding. We comment that for the case of static adversaries, it
would suffice that the commitment be computationally rather than statistically hiding.

Theorem 3 [Privacy of ESX] LetA be an adversary class and letΠ = ESX[ΠEnc ,ΠPSS ,ΠIDA ,ΠECC , Comm]
with primitives overA, for n parties, and with anε(·)-hiding Comm. Let A ∈ A ∩ Priv be an adversary for
attacking the privacy ofΠ. Then there is an adversaryB for attacking the privacy ofΠEnc such that

Advpriv
Π (A) ≤ Advind

ΠEnc (B) + 4ε(n)

whereB makes only one query to its left-or-right oracle and the running time ofB is that ofA plus overhead
consisting of one execution of theShare algorithm ofΠ.

Proof of Theorem 3: The proof relies on the games in Figure 8. The figure shows many procedures, indicating
next to each in which games it is included. For example, gameG0 is defined by the procedures on the left-
hand-side of the figure. We note that

Advpriv
Π (A) = 2 · Pr

[
GA

0 ⇒ true
]
− 1 . (17)
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PROCEDUREInitialize G0–G2

K
$←{0, 1}k ; b

$←{0, 1}
K

$← SharePSS(K)
RETURN

PROCEDUREDeal(X0, X1) G0, G1, G4, G5

C
$← EncryptK(Xb)

C
$← Share IDA(C)

FOR i← 1 TO n DO

R[i] $← Coins(Comm)
H[i]← Comm (K[i]‖C[i],R[i])
Si

$← ShareECC(H[i])

PROCEDURECorrupt(i) G0, G5

X[i]← R[i]‖K[i]C[i] S1[i] · · ·Sn[i]
RETURN X[i]

PROCEDUREFinalize(d) G0–G5

RETURN (d = b)

PROCEDUREInitialize G3–G5

K, K ′ $←{0, 1}k ; b
$←{0, 1}

K
$← SharePSS(K ′)

PROCEDUREDeal(X0, X1) G2, G3

C
$← EncryptK(Xb)

C
$← Share IDA(C)

FOR i← 1 TO n DO

R[i] $← Coins(Comm)
H[i]← Comm (0‖C[i],R[i])
Si

$← ShareECC(H[i])

PROCEDURECorrupt(i) G1–G4

R[i] $←{R ∈ Coins(Comm) :
Comm (K[i]‖C[i], R)=H[i]}

X[i]← R[i]‖K[i]‖C[i] S1[i] · · ·Sn[i]
RETURN X[i]

Figure 8:Games for proving Theorem 3, the privacy of the ESX scheme.

GameG1 differs from gameG0 only in theCorrupt procedure, which resamplesR[i] as shown. Clearly,

Pr
[
GA

0 ⇒ true
]

= Pr
[
GA

1 ⇒ true
]

(18)

= Pr
[
GA

2 ⇒ true
]
+ (Pr

[
GA

1 ⇒ true
]
− Pr

[
GA

2 ⇒ true
]
) . (19)

We will construct an adversaryD1 attacking the hiding-property ofComm such that

Pr
[
GA

1 ⇒ true
]
− Pr

[
GA

2 ⇒ true
]

= Advhide
Comm(D1) . (20)

AdversaryD1 picksb
$←{0, 1} and runsA. WhenA makes a queryX0, X1 to its Deal oracle, adversaryD1

picksK
$←{0, 1}k andC

$← EncryptK(Xb). It then picksK
$← SharePSS(K). For i running from1 to n, it

queries0‖C[i],K[i]‖C[i] to itsLR oracle, letsH[i] denote the value returned, and letsSi
$← ShareECC(H[i]).

WhenA makes aCorrupt(i) query, adversaryD1 computes its reply according to the code of theCorrupt
procedure of gamesG1, G2. Note that this step is not necessarily efficient, butD1 does not have to be compu-
tationally bounded. WhenA halts without outputd, adversaryD returns1 if d = b and0 otherwise. One can
check that (20) is true.

Next we have

Pr
[
GA

2 ⇒ true
]

= Pr
[
GA

3 ⇒ true
]
+ (Pr

[
GA

2 ⇒ true
]
− Pr

[
GA

3 ⇒ true
]
) , (21)

whereG3 differs from G2 only in the Initialize procedure which now producesK by sharing notK but an
independently and randomly chosen keyK ′. We claim that

Pr
[
GA

2 ⇒ true
]

= Pr
[
GA

3 ⇒ true
]

. (22)

To justify the above, we build an adversaryP attacking the privacy of the PSS schemeΠPSS such that

Advpriv
ΠPSS (P ) = Pr

[
GA

2 ⇒ true
]
− Pr

[
GA

3 ⇒ true
]

. (23)
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But the privacy ofΠPSS tells us that the advantage ofP is zero, yielding (22). AdversaryP begins by pickingK
andK ′ at random from{0, 1}k andb at random from{0, 1}. It then queriesK ′,K to its Deal oracle. We

know that the latter creates sharesK
$← SharePSS(L) whereL = K ′ if the challenge bit chosen by gamePriv

is zero andL = K if it is one. NowP starts runningA, responding toA’s oracle queries as follows. WhenA
queries Deal(X0, X1) adversaryP executes the code of the Deal procedure of gamesG2, G3. WhenA makes a
Corrupt(i) query, adversaryP itself makes aCorrupt(i) query to obtain shareK[i], producesX[i] as per the
code of theCorrupt procedure of gamesG2, G3, and returnsX[i] to A. As before, this step is not necessarily
efficient, butP need not be computationally bounded. WhenA halts and outputs a bitd, adversaryP returns 1
if b = d and0 otherwise. It is easy to see that (23) is true.

Next we have

Pr
[
GA

3 ⇒ true
]

= Pr
[
GA

4 ⇒ true
]
+ (Pr

[
GA

3 ⇒ true
]
− Pr

[
GA

4 ⇒ true
]
) . (24)

We next construct an adversaryD2 attacking the hiding-property ofComm such that

Pr
[
GA

3 ⇒ true
]
− Pr

[
GA

4 ⇒ true
]

= Advhide
Comm(D2) . (25)

The construction ofD2 is similar to that ofD1 and is therefore omitted. GamesG5 differs fromG4 only in its
Corrupt procedure as shown. Clearly

Pr
[
GA

4 ⇒ true
]

= Pr
[
GA

5 ⇒ true
]

. (26)

We now construct adversaryB attacking the privacy ofΠEnc such that

2 · Pr
[
GA

5 ⇒ true
]
− 1 ≤ Advind

ΠEnc (B) . (27)

AdversaryB picks K ′ at random and letsK
$← SharePSS(K ′). It then runsA. When A makes a query

Deal(X0, X1), B queriesX0, X1 to its own left-or-right encryption oracle to get backC
$← EncryptK(Xb),

whereb is the challenge bit andK the key chosen by theInd game defining the privacy ofΠEnc . Now B ex-
ecutes the last five lines of the Deal procedure of gameG5. WhenA makes aCorrupt(i) query, adversaryB
can execute the code of theCorrupt procedure of gameG5 since it knowsK[i]. WhenA halts and outputs a
bit d, adversaryB returnsd. The advantage ofB is 2 Pr[b = d]− 1, so (27) is true.

Let D be the hiding-adversary that flips a fair coin and, if it lands heads, runsD1, otherwise,D2. Clearly

Advhide
Comm(D) = 0.5 ·Advhide

Comm(D1) + 0.5 ·Advhide
Comm(D2) . (28)

SinceComm is assumed to beε(·)-hiding andD makes at mostn oracle queries we have

Advhide
Comm(D) ≤ ε(n) . (29)

Putting together (17)–(29) concludes the proof.

5.3 Recoverability (in the standard model)

We now establish the recoverability of ESX. The theorem applies to any valid adversary class and assumes a
weakly-binding committal.

Theorem 4 [Recoverability of ESX] Let A be a valid adversary class and letΠ = ESX[ΠEnc ,ΠPSS ,ΠIDA ,
ΠECC , Comm] with primitives overA and forn parties. LetA ∈ A. Then there is an adversaryB attacking the
binding-property ofComm such thatAdvrec

Π (A) ≤ n ·Advbind
Comm(B) and where the running time ofB is that

of A plus overhead consisting of an execution of theShare andRecover algorithms ofΠ.
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PROCEDURECorrupt(i)
RETURN X[i]

PROCEDUREFinalize(X ′, j)
FOR i← 1 TO n DO

R′[i]K ′[i]C ′[i] S′
1[i]S

′
2[i] · · ·S′

n[i]←X ′[i]
RETURN (K ′[`]‖C ′[`],R′[`])

PROCEDUREDeal(X)
`

$← [n] ; K
$←{0, 1}k ; C

$← EncryptK(X)
K

$← SharePSS(K) ; C
$← Share IDA(C)

FOR i← 1 TO n DO

IF i = ` THEN R[`] $← Commit(K[`]‖C[`])
ELSE R[i] $← Coins(Comm)
H[i]← Comm (K[i]‖C[i],R[i])
Si

$← ShareECC(H[i])
FOR i← 1 TO n DO

X[i]← R[i]K[i]C[i] S1[i] · · ·Sn[i]

Figure 9:Procedures used by adversaryABIND to respond to oracle queries ofA in the proof of Theorem 4.

Proof of Theorem 4: Let Π = (Share, Recover), ΠEnc = (Encrypt , Decrypt), ΠPSS = (SharePSS , RecoverPSS),
ΠIDA = (Share IDA , Recover IDA), andΠECC = (ShareECC , RecoverECC). Consider runningA with gameRec. Let
K, C, K,C,H,S1, . . . ,Sn,X denote the quantities chosen by theShare algorithm when it is executed by the
Deal procedure in response toA’s Deal query ofX. Let(X ′, j) denote the output ofA. LetK ′, C ′,K ′,C ′,H ′,
S′

1, . . . ,S
′
n, X ′ denote, respectively, the quantitiesK, C, K,C,H,S1, . . . ,Sn, X as defined byRecover(XTt

X ′
T , j) when it is executed by the Finalize procedure ofRec, whereT is the set of players thatA corrupted.

We consider the following events:

E1: ∃` ∈ [n] such thatH[`] 6= H ′[`]
E2: ∃` ∈ T such thatK ′[`] ‖ C ′[`] 6∈ {♦‖♦,K[`] ‖ C[`]}
E3: K 6= K ′

E4: C 6= C ′

If C = C ′ andK = K ′ then the secretX ′ that is recovered equalsX so

Advrec
Π (A) ≤ Pr[E3 ∨ E4]

≤ Pr[E1 ∨ E2 ∨ E3 ∨ E4]

= Pr[E1] + Pr[E1 ∧ E2] + Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ E2 ∧ E3 ∧ E4]

≤ Pr[E1] + Pr[E1 ∧ E2] + Pr[E2 ∧ E3] + Pr[E2 ∧ E4] . (30)

We bound each addend above in turn. LetE1,` be the event thatH[`] 6= H ′[`]. If i 6∈ T then(XT tX ′
T )[i] =

X[i] and henceS′
`[i] = S`[i] by line 21 in Figure 7. ButS` is an output ofShareECC(H[`]) andT ∈ A, so

RecoverECC(S′
`, j) = H[`] by Lemma 8 applied toΠECC , meaningH ′[`] = H[`]. SoPr[E1,`] = 0. Now by

the union bound we have

Pr[E1] ≤
n∑

`=1

Pr[E1,`] = 0 . (31)

Next we construct adversaryB such that

Pr[E1 ∧ E2] ≤ n ·Advbind
Comm(B) . (32)

AdversaryB runsA, responding to its Deal andCorrupt oracle calls via the procedures of Figure 9. WhenA
halts with output(X ′, j), adversaryB runs the Finalize procedure of the same figure.

Next we claim that
Pr[E2 ∧ E3] = 0 . (33)
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We justify this as follows. Ifi 6∈ T then (XT t X ′
T )[i] = X[i] and henceK ′[i] = K[i] by line 21 of

Figure 7. Ifi ∈ T andE2 holds thenK ′[i] ∈ {♦,K[i]}. But K is an output ofSharePSS(K) andT ∈ A, so
RecoverPSS(K ′, j) = K by Lemma 8 applied toΠPSS , meaningK ′ = K. SoE3 cannot hold.

Finally, we claim that
Pr[E2 ∧ E4] = 0 . (34)

We justify this as follows. Ifi 6∈ T then (XT t X ′
T )[i] = X[i] and henceC ′[i] = C[i] by line 21 of

Figure 7. If i ∈ T andE2 holds thenC ′[i] ∈ {♦,C[i]}. But C is an output ofShare IDA(C) andT ∈ A, so
Recover IDA(C ′, j) = C by Lemma 8 applied toΠIDA , meaningC ′ = C. SoE4 cannot hold.

Putting together equations (30)–(34) completes the proof.

5.4 RCSS from any one-way function

Our requirements on the statistically-hiding (SH) commitment scheme are weaker than standard ones in a
couple of ways. First, as we noted earlier, the standard binding requirement for a commitment scheme is
stronger than ours. Second, our definition effectively models the situation where the committer (for us, the
dealer) is honest. On the other hand, our scheme must be noninteractive.

Building a standard SH commitment-scheme is well-studied. Naor, Ostrovsky, Venkatesan, and Yung [29]
have an interactive solution based on a one-way-permutation. Damgård, Pedersen, and Pfitzmann [16], and
later Halevi and Micali [20], present efficient variants of this based on a family of collision-resistant hash-
functions. An OWF solution remains open. But due to the goal-relaxations we discussed above, we can alter
the constructions of [16, 20] to achieve our notion of a (noninteractive) statistically-hiding, weakly-binding
(SHWB) commitment scheme. We simply replace the family of collision-resistant hash-functions by a family
of UOWHFs [30] and let the committer (rather than the receiver as in [16, 20]) choose the key for this family.
(This works because the committer is honest.)

In slightly more detail, in this scheme the coinsR, used to commit to a messageM , specify keysJ, L
for functions from the UOWHF familyF , a memberh from a family of universal hash functions, and a ran-
dom pointx, and the committal is(J, L, FL(x), h(x)⊕FJ(M)). Since UOWHFs exist given any OWF [34],
we obtain a OWF-based SHWB commitment scheme, which suffices to implement ESX. Thus we obtain a
provably-secure, OWF-based RCSS.

However, for the result to be nontrivial the RCSS scheme needs to have shares shorter than the messages—
otherwise the RCSS goal is achievable information-theoretically (for appropriate adversary classes) [28, 41].
The scheme above will not have short shares because the keys for the UOWHF family are long. We can address
this by making the UOWHF keys(J, L) public parameters that are chosen up front once and for all, and are
made available to all parties (think of them as embedded in the software of the algorithms). This means the
sameJ andL will be used not just for committals to different parties but also across multiple invocations
of theShare andRecover algorithms. Now the committal is merely(FL(x), h(x)⊕FJ(M)), which is short.
Formally, this means we will be in the with-Setup setting of Section 3, with theSetup algorithm choosingJ, L.
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A Prior Definitions for Secret Sharing

BLAKLEY AND SHAMIR (1979). A threshold scheme with parametersm and n (that is, a secret-sharing
scheme for the access structureAm,n) was defined by Shamir [35] as follows7: Our goal is to divideS into n
piecesS1, . . . , Sn in such a way that: (1) knowledge of anym or moreSi pieces makesS easily computable;
and (2) knowledge of anym− 1 or fewerSi pieces leavesS completely undetermined (in the sense that all its
possible values are equally likely).

The definition above is somewhat informal, and admits multiple, basically equivalent formalizations. The
two most prominent are theconditional-probability formulationand theentropy formulation. Both approaches
assume that the finite set of possible secretsS is endowed with a distribution; in effect, they define a threshold
schemefor this distribution. (Of course one can always say afterwards that the specified requirement should
hold for any distributionS, although this seems to be explicitly said only rarely.) For both formulations, letS
denote the random variable that takes on values fromS according to the associated distribution and letSi be the
random variable that takes on values of the sharei for i ∈ [n].

For the conditional-probability formulation one requires that for any distinct{i1, . . . , ir} ⊆ [n] and any
(si1 , . . . , sir) such thatPr[(Si1 , . . . , Sir) = (si1 , . . . , sir)] > 0, we have that: (1) ifr ≥ m then there exists
a uniques ∈ S such thatPr[S = s | Si1 = si1 ∧ · · · ∧ Sir = sir ] = 1; and (2) if r < m then, for each
s ∈ S we have thatPr[S = s | Si1 = si1 ∧ · · · ∧ Sir = sir ] = Pr[S = s]. The statement we have just given
paraphrases [31].

For the entropy formalization [24] one requires that: (1) for anym-tuple of distinct indicesi1, . . . , im ∈
[n] we have thatH(S | Si1 , . . . , Sim) = 0; and (2) for anyr < m and for anyr-tuple of distinct in-
dicesi1, . . . , ir ∈ [n] we have thatH(S | S1, . . . , Sr) = H(S). HereH(X) = −

∑
x∈X p(x) lg p(x) and

H(X | Y ) = −
∑

x∈X,y∈Y p(x)p(x | y) lg p(x | y) andX andY are random variables andp(x) denotes the
probability thatX = x andp(y) denotes the probability thatY = y andp(x | y) denotes the probability
thatX = x given thatY = y. Both formulations of the PSS notion readily lift to define secret-sharing schemes
over an arbitrary access structureA.

MCELIECE AND SARWATE (1981). These authors were interested in threshold schemes that are secure against
computationally-unbounded adversaries that can arbitrarily replace the shares of somet of the players [28]. An
external party, not a protocol participant, recovers the secret. It is not possible to say precisely what notion
the authors aim for because their work is stated in terms of characteristics of schemes achievable using Reed-
Solomon codes, not general characteristics sought in a secret-sharing scheme. That said, the authors seem to be
interested in achieving the PSS-PR2 goal of Figure 3 with respect to the adversary class we calledAm,n,t.

TOMPA AND WOLL (1986). These authors are interested inm-out-of-n threshold schemes that are secure
against computationally-unbounded adversaries that can arbitrarily replace the shares of them − 1 corrupted
players and where some uncorrupted protocol participant is the entity that is recovering the secret [41]. The
envisaged adversary is static. The authors state the problem like this (changing only some variable names):
Divide a secretS ∈ {0, 1, . . . , s− 1} into “shares” S1, S2, . . . , Sn such that: (a) Knowledge of anym shares
is sufficient to reconstructS efficiently. (b) Knowledge ofm − 1 shares provides no more information about
the value ofS that was known before. (c) There is only a small probabilityε > 0 that anym − 1 partici-
pantsi1, i2, . . . , im−1 can fabricate new sharesS′

i1
, S′

i2
, . . . , S′

im−1
that deceive amth participant im. Here,

deceiving themth participant means that, fromS′
i1

, S′
i2

, . . . , S′
im−1

, andSim , the secretS′ reconstructed is
“legal” (i.e., S′ ∈ {0, 1, . . . , s − 1}), but “incorrect” (i.e., S′ 6= S). This model is investigated in works like
[14, 31], which also close minor issues of informality (for example, the definition above does not make clear if
the underlying secretS is uniform or if one is instead maximizing over allS).

The above goal is approximately translated into our definition for PSS-SR1 (and also demanding perfect-
recoverability for erasure adversaries). Note that in a setting like this, with concrete security and a statistical

7 For consistency with the rest of this paper, we have changed the names of variables.
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error bound, the difference between static and dynamic adversarieswill be relevant: one could easily construct
an (artificial) secret-sharing scheme with a larger smallest-possible robustness parameterε if one quantifies over
the class of static adversaries instead of dynamic ones.

KRAWCZYK (1993)AND OTHERS. A definition for CSS, for the case of ann-out-of-m threshold scheme, was
sketched by Krawczyk [25]. It is stated like this, apart from minor changes in notation.Let Π be ann-party
secret-sharing scheme. For any secretS and for any set of indices1 ≤ ii ≤ · · · ≤ ir ≤ n letDΠ(S, i1, . . . , ir)
denote the probability distribution on the sequence of sharesSi1 , Si2 , . . . , Sir induced by the output of running
theShare algorithm onS. The requirement is that for any pair of equal-length secretsS′ andS′′ and any set
of indicesi1, i2, . . . , ir with r < m, the distributionsDΠ(S′, i1, i2, . . . , ir) andDΠ(S′′, i1, i2, . . . , ir) must be
polynomially indistinguishable.Krawczyk earlier indicates that indistinguishability is in terms ofthe lengths
of messages or secrets. In Krawczyk’s definitional sketch, he omits mention of recoverability. Parameterizing
security by in the length of the secret might be unfortunate, effectively excluding a treatment of protocols that
share a one-bit secret, say, an apparently legitimate thing to want to do.

A somewhat different approach to formalizing CSS is given by Cachin [12] and refined by Vinod et al. [42].
For privacy one requires that the probability that an adversary can guess the shared secret is negligible (in the
security parameterized, which is again the length of the secret). One effectively assumes that the set of secrets
is large and that secrets are chosen uniformly from that set (assumptions that seem undesirable). Regardless, an
inability to guess the shared secret, an idea going back to Blakley [8], seems to make for an overly weak notion
of security, as a huge amount of partial information about the secret might be leaked while the secret remains
hard-to-guess. Such considerations are well-known from the context of encryption-scheme privacy, going back
to Goldwasser and Micali [19], and they are just as relevant here.

As for the RCSS goal, Krawczyk says only that this isa secret-sharing scheme that can correctly recover
the secret even in the presence of a (bounded) number of corrupted shares, while keeping the secrecy require-
ment[25]. Comments in the paper make it clear that the author was thinking in terms of the model of robustness,
where an external party recovers the secret.

Krawczyk clearly had further ideas along the lines of those pursued in the current paper. In particular, he
indicates thata stronger definition can be stated in terms of a dynamic and adaptive adversary that progressively
chooses them−1 shares to be revealed to him depending on previously opened shares.He also indicates thatthe
traditional notion of perfect secret sharing can be defined in an analogous way. . . by replacing “polynomially
indistinguishable” with “identical” (or equivalently, by replacing polynomial-time distinguishability tests with
computationally unlimited tests)[25].

B Secret-Sharing Lemmas

B.1 Share-prediction lemmas

Assume that a secret is uniformly chosen from a finite set of possible secrets. We consider the probability
that an adversary, without having corrupted an authorized subset of players, predicts either the secret that was
distributed or the share of an uncorrupted player. The probability of the first is easily shown to be low by the
privacy of the scheme, essentially confirming that our definition implies previous ones. Share prediction is
more subtle since whether or not it is hard depends on the access structure. We provide sufficient conditions
on the access structure for share prediction to have low probability. We give two lemmas, one for adversaries
that don’t know the secret and one for adversaries that do. The latter is used in our proof of privacy of the ESH
construction (Theorem 1). We consider dynamic adversaries throughout, and in that sense our statements are
stronger than in traditional treatments of secret sharing.

We formalize the claims via the games of Figure 10. The Figure shows different procedures, listing next to
each the games in which this procedure appears, so that a total of four games are described. For our first lemma,
we consider the gameGSe whose Initialize procedure picks a random secret from the (finite) message spaceS
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PROCEDUREInitialize GSe,GSh
S

$← S; S
$← SharePSS(S)

PROCEDURECorrupt(i) GSe,GSh,GSh+, G
T ← T ∪ {i}
RETURN S[i]

PROCEDUREFinalize(Y ) GSe
RETURN (Y = S) AND T 6∈ A

PROCEDUREInitialize GSh+

S
$← S ; S

$← SharePSS(S)
RETURN S

PROCEDUREInitialize G

S0, S1 $← S ; S
$← SharePSS(S1)

RETURN S0

PROCEDUREFinalize(j, Y ) GSh
RETURN (S[j]=Y ) AND (j 6∈T ) AND T 6∈A

PROCEDUREFinalize(j, Y ) GSh+, G
RETURN (S[j]=Y ) AND (j 6∈T ) AND T∪{j} 6∈A

Figure 10:Procedures for games in the PSS lemmas. This Figure defines four games,GSe, GSh, GSh+, and an auxiliary
gameG to be used in the proofs.

of the given PSS schemeΠPSS and creates shares for it. The game answersCorrupt queries and declares the
adversary to have won if its outputY equals the secret but the set of corrupted players is not authorized. The
following says that the probability that the adversary wins is at most1/|S|.

Lemma 5 Let ΠPSS = (SharePSS , RecoverPSS) be an-party PSS scheme over message spaceS and access
structureA. Then for any adversaryD

Pr
[
GSeD ⇒ true

]
≤ 1
|S|

. (35)

Proof of Lemma 5: We will specify an adversaryP attacking the privacy ofΠPSS such that

Advpriv
ΠPSS (P ) ≥ Pr

[
GSeD ⇒ true

]
− 1
|S|

. (36)

Since the advantage ofP is 0 by the assumed privacy of the PSS scheme, equation (36) implies equation (35).
AdversaryP picks S0, S1 at random fromS and queriesS0, S1 to its Deal oracle. It then starts runningA.
WhenA makes aCorrupt(i) query, adversaryP itself makes aCorrupt(i) query, and returns the response
to D. WhenD halts with outputY , adversaryP returns1 if Y = S1 and0 otherwise. Denoting the output
of P by d and the challenge bit chosen by gamePriv by b we have

Advpriv
ΠPSS (P ) = Pr [ d = 1 | b = 1 ]− Pr [ d = 1 | b = 0 ] .

Now we claim

Pr [ d = 1 | b = 1 ] = Pr
[
GSeD ⇒ true

]
(37)

Pr [ d = 1 | b = 0 ] ≤ 1
|S|

, (38)

from which (36) follows. Equality (37) is evident from the definitions. In the caseb = 0, adversaryP has no
information aboutS1 which is chosen at random fromS and hence the probability thatY = S1 is at most1/|S|,
justifying (38).
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Our next lemma considers the gameGSh whose Initialize procedure picks a random secret from the (finite)
message spaceS of the given PSS schemeΠPSS and creates shares for it. The game answersCorrupt queries
and declares the adversary to have won if it outputsj, Y such thatY equals thej-th share of the secret but no
Corrupt(j) query was made. We are interested in bounding the probability that the adversary wins.

However, this probability is not always small. It depends on the access structure. Consider for example the
access structureA that contains just the sets[n − 1] and[n] and letS = {0, 1}k. Let algorithmSharePSS(S)
returnS whereS[1], . . . ,S[n − 1] are chosen at random fromS subject toS[1] ⊕ · · · ⊕ S[n − 1] = S and
S[n] = 0k. Then an adversary that outputsn, 0k wins with probability 1.

This type of anomaly seems however absent for “natural” access structures, and in particular for the thresh-
old oneAm,n. To be general, we define a property of access structures that is sufficient to ensure that the
probability of the adversary winning theGSh game is small. We say thatA is extendibleif for every T ⊆ [n]
such thatT 6∈ A, and everyj 6∈ T , there exists aT ′ ⊆ [n] such thatT ∪ T ′ 6∈ A but T ∪ T ′ ∪ {j} ∈ A.
That is,T can be extended to an unauthorized subset such that addition ofj makes it authorized. We callT an
extensionof T, j.

Note that theA of our example above is not extendible. Indeed if we setj = n andT = ∅ thenT, j has no
extension. However,Am,n is extendible, as are many other natural access structures. The following says that
the probability of winningGSh is at most1/|S| if the access structure is extendible. The interesting aspect of
the proof is that it relies on the recoverability of the PSS scheme, not just its privacy. Below, ifY is a share
vector thenOpened(Y ) denotes the set{ i : Y [i] 6= ♦ } of all indices at whichY is defined.

Lemma 6 Let ΠPSS = (SharePSS , RecoverPSS) be an-party PSS scheme over message spaceS and extendible
access structureA. Then for any adversaryE

Pr
[
GShE ⇒ true

]
≤ 1
|S|

. (39)

Proof of Lemma 5: Consider the following adversaryD for theGSe game. It initializesn-vectorY to have all
components♦, and then runsE. WhenE makes aCorrupt(i) query, so doesD. It stores the response asY [i]
and also returns this response toE. Eventually, adversaryE halts with outputj, Y . We say this output isvalid
if Opened(Y ) 6∈ A andj 6∈ Opened(Y ). If the output is not valid thenD returns something arbitrary like0, ε.
Else, it letsY [j]← Y and letsT ′ be an extension ofT, j, which we know exists by the extendibility assumption
onA. For eachi ∈ T ′ it makes aCorrupt(i) query and stores the response inY [i]. The extendibility property
now guarantees thatOpened(Y ) ∈ A, soD runsRecoverPSS(Y ) to get back a secretS′, outputsS′, and halts.
The extendibility property also guarantees thatT ∪ T ′ 6∈ A so thatD has not corrupted an authorized subset in
the case the output ofE is valid. Now if the outputj, Y of E is valid and satisfiesS[j] = Y thenS′ = S. If
the output ofE is not valid thenE does not win. This means that

Pr
[
GShE ⇒ true

]
≤ Pr

[
GSeD ⇒ true

]
, (40)

whence (39) follows from Lemma 5.

An adversary in theGSh+ game has the same share-prediction objective as an adversary in theGSh game but
differs in that it gets the secret as input. (The secret is the output of the Initialize procedure which by definition
becomes the input to the adversary.) Thus we are now asking how hard it is to predict a share when you know
the secret. The following lemma bounds the probability that the adversary wins under the same conditions as in
Lemma 6. The crucial difference is that in theGSh+ game, the adversary wins only if not justT butT ∪{j} is
not authorized. In the caseA = Am,n, this means that we allow it to corrupt onlym− 2 players, notm− 1 as
in Lemma 6. Intuitively, this says that giving the adversary the secret is like giving it one extra share from the
point of view of its ability to predict other shares.
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Lemma 7 Let ΠPSS = (SharePSS , RecoverPSS) be an-party PSS scheme over message spaceS and extendible
access structureA. Then for any adversaryF

Pr
[
GShF

+ ⇒ true
]
≤ 1
|S|

. (41)

Proof of Lemma 7: We first claim that

Pr
[
GShF

+ ⇒ true
]

= Pr
[
GF ⇒ true

]
, (42)

where gameG is defined via Figure 10. Intuitively, this says that providingF the shared secret as input does not
help it; it does equally well with a random, independent secret as input. To justify (42) we provide an adversary
P attacking the privacy ofΠPSS such that

Advpriv
ΠPSS (P ) = Pr

[
GShF

+ ⇒ true
]
− Pr

[
GF ⇒ true

]
. (43)

Since the advantage ofP is 0 by the assumed privacy ofΠPSS , (43) implies (42). AdversaryP picksS0, S1

at random fromS and queriesS0, S1 to its Deal oracle. It initializes setT to empty and starts runningF on
input S1. WhenA makes aCorrupt(i) query,P puts i in T , itself makes aCorrupt(i) query, and returns
the response toF . WhenF halts with output(j, Y ), adversaryP makes aCorrupt(j) query to obtainS[j].
If S[j] = Y andj 6∈ T thenP returns1, else0. Equation (43) follows because

Pr [ d = 1 | b = 1 ] = Pr
[
GShF

+ ⇒ true
]

and Pr [ d = 1 | b = 0 ] = Pr
[
GF ⇒ true

]
,

whered denotes the output bit ofP andb the challenge bit chosen by gamePriv .

Note that the set of players corrupted byP is T ∪ {j} whereT is the set of players corrupted byF . But if
T ∪ {j} is not authorized, as is required forF to win, thenP has not corrupted an authorized player, as is
required for it to win. This is where we use the assumption thatF wins only if not justT but T ∪ {j} is not
authorized.

To complete the proof we specify an adversaryE for gameGSh such that

Pr
[
GF ⇒ true

]
≤ Pr

[
GShE ⇒ true

]
.

Now (41) follows from Lemma 6. AdversaryE picksS′ at random fromS and runsF on inputS′. It answers
F ’s Corrupt queries via its ownCorrupt oracle. WhenF halts with outputj, Y , adversaryE also outputsj, Y
and halts.

B.2 A recoverability lemma

The following result lets one think of perfect recoverability in a more conventional, adversary-free way.

Lemma 8 [adversary-free recoverability] Let Π = (Share, Recover) be a secret-sharing scheme over mes-
sage spaceS that achieves perfect recoverability over the valid access structureA. Suppose(S, S, T, S′, j) is
A-generable andS′ ; S′′. ThenRecover(ST t S′′

T , j) = S.

Proof: By the validity ofA there is an adversaryAS,T,S′,j ∈ A that calls Deal(S), callsCorrupt(i) for each
i ∈ T , then outputs(S′′, j). Now AS,T,S′,j will win the Rec game iff Recover outputs anS∗ 6= S. But
AS,T,S′,j never wins theRec game becauseAdvrec

Π (AS,T,S′,j) = 0. It follows thatRecover(S′
T
t S′′

T , j) =
Recover(ST t S′′

T , j) = S.
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