
Full version of an extended abstract published in Proceedings of ACM CCS 2006, ACM Press,
2006. Available from the IACR Cryptology ePrint Archive as Report 2006/264.

How to Win the Clone Wars:

Efficient Periodic n-Times Anonymous Authentication

Jan Camenisch∗ Susan Hohenberger† Markulf Kohlweiss‡ Anna Lysyanskaya§

Mira Meyerovich ¶

Abstract

We create a credential system that lets a user anonymously authenticate at most n times
in a single time period. A user withdraws a dispenser of n e-tokens. She shows an e-token to
a verifier to authenticate herself; each e-token can be used only once, however, the dispenser
automatically refreshes every time period. The only prior solution to this problem, due to
Damg̊ard et al. [30], uses protocols that are a factor of k slower for the user and verifier, where k
is the security parameter. Damg̊ard et al. also only support one authentication per time period,
while we support n. Because our construction is based on e-cash, we can use existing techniques
to identify a cheating user, trace all of her e-tokens, and revoke her dispensers. We also offer a
new anonymity service: glitch protection for basically honest users who (occasionally) reuse e-
tokens. The verifier can always recognize a reused e-token; however, we preserve the anonymity
of users who do not reuse e-tokens too often.

1 Introduction

As computer devices get smaller and less intrusive, it becomes possible to place them everywhere
and use them to collect information about their environment. For example, with today’s technology,
sensors mounted on vehicles may report to a central traffic service which parts of the roads are
treacherous, thus assisting people in planning their commutes. Some have proposed mounting
sensors in refrigerators to report the consumption statistics of a household, thus aiding in public
health studies, or even mounting them in people’s bodies in an attempt to aid medical science. In
all these areas, better information may ultimately lead to a better quality of life.

Yet this vision appears to be incompatible with privacy. A sensor installed in a particular car
will divulge that car’s location, while one installed in a fridge will report the eating and drinking
habits of its owner.

∗IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland, jca@zurich.ibm.com
†IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland, sus@zurich.ibm.com
‡Deptartment of Electrical Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium,

mkohlwei@esat.kuleuven.be
§Computer Science Department, Brown University, Providence, RI 02912, USA, anna@cs.brown.edu
¶Computer Science Department, Brown University, Providence, RI 02912, USA, mira@cs.brown.edu

1



A naive solution would be to supply only the relevant information and nothing else.1 A report
about the road conditions should not say which sensor made the measurement. However, then
nothing would stop a malicious party from supplying lots of false and misleading data. We need to
authenticate the information reported by a sensor without divulging the sensor’s identity. We also
need a way to deal with rogue sensors, i.e., formerly honest sensors with valid cryptographic keys
that are captured by a malicious adversary and used to send lots of misleading data.

The same problem arises in other scenarios. Consider an interactive computer game. Each
player must have a license to participate, and prove this fact to an on-line authority every time she
wishes to play. For privacy reasons, the player does not wish to reveal anything other than the fact
that she has a license. How can we prevent a million users from playing the game for the price of
just one license?

A suite of cryptographic primitives such as group signatures [28, 22, 1, 7] and anonymous
credentials [26, 31, 40, 15, 17, 18] has been developed to let us prove that a piece of data comes
from an authorized source without revealing the identity of that particular source. However, none of
the results cited above provide a way to ensure anonymity and unlinkability of honest participants
while at the same time guaranteeing that a rogue cannot undetectably provide misleading data in
bulk. Indeed, it seems that the ability to provide false data is a consequence of anonymity.

Recently Damg̊ard, Dupont and Pedersen [30] presented a scheme that overcomes this seeming
paradox. The goal is to allow an honest participant to anonymously and unlinkably submit data
at a small rate (for example, reporting on road conditions once every fifteen minutes, or joining
one game session every half an hour), and at the same time to have a way to identify participants
that submit data more frequently. This limits the amount of false information a rogue sensor can
provide or the number of times that a given software license can be used per time period.

While the work of Damg̊ard et al. is the first step in the right direction, their approach yields a
prohibitively expensive solution. To authenticate itself, a sensor acts as a prover in a zero-knowledge
(ZK) proof of knowledge of a relevant certificate. In their construction, the zero-knowledge property
crucially depends on the fact that the prover must make some random choices; should the prover
ever re-use the random choices he made, the prover’s secrets can be efficiently computed from the
two transcripts. The sensor’s random choices are a pseudorandom function of the current time
period (which must be proven in an additional ZK proof protocol). If a rogue sensor tries to submit
more data in the same time period, he will have to use the same randomness in the proof, thus
exposing his identity. It is very challenging to instantiate this solution with efficient building blocks.
Damg̊ard et al. use the most efficient building blocks available, and also introduce some of their
own; their scheme requires that the user perform 57+68k exponentiations to authenticate, where
k is the security parameter (a sensor can cheat with probability 2−k).

We provide a completely different approach that yields a practical, efficient, and provably secure
solution. We relate the problem to electronic cash (e-cash) [24, 25] and in particular, to compact
e-cash [13]. In our approach, each participant obtains a set of e-tokens from the central server.
Similar to the withdrawal protocol of e-cash, the protocol through which a participant obtains
these e-tokens does not reveal any information to the server about what these e-tokens actually
look like. Our protocol lets a participant obtain all the e-tokens it will ever need in its lifetime in
one efficient transaction. The user performs only 3 multi-base exponentiations to obtain e-tokens,

1Note that divulging the relevant information alone may already constitute a breach of privacy; in this paper,
we do not address this aspect of the problem; it has more to do with statistical properties of the data itself. See
Sweeney [47] and Chawla et al. [29] on the challenges of determining which data is and is not safe to reveal.

2



and 35 multi-base exponentiations to show a single e-token. If the user is limited to one e-token per
time period (as in the Damg̊ard et al.’s scheme), the scheme can be further simplified and the user
will need to do only 13 multi-base exponentiations to show an e-token. We provide more details on
efficiency in §4.3.

Distributed sensors can use an e-token to anonymously authenticate the data they send to the
central server. In the on-line game scenario, each e-token can be used to establish a new connection
to the game. Unlike e-cash, where it is crucial to limit the amount of money withdrawn in each
transaction, the number of e-tokens obtained by a participant is unlimited, and a participant can
go on sending data or connecting to the game for as long as it needs. The e-tokens are anonymous
and unlinkable to each other and to the protocol where they were obtained. However, the number
of e-tokens that are valid during a particular time period is limited. Similarly to what happens in
compact e-cash, reusing e-tokens leads to the identification of the rogue participant. We also show
how to reveal all of its past and future transactions.

Thus, in the sensor scenario, a sensor cannot send more than a small number of data items per
time period, so there is a limit to the amount of misleading data that a rogue sensor can submit.
Should a rogue sensor attempt to do more, it will have to reuse some of its e-tokens, which will
lead to the identification of itself and possibly all of its past and future transactions. Similarly, in
the on-line game scenario, a license cannot be used more than a small number of times per day,
and so it is impossible to share it widely.
Our Contribution Our main contribution is the new approach to the problem, described above,
that is an order of magnitude more efficient than the solution of Damg̊ard et al. In Section 4,
we present our basic construction, which is based on previously-proposed complexity theoretic
assumptions (SRSA and y-DDHI) and is secure in the plain model.

Our construction builds on prior work on anonymous credentials [15, 39], so that it is easy to
see which parts need to be slightly modified, using standard techniques, to add additional features
such as an anonymity revoking trustee, identity attributes, etc. The computational cost of these
additional features is a few additional modular exponentiations per transaction.

In Section 5, we extend our basic solution to make it tolerate occasional glitches without dis-
astrous consequences to the anonymity of a participant. Suppose that a sensor gets reset and does
not realize that it has already sent in a measurement. This should not necessarily invalidate all
of the sensor’s data. It is sufficient for the data collection center to notice that it received two
measurements from the same sensor, and act accordingly. It is, of course, desirable, that a sensor
that has too many such glitches be discovered and replaced. Our solution allows us to be flexible
in this respect, and tolerates m such glitches (where m is specified ahead of time as a system-wide
parameter) at the additive cost of O(km) in both efficiency and storage, where k is the security
parameter. This does not add any extra computational or set-up assumptions to our basic scheme.

In Section 6, we consider more variations of our basic scheme. We show, also in the plain
model, how to enable the issuer and verifiers to prove to third parties that a particular user has
(excessively) reused e-tokens (this is called weak exculpability); and enable the issuer and verifiers
to trace all e-tokens from the same dispenser as the one that was excessively reused (this is called
tracing). We also show, in the common-parameters and random-oracle models, how to achieve
strong exculpability, where the honest verifiers can prove to third parties that a user reused a
particular e-token. Finally, we explain how e-token dispensers can be revoked; this requires a
model where the revocation authority can continuously update the issuer’s public key.
A Note on Terminology Damg̊ard et al. call the problem at hand “unclonable group identifi-

3



cation,” meaning that, should a user make a copy of his sensor, the existence of such a clone will
manifest itself when both sensors try to submit a piece of data in the same time period. We extend
the problem, and call the extended version “periodic n-times anonymous authentication,” because
it is a technique that allows one to provide anonymous authentication up to n times during a given
time period. For n = 1 (when there is only one e-token per user per time period) our scheme solves
the same problem as the Damg̊ard et al. scheme.
Related Work Anonymity, conditional anonymity, and revocable anonymity, are heavily re-
searched fields; due to space constraints, we compare ourselves only to the most relevant and the
most recent work. Anonymous credentials allow one to prove that one has a set of credentials with-
out revealing anything other than this fact. Revocable anonymity [28, 11, 19, 38] allows a trusted
third party to discover the identity of all otherwise anonymous participants; it is not directly rele-
vant to our efforts since we do not assume any such TTP, nor do we want anyone to discover the
identity of honest users. Conditional anonymity requires that a user’s transactions remain anony-
mous until some conditions are violated; our results fall within that category. With the exception
of Damg̊ard et al.’s work [30], no prior literature on conditional anonymity considered conditions
of the form “at most n anonymous transactions per time period are allowed.” Most prior work on
conditional anonymity focused on e-cash [27, 10, 13], where the identity of double-spenders could
be discovered. A recent variation on the theme is Jarecki and Shmatikov’s [37] work on anonymous,
but linkable, authentication where one’s identity can be discovered after one carries out too many
transactions. Another set of recent papers [48, 49, 43, 3] addressed a related problem of allowing
a user to show a credential anonymously and unlinkably up to k times to a particular verifier. In
these schemes every verifier can set a different k. However, the k shows are always counted over
the whole lifetime of the credential and not over limited time periods, as in our scheme.

2 Definition of Security

Our definitions for periodic n-times anonymous authentication are based on the e-cash definitions
of [13] and [14]. We define a scheme where users U obtain e-token dispensers from the issuer I,
and each dispenser can dispense up to n anonymous and unlinkable e-tokens per time period, but
no more; these e-tokens are then given to verifiers V that guard access to a resource that requires
authentication (e.g., an on-line game). U , V, and I interact using the following algorithms:

– IKeygen(1k, params) is the key generation algorithm of the e-token issuer I. It takes as input 1k

and, if the scheme is in the common parameters model, these parameters params. It outputs a
key pair (pkI , skI). Assume that params are appended as part of pkI and skI .

– UKeygen(1k, pkI) creates the user’s key pair (pkU , skU ) analogously.
– Obtain(U(pkI , skU , n), I(pkU , skI , n)) At the end of this protocol, the user obtains an e-token

dispenser D, usable n times per time period and (optionally) the issuer obtains tracing infor-
mation tD and revocation information rD. I adds tD and rD to a record RU which is stored
together with pkU .

– Show(U(D, pkI , t, n),V(pkI , t, n)). Shows an e-token from dispenser D in time period t. The
verifier outputs a token serial number (TSN) S and a transcript τ . The user’s output is an
updated e-token dispenser D′.

– Identify(pkI , S, τ, τ ′). Given two records (S, τ) and (S, τ ′) output by honest verifiers in the Show
protocol, where τ 6= τ ′, computes a value sU that can identify the owner of the dispenser D that

4



generated TSN S.
The value sU may also contain additional information specific to the owner of D that (a) will
convince third parties that U is a violator (weak exculpability), that (b) will convince third
parties that U double-showed this e-token (strong exculpability), or that (c) can be used to
extract all token serial numbers of U (traceability).

A periodic n-times anonymous authentication scheme needs to fulfill the following three prop-
erties:

Soundness. Given an honest issuer, a set of honest verifiers are guaranteed that, collectively, they
will not have to accept more than n e-tokens from a single e-token dispenser in a single time period.
There is a knowledge extractor E that executes u Obtain protocols with all adversarial users and
produces functions, f1, . . . , fu, with fi : T×I→ S. I is the index set [0..n−1], T is the domain of the
time period identifiers, and S is the domain of TSN’s. Running though all j ∈ I, fi(t, j) produces
all n TSNs for dispenser i at time t ∈ T. We require that for every adversary, the probability
that an honest verifier will accept S as a TSN of a Show protocol executed in time period t, where
S 6= fi(j, t), ∀1 ≤ i ≤ u and ∀0 ≤ j < n is negligible.

Identification. There exists an efficient function φ with the following property. Suppose the issuer
and verifiers V1,V2 are honest. If V1 outputs (S, τ) and V2 outputs (S, τ ′) as the result of Show
protocols, then Identify(pkI , S, τ, τ ′) outputs a value sU , such that φ(sU ) = pkU , the violator’s public
key. In the sequel, when we say that a user has reused an e-token, we mean that there exist (S, τ)
(S, τ ′) that are both output by honest verifiers.

Anonymity. An issuer, even when cooperating with verifiers and other dishonest users, cannot
learn anything about an honest user’s e-token usage behavior except what is available from side
information from the environment. This property is captured by a simulator S which can interact
with the adversary as if it were the user. S does not have access to the user’s secret or public key,
or her e-token dispenser D.

Formally, we create an adversary A that will play the part of the issuer and of all verifiers. A
will create the public and private-keys of the issuer and verifiers. Then, A will be given access to
an environment Env that is either using real users or a simulator; A must determine which. A can
make four types of queries to Env:

EnvSetup(1k) generates the public parameters params (if any) and the private parameters auxsim
for the simulator (if there is one).

EnvGetPK(i) returns the public-key of user Ui, generated by UKeygen(1k, pkI).

EnvObtain(i) runs the Obtain protocol with user Ui: Obtain(U(pkI , skU , n), A(state)). (We use
state to denote whatever state the adversary maintains). We call Dj the dispenser generated
the jth time protocol Obtain is run.

EnvShow(j, pkI , t) behaves differently depending on whether the environment is using a simulator.
If the environment is using real users, it will simply run the Show protocol with the user U that
holds the dispenser Dj : Show(U(Dj , pkI , t, n), A(state)). If the environment is using a simu-
lator S, then it will run the Show protocol with it: Show(S(params, auxsim, pkI), A(state));
S will not have access to the dispenser Dj or know who owns it.

5



An adversary is legal if it never asks a user to use the same dispenser to show more than
n e-tokens in the same time-interval. We say that an e-token scheme preserves anonymity if no
computationally bounded legal adversary can distinguish when the environment is playing with
users and when it is using a simulator.

Additional Extensions In §5, we provide definitions of security in the context of glitches, i.e.,
re-use of e-tokens that do not occur “too often.”

In §6, we discuss natural extensions to our basic construction that build on prior work on
anonymous credentials and e-cash, namely the concepts of weak and strong exculpability, tracing,
and revocation. We now define the corresponding algorithms and security guarantees for these
extensions:

– VerifyViolator(pkI , pkU , sU ) publicly verifies that the user with public key pkU has double-spent
at least one e-token.

– VerifyViolation(pkI , S, pkU , sU ) publicly verifies that the user with public key pkU is guilty of
double-spending the e-token with TSN S.

– Trace(pkI , pkU , sU , RU , n), given a valid proof sU and the user’s tracing record RU , computes
all TSNs corresponding to this user. Suppose the user has obtained u e-token dispensers, Trace
outputs functions f1, . . . , fu such that by running though all j ∈ [0..n− 1], fi(t, j) produces all n
TSNs for e-token dispenser Di at time t. If sU is invalid, i.e. VerifyViolator(pkI , pkU , sU ) rejects,
Trace does nothing.

– Revoke(pkI , rD,RD) takes as input a revocation database RD (initially empty) and revocation
information rD that corresponds to a particular user (see Obtain). It outputs the updated
revocation database RD . In the sequel, we assume that RD is part of pkI .

These algorithms should fulfill the following properties:

Weak exculpability. An adversary cannot successfully blame an honest user U for reusing an e-token.
More specifically, suppose an adversary can adaptively direct a user U to obtain any number of
dispensers and show up to n e-tokens per dispenser per time period. The probability that the
adversary produces sU such that VerifyViolator(pkI , pkU , sU ) accepts is negligible.

Strong exculpability. An adversary cannot successfully blame a user U of reusing an e-token with
token serial number S, even if U double-showed some other e-tokens. More specifically, suppose an
adversary can adaptively direct a user to obtain any number of dispensers and show any number of
e-tokens per dispenser per time period (i.e. he can reset the dispenser’s state so that the dispenser
reuses some of its e-tokens). The probability that the adversary outputs a token serial number S
that was not reused and a proof sU such that VerifyViolation(pkI , S, pkU , sU ) accepts is negligible.

Tracing of violators. The token serial numbers of violators can be efficiently computed. More
specifically, given a value sU such that VerifyViolator(pkI , pkU , sU , n) accepts, and supposing U has
obtained u e-token dispensers, Trace(pkI , pkU , sU , RU , n) produces functions f1, . . . , fu such that
by running though all j ∈ [0..n− 1], fi(t, j) produces all n TSNs for e-token dispenser i at time t.

Dynamic revocation. The Show protocol will only succeed for dispensers D that have not been
revoked with Revoke. (Recall that Show takes as input the value pkI that contains the database
DB of revoked users.)

6



3 Preliminaries

Notation. We write G = 〈g〉 to denote that g generates the group G.

Bilinear Maps. Let Bilinear Setup be an algorithm that, on input the security parameter 1k,
outputs the parameters for a bilinear map as γ = (q, g1, h1, G1, g2, h2, G2, GT , e). Each group
G1 = 〈g1〉 = 〈h1〉, G2 = 〈g2〉 = 〈h2〉, and GT are of prime order q ∈ Θ(2k). The efficient mapping
e : G1×G2 → GT is both: (Bilinear) for all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Z2

q , e(ga
1 , gb

2) = e(g1, g2)ab;
and (Non-degenerate) if g1 is a generator of G1 and g2 is a generator of G2, then e(g1, g2) generates
GT .

Complexity Assumptions. The security of our scheme relies on the following assumptions:
Strong RSA Assumption [5, 35]: Given an RSA modulus n and a random element g ∈ Z∗

n,
it is hard to compute h ∈ Z∗

n and integer e > 1 such that he ≡ g mod n. The modulus n is of a
special form pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

Additionally, our constructions require one of y-DDHI or SDDHI, depending on the size of the
system parameters. Alternatively, we can substitute DDH for either of these assumptions, where
the cost is an increase in our time and space complexity by a factor roughly the security parameter.
y-Decisional Diffie-Hellman Inversion (y-DDHI) [6, 33]: Suppose that g ∈ G is a random
generator of order q ∈ Θ(2k). Then, for all probabilistic polynomial time adversaries A,

Pr[a← Z∗
q ; x0 = g1/a; x1 ← G; b← {0, 1};

b′ ← A(g, ga, ga2
, . . . , gay

, xb) : b = b′] < 1/2 + 1/poly(k).

Strong DDH Inversion (SDDHI): Suppose that g ∈ G is a random generator of order q ∈ Θ(2k).
Let Oa(·) be an oracle that, on input z ∈ Z∗

q , outputs g1/(a+z). Then, for all probabilistic polynomial
time adversaries A(·) that do not query the oracle on x,

Pr[a← Z∗
q ; (x, α)← AOa(g, ga); y0 = g1/(a+x); y1 ← G;

b← {0, 1}; b′ ← AOa(yb, α) : b = b′] < 1/2 + 1/poly(k).

We show that the SDDHI assumption holds in generic groups in §3.2.
Additionally, our constructions require one of the following assumptions. XDH requires non-

supersingular curves, whereas SF-DDH may reasonably be conjectured to hold in any bilinear
group.
External Diffie-Hellman Assumption (XDH) [36, 45, 41, 7, 4]: Suppose Bilinear Setup(1k)
produces the parameters for a bilinear mapping e : G1 × G2 → GT . The XDH assumption states
that the Decisional Diffie-Hellman (DDH) problem is hard in G1.
Sum-Free Decisional Diffie-Hellman Assumption (SF-DDH) [32]: Suppose that g ∈ G is
a random generator of order q ∈ Θ(2k). Let L be any polynomial function of k. Let O~a(·) be an
oracle that, on input a subset I ⊆ {1, . . . , L}, outputs the value gβI

1 where βI =
∏

i∈I ai for some
~a = (a1, . . . , aL) ∈ ZL

q . Further, let R be a predicate such that R(J, I1, . . . , It) = 1 if and only if
J ⊆ {1, . . . , L} is DDH-independent from the Ii’s; that is, when v(Ii) is the L-length vector with
a one in position j if and only if j ∈ Ii and zero otherwise, then there are no three sets Ia, Ib, Ic

7



such that v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise over the integers). Then, for all
probabilistic polynomial time adversaries A(·),

Pr[~a = (a1, . . . , aL)← ZL
q ; (J, α)← AO~a(1k); y0 = g

Q
i∈J ai ;

y1 ← G; b← {0, 1}; b′ ← AO~a(yb, α) : b = b′∧
R(J,Q) = 1] < 1/2 + 1/poly(k),

where Q is the set of queries that A made to O~a(·).

Key Building Blocks. We summarize the necessary information about our system components.
DY Pseudorandom Function (PRF). Let G = 〈g〉 be a group of prime order q ∈ Θ(2k). Let
a be a random element of Z∗

q . Dodis and Yampolskiy [33] showed that fDY
g,a (x) = g1/(a+x) is a

pseudorandom function, under the y-DDHI assumption, when either: (1) the inputs are drawn
from the restricted domain {0, 1}O(log k) only, or (2) the adversary specifies a polynomial-sized set
of inputs from Z∗

q before a function is selected from the PRF family (i.e., before the value a is
selected). For our purposes, we require something stronger: that the DY construction work for
inputs drawn arbitrarily and adaptively from Z∗

q .

Theorem 3.1 In the generic group model, the Dodis-Yampolskiy PRF is adaptively secure for
inputs in Z∗

q.

The proof of Theorem 3.1 follows from the SDDHI assumption; see §3.2.
Pedersen and Fujisaki-Okamoto Commitments. Recall the Pedersen commitment scheme [44],
in which the public parameters are a group G of prime order q, and generators (g0, . . . , gm).
In order to commit to the values (v1, . . . , vm) ∈ Zq

m, pick a random r ∈ Zq and set C =
PedCom(v1, . . . , vm; r) = gr

0

∏m
i=1 gvi

i .
Fujisaki and Okamoto [35] showed how to expand this scheme to composite order groups.

CL Signatures. Camenisch and Lysyanskaya [17] came up with a secure signature scheme with
two protocols: (1) An efficient protocol for a user to obtain a signature on the value in a Pedersen (or
Fujisaki-Okamoto) commitment [44, 35] without the signer learning anything about the message.
(2) An efficient proof of knowledge of a signature protocol. Security is based on the Strong RSA
assumption. Using bilinear maps, we can use other signature schemes [18, 7] for shorter signatures.
Verifiable Encryption. For our purposes, in a verifiable encryption scheme, the encrypter/prover
convinces a verifier that the plaintext of an encryption under a known public key is equivalent to
the value hidden in a Pedersen commitment.

Camenisch and Damg̊ard [12] developed a technique for turning any semantically-secure en-
cryption scheme into a verifiable encryption scheme.
Bilinear El Gamal Encryption. We require a cryptosystem where gx is sufficient for decryption
and the public key is φ(gx) for some function φ. One example is the bilinear El Gamal cryptosys-
tem [8, 2], which is semantically secure under the DBDH assumption; that is, given (g, ga, gb, gc, Q),
it is difficult to decide if Q = e(g, g)abc. DBDH is implied by y-DDHI or Sum-Free DDH.

3.1 Agreeing on the Time.

Something as natural as time becomes a complex issue when it is part of a security system. First,
it is necessary that the value of time period identifier t be the same for all users that show e-tokens

8



in that period. Secondly, it should be used only for a single period, i.e., it must be unique. Our
construction in §4 allows for the use of arbitrary time period identifiers, such as those negotiated
using the hash tree protocol in [30]. For Glitch protection, §5, we assume a totally ordered set of
time period identifiers.

If all parties have perfect clocks, then the current time (truncated in order to get the desired
period size) fulfills all required properties. Since perfect clocks may be an unrealistic assumption,
one of the parties must be motivated to enforce correctness. It is in the interest of verifiers to
ensure that all users that show an e-token shown during a particular time period use the same time
period identifier; otherwise, a dishonest user could create extra e-tokens within one time period by
using different time period identifiers. Users are also interested in ensuring they all use the same
time period identifier; otherwise, a verifier could link e-tokens that use similarly biased time period
identifiers. In addition, users have a strong interest in ensuring that time period identifiers are
unique, i.e. that they are never reused. Otherwise, e-tokens from different time periods would look
like clones (even if they are not) and a verifier will be able to learn the user’s identity.

Damg̊ard et al. [30] describe a protocol that allows multiple users and a single verifier to agree
on the same unique value for a time period identifier by having every user contribute sufficient
randomness (i.e. uniqueness) to it. Their solution allows users to agree on a unique value without
keeping additional state. Their approach can be used in our basic system §4, and for glitch pro-
tection §5.1, but not in window glitch protection §5.2, which requires that time period identifiers
conform to a metric, i.e. that it is possible to compute the value for future time period identifiers
from the current one.

Practice: In the real world, uniqueness can be enforced by checking that the system clock
has not been turned back since the last invocation. Sameness for a given global period is more
difficult to ensure. It is impossible to have a global notion of time in a distributed systems, so the
only thing we can hope for, is to get the processes to agree on the time within a specific bound.
Thus, this remains a possible line of attack for cheating verifiers. The situation can be improved
by avoiding running the protocol at period boundaries.

Another practical decision is whether we want to have users announce the time, and verifiers
check it, or whether we want to have verifiers announce the time and users check it. Each approach
allows different attacks, e.g., by manipulating the users’ time servers.

3.2 Generic Group Security of Full DY PRF

To provide more confidence in our scheme, we prove lower bounds on the complexity of our as-
sumptions for generic groups [42, 46]. We follow the notation of Boneh and Boyen [6].

We will give the adversary as much power as possible and consider the case where we set SDDHI
in G1 where e : G1 × G2 → GT and the XDH assumption holds in G1. This will imply that the
SDDHI assumption holds for non-bilinear groups as well.

In the generic group model, elements of the bilinear groups G1, G2 and GT are encoded as
unique random strings. Thus, the adversary cannot directly test any property other than equality.
Oracles are assumed to perform operations between group elements, such as performing the group
operations in G1, G2 and GT . The opaque encoding of the elements of G1 is defined as the function
ξ1 : Zp → {0, 1}∗, which maps all a ∈ Zp to the string representation ξ1(a) of ga

1 ∈ G1. Likewise,
we have ξ2 : Zp → {0, 1}∗ for G2 and ξT : Zp → {0, 1}∗ for GT . The adversary A communicates
with the oracles using the ξ-representations of the group elements only.

9



Theorem 3.2 (SDDHI is Hard in Generic Groups) Let A be an algorithm that solves the
SDDHI problem in the generic group model, making a total of qG queries to the oracles computing
the group action in G1, G2, GT of order p, the oracle computing the bilinear map e, and oracle Oa(·)
that on input i ∈ Z∗

p, outputs g
1/(a+i)
1 . If a ∈ Z∗

p and ξ1, ξ2, ξT are chosen at random, then, when A
does not query O on x,

Pr[(x, α)← AOa(p, ξ1(1), ξ1(a), ξ2(1)); y0 = ξ1(1/(a + x)); r ← Z∗
p; y1 = ξ1(r); b← {0, 1};

b′ ← AOa(yb, α) : b = b′] ≤ 1
2

+
(qG + 3)2(4qG + 6)

p
=

1
2

+ O

(
q3
G

p

)
.

Proof. Consider an algorithm B that interacts with A in the following game.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i =

0, . . . , τ2 − 1}, and LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1}, such that, at step τ in the game,
we have τ1 + τ2 + τT = τ + 3. Let the F1,i, F2,i, FT,i be rational functions (i.e, fractions whose
numerators and denominators are polynomials); and all polynomials are multivariate polynomials
in Zp[a, r, . . . ] where additional variables will be dynamically added. The ξ1,i, ξ2,i, and ξT,i are
set to unique random strings in {0, 1}∗. Of course, we start the SDDHI game at step τ = 0 with
τ1 = 2, τ2 = 1 and τT = 0. These correspond to the polynomials F1,0 = 1, F1,1 = a, F2,0 = 1 and
the random strings ξ1,0, ξ1,1, ξ2,0.
B begins the game with A by providing it with the 2 strings ξ1,0, ξ1,1, ξ2,0. Now, we describe

the oracles A may query.

Group action: A inputs two group elements ξ1,i and ξ1,j , where 0 ≤ i, j ≤ τ1, and a request to
multiply/divide. B sets F1,τ1 ← F1,i ± F1,j . If F1,τ1 = F1,u for some u ∈ {0, . . . , τ1 − 1}, then
B sets ξ1,τ1 = ξ1,u; otherwise, it sets ξ1,τ1 to a random string in {0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}.
Finally, B returns ξ1,τ1 to A, adds (F1,τ1 , ξ1,τ1) to L1, and increments τ1. Group actions for
G2 GT are handled the same way.

Bilinear Map (e): A inputs two group elements ξ1,i and ξ2,j , where 0 ≤ i ≤ τ1 and 0 ≤ j ≤ τ2. B
sets FT,τT

← F1,i ·F2,j . If FT,τT
= FT,u for some u ∈ {0, . . . , τT − 1}, then B sets ξT,τT

= ξT,u;
otherwise, it sets ξT,τT

to a random string in {0, 1}∗ \ {ξT,0, . . . , ξT,τT−1}. Finally, B returns
ξT,τT

to A, adds (FT,τT
, ξT,τT

) to LT , and increments τT .

Oracle Oa(·): A inputs c in Z∗
p, followed by B setting F1,τ1 = (1/a + c). If F1,τ1 = F1,u for some

u ∈ {0, . . . , τ1 − 1}, then B sets ξ1,τ1 = ξ1,u; otherwise, it sets ξ1,τ1 to a random string in
{0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}. B sends ξ1,τ1 to A, adding (F1,τ1 , ξ1,τ1) to L1. Finally, B adds one
to τ1.

Eventually A pauses and outputs a value x ∈ Z∗
p and an arbitrary state string α. B sets

F1,τ1 = r, for a new variable r, sets ξ1,τ1 to a random string in {0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}, updates
L1, returns (ξ1,τ , α) to A, and increments τ1.

Next, B allows A to continue querying the above oracles. (Recall that at no time was A allowed
to query Oa on x.) Eventually, A stops and outputs a bit b′. This is A’s guess as to whether r is
1/(a + x) or an independent variable, although B has not yet decided this.

Notice that A cannot use the bilinear map to test his challenge value, because both elements
are in G1. Furthermore, notice that A cannot compute a representation in G1 corresponding to the

10



polynomial 1/(a+x), for a direct comparison, unless he queries the oracle for it, which is forbidden.
To see this, consider that A can only compute the polynomial P (a) = c0 + c1 · a +

∑
j

c2,j

a+xj
, for

j = 1 to n, which it wants to set to 1
a+x0

for some x0 6= xj for any j. By multiplying out the
denominators, we have

c0 ·
∏
j

(a + xj) + c1 · a ·
∏
j

(a + xj) + c2,i ·
∏
j 6=i

(a + xj) = 0.

The first two terms must be zero, i.e., c1 = 0 and c0 = 0, else the terms an+1 and an, respectively,
cannot be canceled. Viewing the remaining equation as a matrix with

∑
j = 1nc2,j = 1, we see

that if x0 6= xn, then it must be that c2,n = 0, and if x0 6= xn−1, then it must be that c2,n−1 = 0,
and so on until either x0 = x1 or the equation is not satisfiable.
B now flips a coin and sets r appropriately. Thus, A has exactly 1/2 chance of solving SDDHI,

provided that B’s simulation of this game works perfectly for any setting of r. We now evaluate
this simulation.

Analysis of B’s Simulation. At this point B chooses a random a∗ ∈ Z∗
p, and now sets a = a∗

and sets r = 1/(a∗+x) or sets r to be a random r∗ ∈ Z∗
p as determined by the prior coin flip. B now

tests (in equations 1, 2, 3, 4, 5, and 6) if its simulation was perfect; that is, if the instantiation of a
by a∗ or r by r∗ does not create any equality relation among the polynomials that was not revealed
by the random strings provided to A. Thus, A’s overall success is bounded by the probability that
any of the following holds:

F1,i(a∗, r∗)− F1,j(a∗, r∗) = 0, for some i, j such that F1,i 6= F1,j , (1)

F1,i(a∗,
1

a∗ + x
)− F1,j(a∗,

1
a∗ + x

) = 0, for some i, j such that F1,i 6= F1,j , (2)

F2,i(a∗, r∗)− F2,j(a∗, r∗) = 0, for some i, j such that F2,i 6= F2,j , (3)

F2,i(a∗,
1

a∗ + x
)− F2,j(a∗,

1
a∗ + x

) = 0, for some i, j such that F2,i 6= F2,j , (4)

FT,i(a∗, r∗)− FT,j(a∗, r∗) = 0, for some i, j such that FT,i 6= FT,j , (5)

FT,i(a∗,
1

a∗ + x
)− FT,j(a∗,

1
a∗ + x

) = 0, for some i, j such that FT,i 6= FT,j , (6)

Now we look at the degree of the resulting polynomials when these rational fractions are summed
and the denominators are multiplied out. Each polynomial F1,i, F2,i and FT,i has degree at most
τ1 + 1, 1 and τ1 + 1, respectively.

For fixed i and j, we satisfy equations 1 and 2 with probability ≤ (τ1 + 1)/p, equations 3 and 4
with probability ≤ 1/p, and equations 5 and 6 with probability ≤ (τ1 +1)/p. Now summing over all
(i, j) pairs in each case, we bound A’s overall success probability ε ≤

(
τ1
2

) (τ1+1)
p +

(
τ2
2

)
1
p +

(
τT
2

) (τ1+1)
p .

Since τ1 + τ2 + τT ≤ qG + 3, we end with ε ≤ (qG + 3)2(4qG + 6)/p = O(q3
G/p). 2

The following corollary is immediate.

Corollary 3.3 Any adversary that breaks the SDDHI assumption with constant probability 1/2 +
ε > 0 in generic groups of order p requires Ω( 3

√
εp) generic group operations.

11



4 A Periodic n-Times Anonymous Authentication Scheme

4.1 Intuition Behind our Construction

In a nutshell, the issuer and the user both have key pairs. Let the user’s keypair be (pkU , skU ), where
pkU = gskU and g is a generator of some group G of known order. Let fs be a pseudorandom function
whose range is the group G. During the Obtain protocol, the user obtains an e-token dispenser D
that allows her to show up to n tokens per time period. The dispenser D is comprised of seed s for
PRF fs, the user’s secret key skU , and the issuer’s signature on (s, skU ). We use CL signatures to
prevent the issuer from learning anything about s or skU . In the Show protocol, the user shows her
ith token in time period t: she releases TSN S = fs(0, t, i), a double-show tag E = pkU · fs(1, t, i)R

(for a random R supplied by the verifier), and runs a ZK proof protocol that (S, E) correspond to a
valid dispenser for time period t and 0 ≤ i < n (the user proves that S and E were properly formed
from values (s, skU ) signed by the issuer). Since fs is a PRF, and all the proof protocols are zero-
knowledge, it is computationally infeasible to link the resulting e-token to the user, the dispenser
D, or any other e-tokens corresponding to D. If a user shows n + 1 e-tokens during the same time
interval, then two of the e-tokens must use the same TSN. The issuer can easily detect the violation
and compute pkU from the two double-show tags, E = pkU · fs(1, t, i)R and E′ = pkU · fs(1, t, i)R′

.
From the equations above, fs(1, t, i) = (E/E′)(R−R′)−1

and pkU = E/fs(1, t, i)R.

4.2 Our Basic Construction

Let k be a security parameter and lq ∈ O(k), lx, ltime, and lcnt be system parameters such that
lq ≥ lx ≥ ltime + lcnt +2 and 2lcnt−1 > n, where n is the number of tokens we allow per time period.

In the following, we assume implicit conversion between binary strings and integers, e.g., be-
tween {0, 1}l and [0, 2l − 1]. Let F(g,s)(x) := fDY

g,s (x) := g1/(s+x) for x, s ∈ Zq
∗ and 〈g〉 = G being

of prime order q. For suitably defined ltime, lcnt, and lx define the function c : {0, 1}lx−ltime−lcnt ×
{0, 1}ltime × {0, 1}lcnt → {0, 1}lx as:

c(u, v, z) :=
(
u2ltime + v

)
2lcnt + z .

Issuer Key Generation: In IKeygen(1k, params), the issuer I generates two cyclic groups:

1. A group 〈g〉 = 〈h〉 = G of composite order p′q′ that can be realized by the multiplicative
group of quadratic residue modulo a special RSA modulus N = (2p′+1)(2q′+1). In addition
to CL signatures, this group will be needed for zero-knowledge proofs of knowledge used in
the sequel. Note that soundness of these proof systems is computational only and assumes
that the prover does not know the order of the group.

2. A group 〈g〉 = 〈g̃〉 = 〈h〉 = G of prime order q with 2lq−1 < q < 2lq .

The issuer must also prove in zero-knowledge that N is a special RSA modulus, and 〈g〉 = 〈h〉
are quadratic residues modulo N . In the random oracle model, one non-interactive proof may be
provided. In the plain model, the issuer must agree to interactively prove this to anyone upon
request.

Furthermore, the issuer generates a CL signature key pair (pk, sk) set in group G. The is-
suer’s public-key will contain (g,h,G, g, g̃, h, G, pk), while the secret-key will contain all of the
information.

12



User Key Generation: In UKeygen(1k, pkI), the user chooses a random skU ∈ Zq and sets
pkU = gskU ∈ G.

Get e-Token Dispenser: Obtain(U(pkI , skU , n), I(pkU , skI , n)). Assume that U and I have
mutually authenticated. A user U obtains an e-token dispenser from an issuer I as follows:

1. U and I agree on a commitment C to a random value s ∈ Zq as follows:

(a) U selects s′ at random from Zq and computes C ′ = PedCom(skU , s′; r) = gskU g̃s′hr.
(b) U sends C ′ to I and proves that it is constructed correctly.
(c) I sends a random r′ from Zq back to U .
(d) Both U and I compute C = C ′g̃r′ = PedCom(skU , s′ + r′; r). U computes s = s′ +

r′ mod q.

2. I and U execute the CL signing protocol on commitment C. Upon success, U obtains σ, the
issuer’s signature on (skU , s). This step can be efficiently realized using the CL protocols [17,
18] in such a way that I learns nothing about skU or s.

3. U initializes counters T := 1 (to track the current period) and J := 0 (to count the e-tokens
shown in the current time period). U stores the e-token dispenser D = (skU , s, σ, T, J).

Use an e-Token: Show(U(E, pkI , t, n),V(pkI , t, n)). Let t be the current time period identifier
with 0 < t < 2ltime . (We discuss how two parties might agree on t in Section 3.1.) A user U reveals
a single e-token from a dispenser D = (skU , s, σ, T, J) to a verifier V as follows:

1. U compares t with T . If t 6= T , then U sets T := t and J := 0. If J ≥ n, abort!
2. V sends to U a random R ∈ Z∗

q .
3. U sends to V a token serial number S and a double spending tag E computed as follows:

S = F(g,s)(c(0, T, J)), E = pkU · F(g,s)(c(1, T, J))R

4. U and V engage in a zero-knowledge proof of knowledge of values skU , s, σ, and J such that:

(a) 0 ≤ J < n,
(b) S = F(g,s)(c(0, t, J)),
(c) E = gskU · F(g,s)(c(1, t, J))R,
(d) VerifySig(pkI , (skU , s), σ)=true.

5. If the proof verifies, V stores (S, τ), with τ = (E,R), in his database. If he is not the only
verifier, he also submits this tuple to the database of previously shown e-tokens.

6. U increases counter J by one. If J ≥ n, the dispenser is empty. It will be refilled in the next
time period.

Technical Details. The proof in Step 4 is done as follows:

1. U generates the commitments CJ = gJhr1 , Cu = gskUhr2 , Cs = gshr3 , and sends them to V.
2. U proves that CJ is a commitment to a value in the interval [0, n − 1] using standard tech-

niques [23, 20, 9].
3. U proves knowledge of a CL signature from I for the values committed to by Cu and Cs in

that order. This step can be efficiently realized using the CL protocols [17, 18].

13



4. U as prover and V as verifier engage in the following proof of knowledge, using the notation
by Camenisch and Stadler [22]:

PK{(α, β, δ, γ1, γ2, γ3) : g = (Csg
c(0,t,0)CJ)αhγ1 ∧

S = gα ∧ g = (Csg
c(1,t,0)CJ)βhγ2 ∧

Cu = gδhγ3 ∧ E = gδ(gR)β} .

U proves she knows the values of the Greek letters; all other values are known to both parties.

Let us explain the last proof protocol. From the first step we know that CJ encodes some value
Ĵ with 0 ≤ Ĵ < n, i.e., CJ = gĴhr̂J for some r̂J . From the second step we know that Cs and Cu

encoded some value û and ŝ on which the prover U knows a CL signature by the issuer. Therefore,
Cs = gŝhr̂s and Cu = gûhr̂u for some r̂s and r̂u. Next, recall that by definition of c(·, ·, ·) the
term gc(0,t,0) corresponds to gt2lcnt . Now consider the first term g = (Csg

c(0,t,0)CJ)αhγ1 in the proof
protocol. We can now conclude the prover U knows values â and r̂ such that g = g(ŝ+t2lcnt+Ĵ)âhr̂

and S = gâ. From the first equation is follows that â = (ŝ + (t2lcnt + Ĵ))−1 (mod q) must hold
provided that U is not privy to logg h (as we show via a reduction in the proof of security) and
thus we have established that S = F(g,ŝ)(c(0, t, Ĵ)) is a valid serial number for the time period t.
Similarly one can derive that E = gû · F(g,ŝ)(c(1, t, Ĵ))R, i.e., that E is a valid double-spending tag
for time period t.

Identify Cheaters: Identify(pkI , S, (E,R), (E′, R′)). If the verifiers who accepted these tokens
were honest, then R 6= R′ with high probability, and proof of validity ensures that E = pkU ·
fs(1, T, J)R and E′ = pkU · fs(1, T, J)R′

. The violator’s public key can now be computed by first
solving for fs(1, T, J) = (E/E′)(R−R′)−1

and then computing pkU = E/fs(1, T, J)R.

Theorem 4.1 Protocols IKeygen, UKeygen, Obtain, Show, and Identify described above achieve
soundness, identification, and anonymity properties in the plain model assuming Strong RSA, and
y-DDHI if lx ∈ O(log k) or SDDHI otherwise.

Proof. Soundness. Informally, in our system, tokens are unforgeable, because each token serial
number (TSN) is a deterministic function F(g,s)(c(0, t, J)) of the seed s, the time period t, and
J ∈ [0, n − 1]. Thus, there are only n valid TSNs per time period, and since a user must provide
a ZK proof of validity for the token, to show n + 1 or more times requires that two shows use the
same TSN by the pigeonhole principle.

More formally, we will describe a knowledge extractor E that, after executing u Obtain protocols
with an adversary A acting on behalf of all malicious users, can output functions f1, . . . , fu that
allow to compute all possible token serial numbers that A could output in any given time period t.
Let n be the number of shows allowed per time period. Our extractor E operates as follows:

1. In step one of Obtain, E behaves as an honest issuer and agrees on a Pedersen commitment
C = gski g̃shr = PedCom(ski, s; r) with A, where ski is whatever secret key A choses to use
and s is the PRF seed.

2. In step two, E must run the CL signing protocol with A to provide A with a signature on
(ski, s). As part of the CL protocol, A is required to prove knowledge of (α, β, γ) such that C =
gαg̃βhγ . There are a number of ways to guarantee that this proof of knowledge is extractable;

14



in this step, E employs one of the methods of CL to extract the secrets (skU , s) from A. (Here
we will enforce that Obtain protocols must be run sequentially, so that rewinding does not
become a problem.)

3. E outputs the function fi as the description of the DY PRF (or whatever PRF is alternatively
used) together with the seed s.

Since E knows the value s used for every dispenser, it can calculate the token serial number S :=
F(g,s)(c(0, t, J)). The CL signatures and its protocols are secure under the Strong RSA assumption.

Identification of Violators. Suppose (S, E,R) and (S, E′, R′) are the result of two Show protocols
with an honest verifier(s). Since the verifier(s) was honest, it is the case that R 6= R′ with high
probability since an honest verifier chooses R ∈ Z∗

q at random. Due to the soundness of the ZK proof
of validity, it must be the case that E = pkU · F(g,s)(c(1, t, J))R and E′ = pkU · F(g,s)(c(1, t, J))R′

for the same values of s, t, J and pkU . Thus, the violator’s public key can be computed as follows:

( E1/R

E′1/R′

) RR′
R′−R =

( gskU/R · F(g,s)(c(1, t, J))
gskU/R′ · F(g,s)(c(1, t, J))

) RR′
R′−R =

(
gskU (1/R−1/R′)

) RR′
R′−R = gskU = pkU .

To be explicit with respect to our definition of this property, the value sU := pkU and the function
φ is the identity.

Anonymity. Informally, the intuition for anonymity is that the issuer does not learn the PRF seed
during Obtain. Then showing a token in Show consists of releasing (S, E), where S and E are
functions of the PRF (indistinguishable from random) and a zero-knowledge (ZK) proof that the
token is valid (reveals one bit). Thus, if a user is honest, nothing about her identity is revealed by
two random-looking numbers and a ZK proof.

More formally, will describe a simulator S which an adversary A cannot distinguish from an
honest user during the Show protocol. Recall that A, playing the role of a coalition of adversarial
issuer and verifiers, first runs the Obtain protocol u times with honest users, who then obtain a
dispenser D. Let the number of allowed shows per time period be n.

Now, at some point, A outputs a value j ∈ [1, u] and a time period t. A will now execute the
Show protocol with either the honest user U that holds the token dispenser Dj at time t or with
simulator S, whose input is only the global parameters params, t, n, and the issuer’s public key
pkI . To impersonate an unknown user, S behaves as follows:

1. In steps one and two of the Show protocol, S does nothing.

2. In step three, S sends to A random values (S, E) ∈ G2.

3. In step four, S simulates a proof of knowledge of (z, s, J, σ) for the statements:

(a) 0 ≤ J < n,
(b) S = F(g,s)(c(0, t, J)),
(c) E = gz · F(g,s)(c(1, t, J))R.
(d) VerifySig(pkI , (z, s), σ)=true.

15



Proving this statement, in the honest setting, follows the standard discrete-logarithm-based
Σ-protocol, as we detailed in Section 4. Thus, for this step, S can simulate this Σ-protocol in
the two standard ways: (1) rewind the adversary (interactive proof) or (2) use its control over
the random oracle (non-interactive proof). To prevent any rewinding difficulties, Show protocols
should be executed sequentially.

This simulator’s behavior is indistinguishable from a user with dispenser Dj . The ZK proof is
standard. The random values (S, E) are indistinguishable from the user’s real (S′, E′) due to the
security of the DY PRF F(·), which relies on y-DDHI (for small system parameters) and otherwise
SDDHI. Specifically, SDDHI is required for whenever parameter lx becomes superlogarithmic due
to a technicality in the original proof of security for the DY PRF. 2

4.3 Efficiency Discussion

To analyze the efficiency of our scheme, it is sufficient to consider the number of (multi-base)
exponentiations the parties have to do in G and G. In a decent implementation, a multi-base
exponentiation takes about the same time as a single-base exponentiation, provided that the number
of bases is small. For the analysis we assume that the Strong RSA based CL-signature scheme is
used.

Obtain: both the user and issuer perform 3 exponentiations in G. Show: the user performs 12
multi-base exponentiation in G and 23 multi-base exponentiations in G, while the verifier performs
7 multi-base exponentiation in G and 13 multi-base exponentiations in G. If n is odd, the user
only needs to do 12 exponentiations in G, while the verifier needs to do 7. To compare ourselves
to the Damg̊ard et al. [30] scheme, we set n = 1. In this case, Show requires that the user perform
12 multi-base exponentiation in G and 1 multi-base exponentiations in G and the verifier perform
7 multi-base exponentiation in G and 1 multi-base exponentiations in G. Damg̊ard et al. requires
57+68r exponentiations in G, where r is the security parameter (i.e., 2−r is the probability that
the user can cheat). Depending on the application, r should be at least 20 or even 60. Thus, our
scheme is an order of magnitude more efficient than Damg̊ard et al.

5 Glitch Protection Extension

In our periodic n-times anonymous authentication scheme, a user who shows two tokens with the
same TSN becomes identifiable. (Recall that only n unique TSN values are available to a user per
time period.) A user might accidentally use the same TSN twice because of hardware breakdowns,
clock desychronization, etc. We want to protect the anonymity of users who occasionally cause a
glitch (repeat a TSN in two different tokens), while still identifying users who cause an excessive
amount of glitches. A user might be permitted up to m glitches per monitoring interval (e.g., year).
Any TSN repetition will be detected, but the user’s anonymity will not be compromised until the
(m + 1)st glitch. A token that causes a glitch is called a clone.

Suppose a user has u glitches in one monitoring interval. Our goal is to design a scheme
where:

– if u = 0, all shows are anonymous and unlinkable;
– if 1 ≤ u ≤ m, all shows remain anonymous, but a link-id L is revealed, making all clones linkable;
– if u > m, the user’s public key is revealed.

16



One can think of link-id L as a pseudonym (per monitoring interval) that is hidden in each
token released by the same user (much in the same way that the user’s public key was hidden in
each token released by a user in the basic scheme). If tokens (S, τ) and (S, τ ′) caused a glitch, then
we call (S, τ, τ ′) a glitch tuple, where by definition τ 6= τ ′. We introduce a new function GetLinkId
that takes as input a glitch tuple and returns the link-id L. Once m + 1 clones are linked to the
same pseudoym L, there is enough information from these collective original and cloned transcripts
to compute the public key of the user.

We continue to use identifier t ∈ T for (indivisible) time periods. Identifier v ∈ V refers to
a monitoring interval. We give two glitch protection schemes: §5.1 considers disjoint monitoring
intervals, while §5.2 works on overlapping monitoring intervals. For the first scheme, we assume
the existence of an efficient function MV that maps every time period t to its unique monitoring
interval v ∈ V.

5.1 Basic Glitch Protection

Our basic glitch protection scheme tolerates up to m clones per monitoring interval v; monitoring
intervals are disjoint.

We informally define the protocols and security properties of a periodic authentication scheme
with glitch protection:

– ShowGP(U(D, pkI , t, n, m),V(pkI , t, n, m)). Shows an e-token from dispenser D in time period t
and monitoring interval v = MV(t). The verifier obtains a token serial number S and a transcript
τ .

– GetLinkId(pkI , S, τ, τ ′). Given e-tokens (S, τ, τ ′), where τ 6= τ ′ by definition, computes a link-id
value L.

– IdentifyGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+`+1)).

Given m + 1 glitch tuples where for each i, GetLinkId(Si, τi, τ ′i) produces the same link-id L,
computes a value sU that can be used to compute the public key of the owner of the dispenser
D from which the TSNs came.

We need to extend the anonymity and identification properties to handle the fact that honest users
might occasionally make clones. Users that never clone should have the same security guarantees
as they would in a basic anonymous authentication scheme without glitch protection: the result
of every show must be anonymous and unlinkable. However, the verifier should be able to link
clones together, but still be unable to identifier a user that has less than m glitches per monitoring
interval.

Defining the extended anonymity property is tricky because we have to let the adversary request
clones. We achieve this result by adding a fifth command to our environment: EnvClone(token).
The adversary controls which user shows it which e-token, what dispenser the user is supposed
to use, the value of the counter J in the dispenser, and the time-interval for which this e-token
was created. Therefore, this command gives it complete control over how and when users make
clones. A scheme offers glitch protection if the adversary cannot distinguish between real users and
a simulator, as long as it does not ask for too many clones (where too many is determined by the
type of glitch protection).

There is a slight problem with this definition. The simulator is supposed to return a clone that
is linked to some set of other clones generated by the same dispenser. The simulator can easily link

17



clones of the same e-token because they have the same serial number. However, by the definition
of anonymity, the simulator does not know what dispenser generated the e-token, nor what were
that dispenser’s other e-tokens.

Fortunately, the environment can keep track of this information. Therefore, the environment
will pass an extra argument linkid to the simulator whenever the adversary invokes EnvClone (we
make the environment do this rather than the adversary to ensure consistency). The linkid will
be a unique integer independent of the user’s id, dispenser, counter, etc. This linkid will let the
simulator link only those e-tokens that ought to be linked. If the adversary never asks for clones, the
anonymity property is the same as for n-times anonymous authentication without glitch protection.

Note: It’s easy to see that whenever the adversary asks for an e-token, via either the EnvShow
or EnvClone command, the environment can always consult its transcript of past communication
to calculate (U , j, J, t), where U is the identity of the user, Dj is the dispenser that generated the
e-token, J is the counter value Dj used, and t is the time-interval. Thus, we will assume that this
information is available to the environment without explicitly calculating it. The environment will
store a table clones that will count the number of clones of a particular type; it will use this table
to ensure the adversary does not try to create more clones than is allowed by the glitch protection
scheme. The environment will also have a table LinkIDs that will store the linkids it will pass to
the simulator.

Defining identification is also a little tricky because we need a way to link clones that were
generated by different values (j, J, t) and to identify users from these clones. We create a new
helper function GetLinkId(S, τ1, τ2) that outputs a value L that is the same for all clones made by
the a dispenser in the same time interval. In otherwords, if a single dispenser made e-tokens (S, τ1),
(S, τ2), (S′, τ ′1) and (S′, τ ′2), then GetLinkId(S, τ1, τ2) = GetLinkId(S′, τ ′1, τ

′
2). Using GetLinkId, we

can require that the function IdentifyGP return the public-key of the violator when it gets as input
a sufficiently long sequence of clones that are all linked (as defined by GetLinkId). It is upto the
designers of a glitch-protection scheme to instantiate GetLinkId and ensure that it does not clash
with the anonymity and glitch protection property.

We formally define the GP Anonymity property of an n-times anonymous authentication scheme
with basic glitch protection.

GP Anonymity. The adversary will interact with the environment. The environment will generate
a table clones that will count how many clones a dispenser j made in time interval v ∈ V and
a corresponding list LinkIDs, such that LinkIDs(j, v) is unique for every pair (j, v). The first
time the adversary invokes EnvShow(j, ∗, t) (it does not matter which verifier the adversary uses),
the environment will set clones(j, MV(t)) = 0. Whenever the adversary invokes EnvClone(etoken),
before fulfilling the request, the environment will check if clones(j, v) ≥ m. If yes, the environment
will output error. Otherwise the environment will fulfill the request and increment clones(j, v); if
it is using a simulator, the environment will give the simulator LinkIDs(j, v) as input.

We say that a scheme offers GP Anonymity if, in this game, no computationally bounded
adversary can tell if the environment is using real users or a simulator.

GP Identification. Suppose the issuer and verifiers are honest and they receive m + 1 glitch tuples
Input = (S1, τ1, τ

′
1), . . . , (Sm+1, τm+1, τ

′
m+1) with the same L = GetLinkId(pkI , Si, τi, τ

′
i) for all 1 ≤

i ≤ m + 1. Then with high probability algorithm IdentifyGP(pkI , Input) outputs a value sU for
which there exists an efficient function φ such that φ(sU ) = pkU , identifying the violator.

Intuition behind construction. Recall that in our basic scheme, an e-token has three logical

18



parts: a serial number S = F(s,g)(c(0, T, J)), a tag E = pkU ·F(s,g)(c(1, T, J))R, and a proof of valid-
ity. If the user shows a token with TSN S again, then he must reveal E′ = pkU ·F(s,g)(c(1, T, J))R′

,
where R 6= R′, and the verifier can solve for pkU from (E,E′, R, R′).

Now, in our glitch protection scheme, an e-token has four logical parts: a serial number S =
F(s,g)(c(0, T, J)), a tag K that exposes the link-id L if a glitch occurs, a tag E that exposes pkU if
more than m glitches occur, and a proof of validity.

We instantiate K = L · F(g,s)(c(2, T, J))R. Now a double-show reveals L just as it revealed pkU
in the original scheme. The link-id for monitoring interval v is L = F(s,g)(c(1, v, 0)).

Once the verifiers get m + 1 clones with the same link-id L, they need to recover pkU . To allow
this, the user includes tag E = pkU ·

∏m
i=1 F(g,s)(c(3, v, i))ρi · F(s,g)(c(4, T, J))R. (Here, it will be

critical for anonymity that the user and the verifier jointly choose the random values R, ρ1, . . . , ρm.)
Now, suppose a user causes m + 1 glitches involving ` distinct TSNs. Given (E,R, ρ1, . . . , ρm)

from each of these (m+`+1) tokens, the public key of the user can be computed by repeatedly using
the elimination technique that allowed the discovery of L from (K, K ′, R, R′). We have (m + ` + 1)
equations E and (m + ` + 1) unknown bases including pkU and the F(s,g)(.) values. Thus, solving
for pkU simply requires solving a system of linear equations.

Construction. ShowGP and IdentifyGP replace the corresponding Show and Identify algorithms of
the basic construction in §4.

ShowGP(U(D, pkI , t, n, m),V(pkI , t, n, m)). Let v = MV(t). A user U shows a single e-token from
a dispenser D = (skU , s, σ, T, J) to a verifier V as follows:

1. U compares t with T . If t > T , then U sets T := t and J := 0. If J ≥ n, abort!
2. V and U jointly choose R, ρ1, . . . , ρm uniformly at random from Z∗

q (see §5.3 for details).
3. U sends V an interval serial number S, a double spending tag K encoding the link-id L, and

a special (m + 1)-cloning tag E:

S = F(g,s)(c(0, T, J)),

K = F(g,s)(c(1, v, 0)) · F(g,s)(c(2, T, J))R,

E = pkU · F(g,s)(c(3, v, 1))ρ1 · · ·
F(g,s)(c(3, v,m))ρm · F(g,s)(c(4, T, J))R

4. U performs a zero-knowledge proof that the values above were correctly computed.
5. If the proof verifies, V stores (S, τ), where τ = (K, E,R, ρ1, . . . , ρm), in his database.
6. U increments counter J by one. If J ≥ n the dispenser is empty. It will be refilled in the next

time period.

GetLinkId(pkI , S, (K, E,R, ~ρ), (K ′, E′, R′, ~ρ′)). Returns

L =
K

(K/K ′)(R−R′)−1R
.

IdentifyGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1)). Let the m + 1 glitch tuples include ` distinct

TSN values. We extract the values (Ei, R, ρ1, . . . , ρm) (or (E′
i, R

′, ρ′1, . . . , ρ
′
m)) from all m + ` + 1

unique transcripts. Now, we use the intuition provided above to solve for pkU .

19



Theorem 5.1 The scheme described above is a secure periodic n-times anonymous authentication
scheme with basic glitch protection. It fulfills the soundness, GP anonymity and GP identification
properties.

Proof. Soundness: The soundness proof is identical to the soundness proof for the basic n-times
anonymous authentication scheme.

GP Anonymity: All we need to do to prove GP anonymity is to explain how the simulator will
respond to EnvSetup, EnvShow, and EnvClone.

To ensure consistency, the simulator will store a table Token of information about e-tokens it has
previously shown. It will also have a table Link indexed by link-ids provided by the environment.
Link(linkid) will be a random number; the simulator will ensure that when the adversary runs
GetLinkId on a double-show with link-id linkid, the output will always be Link(linkid).

During EnvShow, the simulator will run the Show protocol with the adversary. The simulator
will perform steps 1, 2 and 3 as normal; at the end of which it will have random (R, ρ1, . . . , ρm).
In step 4 The simulator will randomly choose (S, L̂, E) ∈ G3. In step five, S simulates a proof of
knowledge of (z, s, J, σ) for the statements:

(a) 0 ≤ J < n,
(b) S = F(g,s)(c(0, T, J))
(c) L̂ = F(g,s)(c(1, v, 0)) · F(g,s)(c(2, T, J))R

(d) E = pkU
ρ0 · F(g,s)(c(3, v, 1))ρ1 · · ·F(g,s)(c(3, v,m))ρm · F(g,s)(c(4, T, J))R

(e) VerifySig(pkI , (z, s), σ)=true.

Simulating such a proof is a standard operation; see the anonymity proof in §4.2 for details.
Call the e-token resulting from this execution etoken. The simulator will store Token(etoken) =
(S, R, L̂, F = φ). If the token is ever cloned with some link-id linkid, the simulator will retroactively
set F so that L̂ = Link(linkid) · FR.

When the adversary invokes EnvClone(etoken), the environment will give the simulator a linkid.
Then the adversary and the simulator will run through the Show protocol. The simulator will have
to produce an e-token that is a clone of etoken and that is linked to all other e-tokens with link-id
linkid.

Once again, the simulator will perform steps 1, 2 and 3 as normal; at the end of which it
will have random (R′, R′

1, . . . , R
′
m). In step 4, the simulator will perform the following operations:

first, it will retrieve Token(etoken) = (S, R, L̂, F ). If F = φ, then the simulator will calculate
F = (L̂/Link(linkid))1/R and update the entry Token(etoken) accordingly. Then, the simulator
will create a new e-token: S′ = S, L̂′ = Link(linkid)FR′

, and E′ will be a random number. In step
5, the simulator will simulate a proof of knowledge of (z, s, J, σ) for the statements:

(a) 0 ≤ J < n,
(b) S′ = F(g,s)(c(0, T, J))
(c) L̂′ = F(g,s)(c(1, v, 0)) · F(g,s)(c(2, T, J))R′

(d) E′ = pkU
R′

0 · F(g,s)(c(3, v, 1))R′
1 · · ·F(g,s)(c(3, v,m))R′

m · F(g,s)(c(4, T, J))R′

(e) VerifySig(pkI , (z, s), σ)=true.

It will do this in the same manner as for Show. After terminating, the simulator will store
Token(etoken′) = (S, R′, L̂′, F ).

20



We sketch out why the output of the simulator is indistinguishable from that of real users:
Until the adversary asks for a clone, an e-token is a completely random number. It is generated
in the same way as in the original proof of anonymity; therefore the output of the simulator is
indistinguishable from that of real users. When the adversary asks for a clone, the simulator
retroactively sets the link-id to be Link(linkid), where linkid is provided by the environment.
This ensures that the link-ids are consistent. The (m + 1)-cloning tags E are all random numbers;
this is fine because the adversary never gets m + 1 clones and therefore they should provide no
information.

GP Identification: By the soundness property, we know that the glitch-tuples given to the function
IdentifyGP(pkI , (S1, τ1, τ

′
1), . . . , (Sm+1, τm+1, τ

′
m+1)) are correctly formed. The only remaining ques-

tion is whether the (m + 1)-clone tags Eb
i contain enough information to solve for pkU .

Since the issuer never learns the seed of the PRF used to calculate the m + 1-clone tags Eb
i , as

far as it is concerned, each tag Eb
i is the product of m + 2 randomly chosen unknowns. One of the

unknowns is pkU , m of the unknowns are the same for every tag from that monitoring interval, and
one of the unknowns is unique to the cloned e-token. Therefore, if a user clones ` different e-tokens
(|{S1, . . . , Sm+1}| = `), then there are m + 1 + ` different unknowns among all the Eb

i . How many
distinct tags Eb

i are there? If there are ` different multi-shown e-tokens, then there are exactly
m + 1 + ` different tags Eb

i : there are ` distinct Ei and m + 1 distinct E′
i. With high probability,

a randomly generated system of m + 1 + ` equations with m + 1 + ` unknowns will have a unique
solution, in which case GP Identify will find it using Gaussian Elimination.

More specifically if we represent the y = m + ` + 1 equations as a y × y matrix, the success
probability PS corresponds to the probability that a random matrix of this size is invertible. The
first vector in your matrix is arbitrary, except that it should not be 0. So there are (qy−1) choices.
The second vector should be linearly independent of the first; i.e., it should not lie in a 1-dimensional
subspace. So there are (qy−q) choices. The third vector should not lie in a 2-dimensional subspace,
so there are (qy−q2) choices. Etc. So in general, there are (qy−1)·(qy−q) · · · (qy−q(y−1)) invertible
y × y matrices. To get the probability one divides this number by the total number of matrices,
that is q(y2). It is easy to see that

PS =
(qy − 1) · (qy − q) · · · (qy − q(y−1))

q(y2)
=

(
1− 1

qy

)
·
(

1− 1
qy−1

)
· · ·

(
1− 1

q

)
≥

(
1− 1

q

)
·
(

1− 1
q

)
· · ·

(
1− 1

q

)
=

(
1− 1

q

)y

=
y∑

i=0

(−1)(i mod 2) ·
(

y

i

)
· (1/q)y−i

= 1 +
y∑

i=1

(−1)(i mod 2) ·
(

y

i

)
· (1/q)y−i.

As q is exponential in the security parameter k, PS is bounded below by 1 − neg(k), with neg(k)
a negligible function in k. 2

21



5.2 Window Glitch Protection

The basic glitch protection scheme prevents users from creating more than m clones in a single
monitoring interval. If two neighboring time periods fall in different monitoring intervals, then a
malicious user can create m clones in each of them. We want to catch users who make more than
m clones within any W consecutive time periods.

We define an interval of consecutive time-periods to be a window. For convenience, we will
consider each time period identifier t to be an integer, and time periods t and t+1 to be neighbors.
Each time period is in W different windows of size W . If we let a time period define the end of a
window, then time period t would be in windows t, t + 1, . . . , t + W − 1.

(m,W )-Window glitch protection allows a user to clone at most m e-tokens during any window
of W consecutive time periods. We describe the new protocols associated with a window glitch
protection scheme:

– ShowWGP(U(D, pkI , t, n, m,W ),V(pkI , t, n, m,W )).
Shows an e-token from dispenser D for time period t. The verifier obtains a serial number S and
a transcript τ .

– GetLinkIds(pkI , S, τ, τ ′). Given two e-tokens (S, τ) and (S, τ ′), outputs a list of W link-ids
L1, . . . , LW .

– IdentifyWGP(pkI , (S1, τ1, τ
′
1), . . . , (Sm+1, τm+1, τ

′
m+1)).

Given m + 1 glitch tuples where for each i, the same link-id L is in the list of link-ids produced
by GetLinkId(Si, τi, τ ′i), computes a value sU that can be used to compute the public key of the
owner of the dispenser D from which the TSNs came.

We modify the GP Anonymity and GP Identification properties to apply to window glitch protec-
tion.

WGP Anonymity. The environment will keep a table clones that will count how many clones
every user made during every window of length W , and a table LinkIDs with a random unique
entry for each time interval i ∈ V. Each time the adversary invokes EnvClone, before fullfilling
the request, the environment will increment the values at clones(U , t), . . . , clones(U , t + w − 1). If
any of those result in a value greater than m, the environment will output error. Otherwise, the
environment will run the Show protocol; if it is using the simulator, the environment will give it
LinkIDs(t), . . . , LinkIds(t + w − 1) as input.

WGP Identification. Suppose the issuer and verifiers are honest. Should they receive a list
of m + 1 glitch tuples Input = (S1, τ1, τ

′
2), . . . , (Sm+1, τm+1, τ

′
m+1), such that ∃L : ∀i : L ∈

GetLinkIds(pkI , Si, τi, τ
′
i), then with high probability IdentifyWGP(pkI , Input) outputs a value sU

for which there exists an efficient function φ such that φ(sU ) = pkU , identifying the violator.

Construction. Intuitively, we replicate our basic glitch solution W times for overlapping windows
of W time periods.

ShowWGP(U(D, pkI , t, n, m,W ). We modify the ShowGP protocol as follows. In step 3, the user
and verifier jointly choose random numbers R1, . . . , RW and ρ1,1, . . . , ρW,m. In step 4, the user
calculates essentially the same values S, K,E, except that now she calculates separate Ki and Ei

22



tags for every window in which time period T falls:

S = F(s,g)(c(0, T, J))

Ki = F(s,g)(c(1, T + i, 0)) · F(s,g)(c(2, T, J))Ri

Ei = pkU · F(s,g)(c(3, T + i, 1))ρi,1 · · ·
F(s,g)(c(3, T + i,m)))ρi,m · F(s,g)(c(4, T, J))Ri

Finally, in step 5, the user proves to the verifier that the values S, K1, . . . ,KW , E1, . . . , EW are
formed correctly. That, along with the random numbers generated in step 3, forms the transcript
stored in steps 6. Step 7 is unchanged.

GetLinkIds(pkI , S, τ, τ ′). Returns the link-ids:

Li =
Ki

(Ki/K ′
i)

(Ri−R′
i)
−1Ri

, 1 ≤ i ≤ m + 1.

IdentifyWGP(pkI , (S1, τ1, τ
′
2), . . . , (Sm+1, τm+1, τ

′
m+1)). For all i, let L ∈ GetLinkIds(pkI , Si, τi, τ

′
i),

that is, let L be the link-id each glitch tuple has in common. Let these m+1 glitch tuples include `
distinct TSN values. We extract the values (Ei,j , Ri, ρi,1, . . . , ρi,m) (or (E′

i,j , R
′
i, ρ

′
i,1, . . . , ρ

′
i,m)) from

all m+`+1 unique transcripts, where j depends on where L falls in the list GetLinkIds(pkI , Si, τi, τ
′
i).

Now, we use the same techniques as before to solve for pkU .

Theorem 5.2 The scheme described above is a secure periodic n-times anonymous authentica-
tion scheme with window glitch protection. It fulfills the soundness, WGP anonymity and WGP
identification properties.

Proof. Soundness: The soundness proof is identical to the soundness proof for the basic n-times
anonymous authentication scheme.

WGP Anonymity: The WGP anonymity proof follows closely after the GP anonymity proof in
§5.1. Essentially, the only difference between basic glitch protection e-tokens and window glitch
protection e-tokens is that we now have L̂1, . . . , L̂W instead of just one L̂ and E1, . . . , EW instead of
just E. Therefore, step 4 in both showing and cloning will construct each L̂i and Ei using the same
techniques as for L̂ and E, and the simulated proof in step 5 will reflected the more complicated
construction. We give a sketch:

Once again, the simulator will store tables Token and Link (though entries in Token will be
longer because e-tokens contain more data). During EnvShow, the simulator will run the Show
protocol in essentially the same manner. The simulator will perform steps 1, 2 and 3 as normal;
at the end of which it will have random R1, . . . , RW , ρ1,1, . . . , ρW,m. In step 4 the simulator will
randomly choose (S, L̂1, . . . , L̂W , E1, . . . , EW ) ∈ G1+2W . In step five, the simulator will fake the
proof of knowledge of (z, s, J, σ) showing the e-token is formed correctly, using the technique as
§4.2. The simulator will. store Token(etoken) = (S, R1, . . . , RW , ρ1,1, . . . , ρW,m, L̂1, . . . , L̂W , F1 =
φ, . . . , FW = φ). If the token is ever cloned with some link-ids linkid1, . . . , linkidW , the simulator
will retroactively set all the Fi so that L̂i = Link(linkidi) · FRi

i .
The simulator also clones e-tokens in the same way as the simulator for GP anonymity. It

looks up the original e-token in Token(etoken). In step 4, the simulator uses linkidi to calculate
the value for Fi, and from that calculates the L̂i. Then it randomly chooses the Ei. In step 5 it

23



once again simulates a zero-knowledge proof of knowledge showing the e-token is correctly formed.
Finally, it stores the new e-token in Token(etoken′).

WGP Identification: Observe that IdentifyWGP is identical to IdentifyGP, once the appropriate
link-id L is chosen. If there are ` = |{S1, . . . , Sm+1}| different cloned e-tokens, then there are
m + 1 + ` distinct tags Eb

i,ji
and m + 1 + ` unknowns. Therefore, with high probability, the system

of equations can be solved via Gaussian Elimination to reveal pkU . 2

5.3 How To Jointly Choose Random Values

For the security of our schemes it is essential that the random values R and ρi, 0 ≤ i ≤ m for
basic glitch protection and Ri and ρi,j for window glitch protection are jointly chosen uniformly
at random from Z∗

q by U and V. The naive approach would be to use a coin flipping protocol for
all of these values. For instance U may choose x′

r← Z∗
q and sends a commitment gx′ to V , V

sends U a value x′′
r← Z∗

q and U opens the commitment by sending x′. Now both parties compute
x = x′ + x′′. The value x is jointly chosen. To save effort it is possible to negotiate only one value
and generate all other values either using a PRF F·(·) or a hash function H(·). Let Y (·) be either
Fx(·) or H(x||·). Then we generate R as Y (m + 1) and ρi as Y (i).

6 Additional Extensions

One advantage of our approach to periodic anonymous authentication is that its modular construc-
tion fits nicely with previous work [13, 16]. Thus, it is clear which parts of our system can be
modified to enable additional features.

6.1 Weak Exculpability

Recall that weak exculpability allows an honest verifier (or group of verifiers) to prove in a sound
fashion that the user with public key pkU reused some token. This convinces everyone in the system
that the user with pkU is untrustworthy.

To implement weak exculpability, we need to define algorithm VerifyViolator and to slightly
adapt the IKeygen, UKeygen, Show, and Identify algorithms. IKeygen′ now also runs Bilinear Setup,
and the parameters for the bilinear map e : G1 × G2 → GT are added to pkI . UKeygen′ selects a
random skU ∈ Z∗

q and outputs pkU = e(g1, g2)skU . In the Show′ protocol, the double-spending tag
is calculated as E = gskU

1 · F(g1,s)(c(1, T, J))R. Consequently the value sU , returned by Identify′,
is gskU

1 – which is secret information! Thus, the VerifyViolator algorithm is defined as follows:
VerifyViolator(pkI , pkU , sU ) accepts only if e(sU , g2) = e(gskU

1 , g2) = pkU . Intuitively, because gskU
1

is secret information, its release signals that this user misbehaved.
A subtle technical problem with this approach is that tag E is now set in a bilinear group G1,

where DDH may be easy, and we need to ensure that the DY PRF is still secure in this group.
Indeed, in groups where DDH is easy, the DY PRF is not secure. There are two solutions [13]: (1)
make the XDH assumption, i.e., DDH is hard in G1, and continue to use the DY PRF, or (2) make
the more general Sum-Free DDH assumption and use the CHL PRF [13], which works in groups
where (regular) DDH is easy.

24



Theorem 6.1 The above scheme provides weak exculpability under the Strong RSA, y-DDHI if
lx ∈ O(log k) or SDDHI, and either XDH or Sum-Free DDH assumptions.

6.2 Strong Exculpability

Recall that strong exculpability allows an honest verifier (or group of verifiers) to prove in a sound
fashion that the user with public key pkU reused an e-token with TSN S.

For strong exculpability, we need to define VerifyViolation and to adapt the Show and the Identify
algorithms. In Show′′, the ZK proof of validity is transformed into a non-interactive proof, denoted
Π, using the Fiat-Shamir heuristic [34]. The proof Π is added to the coin transcript, denoted
τ . And Identify′′(pkI , S, τ1, τ2) adds both transcripts τ1, and τ2 to its output sU . (The function
φ(sU ) = pkU ignores the extra information.)

Thus, the VerifyViolation algorithm is defined as follows: VerifyViolation(pkI , S, pkU , sU ) parses
τ1 = (E1, R1,Π1) and τ2 = (E2, R2,Π2) from sU . Then, it checks that φ(sU ) = pkU and that
Identify′′(pkI , S, τ0, τ2) = sU . Next, it verifies both non-interactive proofs Πi with respect to
(S, Ri, Ti). If all checks pass, it accepts; else, it rejects.

A subtlety here is that, for these proofs to be sound even when the issuer is malicious, the
group G′ that is needed as a parameter for zero-knowledge proofs here must be a system parameter
generated by a trusted third party, such that no one, including the issuer, knows the order of this
group. So in particular, G′ cannot be the same as G [21].

Theorem 6.2 The above scheme provides strong exculpability under the Strong RSA, and y-DDHI
if lx ∈ O(log k) or SDDHI assumptions in the random oracle model with trusted setup for the group
G′.

6.3 Tracing

We can extend our periodic n-times authentication scheme so that if a user reuses even one e-token,
all possible TSN values she could compute using any of her dispensers are now publicly computable.
We use the same IKeygen′, UKeygen′, Show′, and Identify′ algorithms as weak exculpability, slightly
modify the Obtain protocol, and define a new Trace algorithm.

In UKeygen′, the user’s keypair (e(g1, g2)skU , skU ) is of the correct form for the bilinear ElGamal
cryptosystem, where the value gskU

1 is sufficient for decryption. Now, in our modified Obtain′, the
user will provide the issuer with a verifiable encryption [12] of PRF seed s under her own public
key pkU . The issuer stores this tracing information in RU . When Identify′ exposes gskU

1 , the issuer
may run the following trace algorithm:

Trace(pkI , pkU , sU , RU , n). The issuer extracts gskU
1 from sU , and verifies this value against pkU ; it

aborts on failure. The issuer uses gskU
1 to decrypt all values in RU belonging to that user, and

recovers the PRF seeds for all of the user’s dispensers. For seed s and time t, all TSNs can be
computed as fs(t, j) = F(e(g1,g2),s)(c(0, t, j)), for all 0 ≤ j < n.

Theorem 6.3 The above scheme provides tracing of violators under the Strong RSA, y-DDHI if
lx ∈ O(log k) or SDDHI, and either XDH or Sum-Free DDH assumptions.

25



6.4 Dynamic Revocation

Implementing dynamic revocation requires modifying the Obtain and Show protocols in the basic
scheme, and defining a new Revoke algorithm.

The mechanisms introduced in [16] can be used for revoking CL signatures. In an adjusted CL
protocol for obtaining a signature on a committed value, the user obtains an additional witness
w = ve−1

, where v is the revocation public key and e is a unique prime which is part of the CL
signature σ. In the CL protocol for proving knowledge of a signature, the user also proves knowledge
of this witness. Violators with prime ẽ can be excluded by updating the revocation public key v,
such that v′ = vẽ−1

, and publishing ẽ. While all non-excluded users can update their witness by
computing function f(e, ẽ,v′,w) = w′, without knowing the order of G, this update does not work
when e = ẽ.

Thus, our e-token dispensers can be revoked by revoking their CL signature σ. Obtain′′′ is
adapted to provide users with a witness w and to store the corresponding e as rD. Show′′′ is
adapted to update and prove knowledge of the witness. The Revoke(pkI , rD) algorithm is defined
as follows: Compute v′ = vrD

−1
and publish it together with update information rD. Additional

details are in [16].

Theorem 6.4 The above scheme provides dynamic revocation under the Strong RSA, and y-DDHI
if lx ∈ O(log k) or SDDHI assumptions.

7 Acknowledgments

Part of Jan Camenisch’s work reported in this paper is supported by the European Commission
through the IST Programme under Contracts IST-2002-507932 ECRYPT and IST-2002-507591
PRIME. The PRIME projects receives research funding from the European Community’s Sixth
Framework Programme and the Swiss Federal Office for Education and Science. Part of Susan
Hohenberger’s work is supported by an NDSEG Fellowship. Markulf Kohlweiss is supported by the
European Commission through the IST Programme under Contract IST-2002-507591 PRIME and
partially by IWT SBO ADAPID. Anna Lysyanskaya is supported by NSF Grant CNS-0347661.
Mira Meyerovich is supported by a U.S. Department of Homeland Security Fellowship and NSF
Grant CNS-0347661. All opinions expressed in this

paper are the authors’ and do not necessarily reflect the policies and views of EC, DHS, and
NSF.

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant
group signature scheme. In M. Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, p. 255–270, 2000.

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption Schemes with
Applications to Secure Distributed Storage. In NDSS, p. 29–43, 2005.

[3] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In Fifth Conference on Security and
Cryptography for Networks (SCN 2006), volume 4116 of Lecture Notes in Computer Science. Springer,
2006.

26



[4] L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-Resistant Storage. Johns Hop-
kins University, CS Technical Report # TR-SP-BGMM-050705. http://spar.isi.jhu.edu/∼mgreen/
correlation.pdf, 2005.

[5] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees.
In EUROCRYPT ’97, volume 1233, p. 480–494, 1997.

[6] D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT 2004, volume
3027 of LNCS, p. 56–73, 2004.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group signatures using strong Diffie-Hellman. In CRYPTO,
volume 3152 of LNCS, p. 41–55, 2004.

[8] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, p. 213–229, 2001.

[9] F. Boudot. Efficient proofs that a committed number lies in an interval. In EUROCRYPT ’00, volume
1807 of LNCS, p. 431–444, 2000.

[10] S. Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building in Privacy. PhD
thesis, Eindhoven Inst. of Tech. The Netherlands, 1999.

[11] E. Brickell, P. Gemmel, and D. Kravitz. Trustee-based tracing extensions to anonymous cash and the
making of anonymous change. In SIAM, p. 457–466, 1995.

[12] J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their applications to group
signatures and signature sharing schemes. In T. Okamoto, editor, ASIACRYPT ’00, volume 1976 of
LNCS, p. 331–345, 2000.

[13] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. In EUROCRYPT, volume 3494
of LNCS, p. 302–321, 2005.

[14] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Balancing accountability and privacy using e-cash.
In SCN (to appear), 2006.

[15] J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-show credential system
with optional anonymity revocation. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, p. 93–118. Springer Verlag, 2001.

[16] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, p. 61–76. Springer
Verlag, 2002.

[17] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In SCN 2002, volume
2576 of LNCS, p. 268–289, 2002.

[18] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps.
In CRYPTO 2004, volume 3152 of LNCS, p. 56–72, 2004.

[19] J. Camenisch, U. Maurer, and M. Stadler. Digital payment systems with passive anonymity-revoking
trustees. In E. Bertino, H. Kurth, G. Martella, and E. Montolivo, editors, Computer Security —
ESORICS 96, volume 1146 of LNCS, p. 33–43. Springer Verlag, 1996.

[20] J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is the product of two safe
primes. In EUROCRYPT ’99, volume 1592, p. 107–122, 1999.

[21] J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes. In
CRYPTO ’99, volume 1666 of LNCS, p. 413–430, 1999.

[22] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B. Kaliski, editor,
CRYPTO ’97, volume 1296 of LNCS, p. 410–424. Springer Verlag, 1997.

[23] A. Chan, Y. Frankel, and Y. Tsiounis. Easy come – easy go divisible cash. In EUROCRYPT ’98,
volume 1403 of LNCS, p. 561–575, 1998.

27



[24] D. Chaum. Blind signatures for untraceable payments. In CRYPTO ’82, p. 199–203. Plenum Press,
1982.

[25] D. Chaum. Blind signature systems. In CRYPTO ’83, p. 153–156. Plenum, 1983.

[26] D. Chaum. Security without identification: Transaction systems to make big brother obsolete. Com-
munications of the ACM, 28(10):1030–1044, Oct. 1985.

[27] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO ’90, volume 403 of LNCS,
p. 319–327, 1990.

[28] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, EUROCRYPT ’91, volume
547 of LNCS, p. 257–265. Springer-Verlag, 1991.

[29] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in public databases. In
J. Kilian, editor, Second Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer
Science, p. 363–385. Springer, 2005.

[30] I. Damgard, K. Dupont, and M. O. Pedersen. Unclonable group identification. Cryptology ePrint
Archive, Report 2005/170, 2005. http://eprint.iacr.org/2005/170.

[31] I. B. Damg̊ard. Payment systems and credential mechanism with provable security against abuse by
individuals. In S. Goldwasser, editor, CRYPTO ’88, volume 403 of LNCS, p. 328–335. Springer Verlag,
1990.

[32] Y. Dodis. Efficient construction of (distributed) verifiable random functions. In Public Key Cryptogra-
phy, volume 2567 of LNCS, p. 1–17, 2003.

[33] Y. Dodis and A. Yampolskiy. A Verifiable Random Function with Short Proofs an Keys. In Public Key
Cryptography, volume 3386 of LNCS, p. 416–431, 2005.

[34] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, volume 263 of LNCS, p. 186–194, 1986.

[35] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations.
In CRYPTO ’97, volume 1294 of LNCS, p. 16–30, 1997.

[36] S. D. Galbraith. Supersingular curves in cryptography. In C. Boyd, editor, ASIACRYPT, volume 2248
of LNCS, p. 495–513, 2001.

[37] S. Jarecki and V. Shmatikov. Handcuffing big brother: an abuse-resilient transaction escrow scheme.
In EUROCRYPT, volume 3027 of LNCS, p. 590–608, 2004.

[38] A. Kiayias, M. Yung, and Y. Tsiounis. Traceable signatures. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, p. 571–589. Springer, 2004.

[39] A. Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocol Design. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, Sept. 2002.

[40] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys and C. Adams,
editors, Selected Areas in Cryptography, volume 1758 of LNCS, 1999.

[41] N. McCullagh and P. S. L. M. Barreto. A new two-party identity-based authenticated key agreement.
In CT-RSA, volume 3376 of LNCS, p. 262–274, 2004.

[42] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes,
55:165–172, 1994.

[43] L. Nguyen and R. Safavi-Naini. Dynamic k-times anonymous authentication. In ACNS 2005, number
3531 in LNCS, p. 318–333. Springer Verlag, 2005.

[44] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO
’92, volume 576 of LNCS, p. 129–140, 1992.

28



[45] M. Scott. Authenticated ID-based key exchange and remote log-in with simple token and PIN number.
Available at http://eprint.iacr.org/2002/164, 2002.

[46] V. Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT, LNCS, p.
256–266, 1997. Update: http://www.shoup.net/papers/.

[47] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

[48] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication (extended abstract). In
Asiacrypt 2004, volume 3329 of LNCS, p. 308–322. Springer Verlag, 2004.

[49] I. Teranishi and K. Sako. -times anonymous authentication with a constant proving cost. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography, volume 3958 of Lecture Notes
in Computer Science, p. 525–542. Springer, 2006.

29


