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Abstract

Two settings are typically considered for secure multiparty computation, depending on
whether or not a majority of the parties are assumed to be honest. Protocols designed un-
der this assumption provide “full security” (and, in particular, guarantee output delivery and
fairness) when this assumption is correct; however, if half or more of the parties are dishonest
then security is completely compromised. On the other hand, protocols tolerating arbitrarily-
many faults do not provide fairness or guaranteed output delivery even if only a single party is
dishonest. It is natural to wonder whether it is possible to achieve the “best of both worlds”;
namely, a single protocol that simultaneously achieves the best possible security in both the
above settings. Ishai, et al. (Crypto 2006) recently addressed this question, and ruled out
constant-round protocols of this type.

As our main result, we completely settle the question by ruling out protocols using any
(expected) polynomial number of rounds. Given this stark negative result, we then ask what
can be achieved if we are willing to assume simultaneous message transmission (or, equivalently,
a non-rushing adversary). In this setting, we show that impossibility still holds for logarithmic-
round protocols. We also show, for any polynomial p, a protocol (whose round complexity
depends on p) that can be simulated to within closeness O(1/p).
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1 Introduction

Protocols for secure multiparty computation (MPC) [26, 16, 4, 7] allow a set of parties to compute
an arbitrary function of their inputs while preserving (to the extent possible) the privacy of the
parties’ inputs as well as the (global) correctness of their outputs. Formally, security of such
protocols is defined by requiring that a real execution of a protocol be indistinguishable from an
ideal execution in which the parties hand their inputs to a trusted party who computes the function
and returns the outputs to the appropriate parties. Thus, whatever security is implied by the ideal
model must also be guaranteed in a real-world execution of the protocol.

Existing work on secure MPC, for the most part, can be divided neatly into the study of two,
very different settings (here and in the rest of the paper, we assume the existence of a broadcast
channel or a trusted preprocessing phase sufficient for implementing broadcast): the case when
a majority of the parties are honest, and the case when an arbitrary number of parties may be
malicious. These settings differ not only in the approaches that are used to construct secure
protocols, but also in the results that can be achieved. In further detail:

• In the presence of an honest majority, MPC protocols achieving so-called full security are
possible [4, 7, 24, 1]. Roughly speaking, “full security” means that such protocols guarantee
not only privacy and correctness but also fairness (i.e., if one party receives its output then
all parties do) and output delivery (i.e., honest parties will receive their outputs).

• If half or more of the players are malicious (with the 2-party setting as a special case), then
it is impossible [8] to construct protocols achieving full security in the sense described above.
Specifically, while privacy and correctness are still attainable, it is impossible (in general) to
guarantee fairness or output delivery. The relaxed notion of security that can be obtained
in this setting is sometimes called security with abort, and protocols realizing this notion
are known for any number of corrupted parties [26, 16, 2, 17, 18] assuming the existence of
enhanced trapdoor permutations.

An unfortunate drawback of existing protocols for each of the above settings is that they do not
provide any security beyond what is implied by the definitions. Specifically, protocols designed for
the case of honest majority are completely insecure once half (or more) of the parties are corrupted:
e.g., honest parties’ inputs are entirely revealed, and even correctness can be violated. On the other
hand, protocols that achieve security with abort for an arbitrary number of corruptions in fact do
not guarantee fairness or output delivery even if only a single party is corrupted.

To get a sense for the magnitude and importance of the problem, consider trying to decide
which type of protocol is more appropriate to implement secure voting. Since we would like privacy
of individuals’ votes (and, perhaps even more so, correctness1) to hold regardless of the number
of corruptions, we are forced to use a protocol of the second type that provides only security with
abort. But then a single corrupted machine (in fact, even one which simply fails in the middle of
the election) can perform a denial-of-service attack that prevents all honest parties from learning
the outcome. Neither option is very appealing.

In light of the above, a natural question is the following:

To what extent can we design a single protocol achieving the “best of both worlds” re-
gardless of the number of corruptions; i.e., a protocol that simultaneously guarantees full
security in case a majority of the parties are honest, and security with abort otherwise?

1Although one might be tempted to think that correctness is not important in an election once a majority are
dishonest, this is not so: we still want all honest parties to agree on the outcome, and the malicious half should not
be able to manipulate the outcome so that it appears unanimous, for example.
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The current lack of an answer to the above question represents a serious gap in our state of
knowledge about stand-alone secure computation, and is one of the few remaining open questions
regarding feasibility (rather than efficiency) in this domain.

Ishai, et al. [19] recently addressed the above question, and showed a number of positive and
negative results. Most relevant here is their result ruling out constant-round protocols achieving
the best of both worlds. (They also show the impossibility of realizing reactive functionalities in
any number of rounds. In this work, we consider standard, non-reactive functionalities only.) Their
work left open the possibility that protocols with polynomially-many rounds (using, e.g., some
variant of the ideas of [21, 2, 9, 17]) might still give a positive answer to the above question.

1.1 Our Results

As our main contribution, we settle the above question by showing that there exist functionalities
for which no polynomial-round (or even expected polynomial-round) protocol can achieve the best
of both worlds. Actually, our result is even stronger: we show a functionality for which any protocol
that is fully-secure for a fail-stop adversary in the presence of an honest majority does not even
achieve privacy2 in the presence of a fail-stop adversary corrupting half or more of the players.
Our result generalizes to show that any protocol with full security when t parties (out of a total
of n parties) are corrupted cannot be private when n− t parties are corrupted; “corrupted” can be
taken to mean “fail-stop” in each case.

This (somewhat unexpected) negative result is unfortunate, as it leaves protocol designers in a
state of uncertainty about which type of security to aim for in a scenario when it is unclear what
to assume about the number of corrupted players. (Think again of the voting example mentioned
earlier.) An important question thus becomes:

What weaker (yet meaningful) security guarantees can be achieved for our problem?

Ishai, et al. [19] have shown two answers to this question:

1. They construct a protocol guaranteeing full security in the presence of an arbitrarily-malicious
minority, as well as for any number of semi-honest (i.e., honest-but-curious) adversaries.3

2. A variant of the above protocol achieves full security in the presence of a malicious minority;
furthermore, the actions of an arbitrary number of malicious players can be simulated by an
ideal-world adversary who is allowed to invoke the functionality multiple times.

Here, we explore a different relaxation: we ask what can be attained if simultaneous message
delivery is assumed. This is equivalent to considering a non-rushing adversary, and indeed our
impossibility result mentioned earlier holds only for the case of a rushing adversary. In some sense,
it is quite natural to consider simultaneous message delivery since other impossibility results (e.g.,
the impossibility of fair coin tossing without an honest majority [8]) can be overcome in this model.
On the other hand, as we will see, this assumption does not trivialize things, either.

In the simultaneous-message model, we show additional negative and positive results. On the
negative side, we show that obtaining the “best of both worlds” is still impossible for logarithmic-
round protocols. This improves on the work of Ishai, et al. [19] whose impossibility result for
constant-round protocols, mentioned earlier, holds even for non-rushing adversaries. On the positive

2We formally define what is meant by this term in Section 2.
3A semi-honest adversary acts honestly, but tries to learn additional information from the execution of the protocol.

Full security is possible here (for an arbitrary number of faults) because a semi-honest adversary never aborts.
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side, we show that for any polynomial p it is possible to construct a protocol (with polynomial round
complexity depending on p) that is fully secure against a malicious minority and also “O(1/p)-secure
with abort” for any number of malicious adversaries. Roughly speaking, this latter notion means
that the actions of any ppt adversary in the real world can be simulated by a ppt adversary in
the ideal world such that the distributions of the resulting outcomes cannot be distinguished with
probability better than O(1/p). (The protocol provides additional security guarantees as well; see
Section 5 for further discussion.)

1.2 Future Directions

Our work resolves the main question in this area, in that it demonstrates the impossibility of
attaining the “best of both worlds” as originally hoped. Nevertheless, it is important to determine
what can be achieved, and the following questions are left open by our work:

• Do there exist protocols in the simultaneous-message model that attain the “best of both
worlds”?

• Is O(1/p)-security with abort possible even in the presence of a rushing adversary?

We conjecture that the answer to the latter two questions is “no” for general functionalities, but
possibly “yes” for finite functionalities (i.e., functions whose domain and range do not grow with
the security parameter).4 In any case, It is clear that more work is needed and we hope this paper
provides further impetus for such research.

1.3 Comparison to Related Work

We briefly discuss some work that is related to our own, stressing the differences between the goals
being considered as well as the results achieved.

MPC with varying thresholds. Other works [11, 12, 13] have also studied protocols with dif-
ferent security guarantees depending on the number of corrupted parties. Although the motivation
is related, we differ in particular from these works in that they always assume an honest majority.

Fair MPC. Our results neither imply, nor are they implied by, existing results ruling out fairness in
the case of no honest majority [8]. Our positive result in the simultaneous-message model is related
to existing work aimed at achieving various partial notions of fairness [21, 2, 9, 17]; however, to
the best of our knowledge none of the prior work in this direction has suggested a simulation-based
definition of exactly what sort of fairness is achieved (see [15, Section 7.7.1] for a comment to this
effect), nor do existing techniques appear to satisfy the definition of O(1/p)-security we use here.

Related to the above is work on gradual release [10, 5, 23, 14] that, informally, guarantees the
following: if the adversary aborts early, then both the adversary and the honest players can obtain
their outputs by investing a “similar” amount of work. This approach deviates from “standard”
notions of protocol design in that there is no a priori polynomial bound on the running time of
honest parties. In this work, we assume the traditional requirement that the running time of honest
parties is bounded (at least in expectation) by some fixed polynomial in the security parameter.

2 Security Definitions

We use the standard definitions of security for multiparty computation; see, e.g., [15]. For conve-
nience, we provide a brief review of these definitions here. We also define the less-standard notion

4We remark, however, that both impossibility results in this paper apply even to finite functionalities.
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of privacy, following [19].

Computational indistinguishability. A distribution ensemble X = {X(k, a)}k∈
�
,a∈{0,1}∗ is an

infinite sequence of probability distributions indexed by k and a. Two distribution ensembles X,Y

are computationally indistinguishable, denoted X
c
≡ Y , if there exists a negligible function ε such

that for every polynomial-time algorithm D and all a we have

∣
∣
∣ Pr[D(1k, a,X(k, a)) = 1]− Pr[D(1k, a, Y (k, a)) = 1]

∣
∣
∣ ≤ ε(k).

The real model. We assume the standard communication model where n parties communicate
in synchronous rounds using pairwise private and authenticated channels. We also assume that
these parties have access to a broadcast channel; since a broadcast channel can be realized using
a PKI and digital signatures for any number of corrupted parties, this assumption is inessential to
our results. We will consider both rushing adversaries (who may delay sending messages on behalf
of corrupted parties in a given round until the messages sent by all honest parties in that round
have been received) as well as non-rushing adversaries (who must decide on what messages to send
in a given round independent of the messages sent by honest parties in that same round). For
simplicity, we assume a static adversary who may only corrupt parties in advance of the protocol
execution; this strengthens our negative results and seems inessential for our positive result.

Malicious adversarial parties may deviate in an arbitrary manner from the protocol specification,
while semi-honest adversaries are assumed to follow the protocol faithfully. Intermediate between
these two are fail-stop adversaries, who are assumed to follow the protocol as specified except that
they may abort (and refuse to send any more messages) at any time, depending on their view.

At the beginning of a real execution of a protocol, each party Pi holds the security parameter 1k

and its input xi. We let f denote a poly-time computable, randomized function that maps players’

inputs ~x
def
= (x1, . . . , xn) to a vector of outputs (y1, . . . , yn), where yi denotes the output intended

for Pi. We deal only with standard, non-reactive functionalities here.
The adversary A takes as input 1k, the set I ⊂ [n] of corrupted parties, the inputs of the

corrupted parties, and an auxiliary input z. The interaction of A with a protocol π defines a
random variable realπ,A,I(k, ~x, z) whose value is determined by the coin tosses of the adversary
and the honest players. This random variable contains the output of the adversary (which may
be an arbitrary function of its view) as well as the outputs of the uncorrupted parties. We let
realπ,A,I denote the distribution ensemble {realπ,A,I(k, ~x, z)}

k∈
�
,〈~x,z〉∈{0,1}∗ .

The ideal model — full security. Here the parties interact with a trusted party implementing f .
Each honest party Pi holds an input xi as before; the adversary A′ is again given 1k, the set I of
corrupted parties, the inputs of all the corrupted parties, and an auxiliary input z. Each honest
party Pi sets x′

i = xi and sends x′
i to the trusted party; each corrupted party Pj sends an arbitrary

input x′
j to the trusted party as directed by A′. In case some corrupted party Pj does not send

an input, x′
j is set to a default value. The trusted party computes (y1, . . . , yn) ← f(x′

1, . . . , x
′
n),

choosing a uniformly random tape for f in case it is randomized, and sends yi to party Pi.
The interaction of A′ with the trusted party defines a random variable idealf,A′,I(k, ~x, z) whose

value is determined by the random coins of the adversary and those used by the trusted party in
evaluating f . This random variable contains the output of A′ (which may be an arbitrary function
of its view) as well as the outputs of the uncorrupted parties. We let idealf,A′,I denote the
distribution ensemble

{
idealf,A′,I(k, ~x, z)

}

k∈
�
,〈~x,z〉∈{0,1}∗

.
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The ideal model — security with abort.5 As in the previous case, parties again interact with
a trusted party implementing f . Parties send inputs x′

1, . . . , x
′
n to this trusted party, who then

computes (y1, . . . , yn) ← f(x′
1, . . . , x

′
n) as before. Now, however, output delivery occurs in two

phases. First, the trusted party sends to A′ the outputs {yi}i∈I . The adversary can then decide
whether to abort the trusted party, or whether to allow it to continue. In the former case, the
trusted party sends the special symbol ⊥ to all honest parties as their output, where ⊥ is assumed
not to lie in the range of f . In the latter case, the trusted party sends the correct output yi to each
honest party Pi.

The interaction of A′ with the trusted party defines a random variable idealf⊥,A′,I(k, ~x, z) as
above, and we let idealf⊥,A′,I denote the distribution ensemble

{
idealf⊥,A′,I(k, ~x, z)

}

k∈
�
,〈~x,z〉∈{0,1}∗

.

(The subscript “⊥” indicates that the adversary can abort computation of f .)

Security definitions. We may now define what it means for a protocol to be secure.

Definition 1 Let f be an n-party randomized functionality, and π be an n-party protocol. Then
π t-securely computes f if for any ppt adversary A there exists a ppt adversary A ′ such that for
any I ⊂ [n] with |I| ≤ t:

realπ,A,I
c
≡ idealf,A′,I .

Similarly, π t-securely computes f with abort if for any ppt adversary A there exists a ppt adversary
A′ such that for any I ⊂ [n] with |I| ≤ t:

realπ,A,I
c
≡ idealf⊥,A′,I .

As in [19], we define also a notion of privacy for malicious adversaries. Informally, privacy
implies that an adversary does not learn anything about the inputs of the honest parties that is
not implied by its own inputs and outputs (as could be obtained by interacting with a trusted
party implementing f). Let OutputA (realπ,A,I(k, ~x, z)) denote the output of the adversary A
in the indicated random variable, and let OutputA′

(
idealf,A′,I(k, ~x, z)

)
correspondingly denote

the output of A′. We denote by Outputπ,A,I (resp., Outputf,A′,I) the corresponding distribution
ensembles in the natural way. (We remark that since we only consider the output of A ′ in the
second case, it does not matter whether we are in the ideal world allowing abort or not.)

Definition 2 Let f be an n-party randomized functionality, and π be an n-party protocol. Then π
t-privately computes f in the presence of malicious adversaries if for any ppt adversary A there exists
a ppt adversary A′ such that for any I ⊂ [n] with |I| ≤ t:

Outputπ,A,I

c
≡ Outputf,A′,I .

We stress that considering privacy alone yields a relatively weak notion of security which has many
shortcomings (see discussion in [19]); however, we use it only in the context of proving impossibility.

3 Main Impossibility Result

We now show our main result, which rules out any protocol achieving the “best of both worlds”:

5Alternative approaches to defining the ideal model in this case exist [18], though the differences are unimportant
for our work once we assume a broadcast channel.
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Theorem 1 Let n, t, s be such that t + s = n and t ≥ 1. Then there exists a finite, deterministic
functionality f̃ for which there is no polynomial-round protocol π that simultaneously t-securely
computes f̃ (for rushing adversaries) and s-privately computes f̃ in the presence of malicious,
rushing adversaries. This holds even if we consider only fail-stop adversaries in each case.

The theorem is tight: as discussed in [19], if t + s < n (and t < n/2) then for any poly-time
functionality f there exists (under reasonable cryptographic assumptions) a protocol π that t-
securely computes f and s-securely computes f with abort. Note also that the theorem is only
interesting when t < n/2, otherwise we already know that there exist functionalities that cannot
be t-securely computed (i.e., without allowing abort).

We prove the theorem in two steps: we first present a finite, deterministic functionality f
for which any protocol π that t-securely computes f does not s-securely compute f with abort.
Extending this counterexample, we then give a (slightly different) functionality f̃ and show that
any protocol π that t-securely computes f̃ does not even s-privately compute f̃ .

3.1 Ruling out Security with Abort

Fix n, s, and 1 ≤ t < n/2 as in the theorem (as mentioned, the theorem is already known to hold
if t ≥ n/2). Define f as follows: players P1 and Pn each provide a bit b1 and bn, respectively, as
input, and each receive as output b1 ⊕ bn (no other players receive output). Let π be any protocol
that t-securely computes f for fail-stop adversaries. We assume that π operates in a fixed number
of segments, each exactly n rounds long, where party Pi, and this party only, sends a message in
the ith round of a segment (i.e., in a given segment first P1 speaks, then P2, etc. until Pn speaks
and then the next segment begins). If π is secure against a rushing adversary, then it can always be
transformed, albeit by increasing the round complexity, so that it has this form. (We remark also
that the assumption that only one party speaks in any given round is not essential for our proof,
but merely serves to simplify things conceptually.) Let r = r(k) denote the number of segments of
the protocol. We assume that if π is run (honestly) to completion, then the outputs of P1 and Pn

are correct (and, in particular, agree) with probability6 at least 7/8.

Define A
def
= {P1, . . . , Pt}, B

def
= {Pt+1, . . . , Pn−t}, and C

def
= {Pn−t+1, . . . , Pn}. Consider the

experiment in which P1 and Pn choose their inputs uniformly at random and then run the protocol
honestly, except for (possibly) aborting at some round. All other parties in A and C run the
protocol honestly except that they, too, may possibly abort. Parties in B run the protocol honestly
and never abort. Let vi

1, with 1 ≤ i ≤ r, denote the final output of P1 when parties in C all
simultaneously abort in segment i + 1 (i.e., segment i is the last segment in which parties in C
send any messages). Extending this notation, let v0

1 denote the output of P1 if parties in C abort
immediately without sending any messages. Define vi

n similarly to be the output of Pn when
all parties in A simultaneously abort in segment i + 1 (i.e., send messages for the final time in
segment i), and v0

n to be the output of Pn when parties in A abort immediately. Note that vi
1 can

be computed from the joint view of all parties in A ∪B as soon as all players in C have sent their
segment-i messages, and analogously for vi

n.
Security of π implies that, for all i, we have vi

1 ∈ {0, 1} (and, in particular, vi
1 6=⊥) with all

but negligible probability, and similarly for vi
n. This is true since π provides full security against t

fail-stop adversaries, and at most t players abort in the experiment defining v i
1, v

i
n. In what follows,

we will assume for simplicity that vi
1, v

i
n ∈ {0, 1} with probability 1.

6Security (or even just correctness) of π actually requires that this hold with all but negligible probability. We
will make use of the relaxed requirement stated here in Section 3.3.
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Consider the following summation:
(

Pr
[

v0
1 = 1

∧

v0
n = 1

]

+ Pr
[

v0
1 = 0

∧

vr
n = 1

]

−
1

2

)

(1)

+

(

Pr
[

v0
1 = 0

∧

v0
n = 0

]

+ Pr
[

v0
1 = 1

∧

vr
n = 0

]

−
1

2

)

(2)

+
r−1∑

i=0

[(

Pr
[

vi
1 = 0

∧

vi+1
n = 0

]

+ Pr
[

vi
1 = 1

∧

vi
n = 0

]

−
1

2

)

(3)

+

(

Pr
[

vi
1 = 1

∧

vi+1
n = 1

]

+ Pr
[

vi
1 = 0

∧

vi
n = 1

]

−
1

2

)

(4)

+

(

Pr
[

vi+1
1 = 0

∧

vi+1
n = 0

]

+ Pr
[

vi
1 = 0

∧

vi+1
n = 1

]

−
1

2

)

(5)

+

(

Pr
[

vi+1
1 = 1

∧

vi+1
n = 1

]

+ Pr
[

vi
1 = 1

∧

vi+1
n = 0

]

−
1

2

)]

, (6)

which evaluates to:

Pr
[

v0
1 = 1

∧

v0
n = 1

]

+ Pr
[

v0
1 = 0

∧

vr
n = 1

]

+ Pr
[

v0
1 = 0

∧

v0
n = 0

]

+ Pr
[

v0
1 = 1

∧

vr
n = 0

]

− 1

+

r−1∑

i=0

[

Pr
[

vi
1 = 1

∧

vi
n = 0

]

+ Pr
[

vi
1 = 0

∧

vi
n = 1

]

+ Pr
[

vi+1
1 = 0

∧

vi+1
n = 0

]

+ Pr
[

vi+1
1 = 1

∧

vi+1
n = 1

]

− 1

]

= Pr
[

v0
1 = 1

∧

v0
n = 1

]

+ Pr
[

v0
1 = 0

∧

vr
n = 1

]

+ Pr
[

v0
1 = 0

∧

v0
n = 0

]

+ Pr
[

v0
1 = 1

∧

vr
n = 0

]

+ Pr
[

v0
1 = 1

∧

v0
n = 0

]

+ Pr
[

v0
1 = 0

∧

v0
n = 1

]

+ Pr
[

vr
1 = 0

∧

vr
n = 0

]

+ Pr
[

vr
1 = 1

∧

vr
n = 1

]

− 2

= Pr
[

v0
1 = 0

∧

vr
n = 1

]

+ Pr
[

v0
1 = 1

∧

vr
n = 0

]

+ Pr [vr
1 = vr

n]− 1

≥ Pr
[

v0
1 = 0

∧

a 6= c
]

− Pr
[

vr
n 6= 1

∧

a 6= c
]

+ Pr
[

v0
1 = 1

∧

a = c
]

− Pr
[

vr
n 6= 0

∧

a = c
]

+ Pr [vr
1 = vr

n]− 1

≥ Pr
[

a 6= c | v0
1 = 0

]

· Pr[v0
1 = 0] + Pr

[

a = c | v0
1 = 1

]

· Pr[v0
1 = 1] +

3

4
− 1,

using the assumed correctness of π when run honestly to completion. Since v0
1 is independent of

Pn’s input c, we have Pr
[
a 6= c | v0

1 = 0
]

= Pr
[
a = c | v0

1 = 1
]

= 1
2 . It follows that the above sum

is at least 1
4 , and so at least one of the summands (1)–(6) is at least p(k)

def
= 1

4·(4r(k)+2) , which is
noticeable. We show that this implies that π does not s-securely compute f with abort, even for
fail-stop adversaries.

Case 1(a). Say Pr
[
v0
1 = 1

∧
v0
n = 1

]
+Pr

[
v0
1 = 0

∧
vr
n = 1

]
− 1

2 ≥ p(k), and consider the adversary
who corrupts players in A ∪ B and does the following: it chooses input for P1 as well as random
tapes for all players in A and B uniformly at random, and then computes v0

1. If v0
1 = 1, it aborts all
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players in A immediately and simply has players in B run π honestly with (the honest parties) C.
If v0

1 = 0, the adversary simply has all players in A ∪B run the entire protocol honestly.
Note that |A ∪ B| = s. Furthermore, the probability that Pn outputs 1 in a real execution of

the protocol is exactly

Pr
[

v0
1 = 1

∧

v0
n = 1

]

+ Pr
[

v0
1 = 0

∧

vr
n = 1

]

≥
1

2
+ p(k).

However, in an ideal execution with any adversary corrupting players in A ∪ B, the honest player
Pn will not output 1 with probability greater than 1

2 (given that its input is chosen uniformly at
random).7 It follows that π does not s-securely compute f with abort.

Case 1(b). Say Pr
[
v0
1 = 0

∧
v0
n = 0

]
+ Pr

[
v0
1 = 1

∧
vr
n = 0

]
− 1

2 ≥ p(k). An argument as above
gives an adversary who corrupts parties in A ∪ B and forces Pn to output 0 with probability
noticeably greater than 1/2. This again implies that π does not s-securely compute f with abort.

Case 2(a). Say there exists an index i ∈ {0, . . . , r(k)− 1} for which

Pr
[

vi
1 = 0

∧

vi+1
n = 0

]

+ Pr
[

vi
1 = 1

∧

vi
n = 0

]

−
1

2
≥ p(k).

Consider the adversary given auxiliary input z = i who corrupts the players in A and B and acts
as follows: it chooses random input for P1 and then runs the protocol honestly up to the end of
segment i (if i = 0, this is just the beginning of the protocol). At this point, as noted earlier, the
players in A ∪ B jointly have enough information to compute v i

1. If vi
1 = 1, then all parties in A

abort and send no more messages. If vi
1 = 0, then the parties in A send their (honestly-computed)

messages for segment i+1 but send no more messages after that (i.e., they abort in segment i+2).
In either case, parties in B continue to run the entire rest of the protocol honestly.

Now, the probability that Pn outputs 0 in a real execution of the protocol is exactly

Pr
[

vi
1 = 0

∧

vi+1
n = 0

]

+ Pr
[

vi
1 = 1

∧

vi
n = 0

]

≥
1

2
+ p(k).

However, in an ideal execution with any adversary corrupting players in A ∪ B, the honest player
Pn will not output 0 with probability greater than 1

2 given that its input is chosen uniformly at
random. Thus, π does not s-securely compute f with abort.

Case 2(b). If there exists an i such that Pr
[
vi
1 = 1

∧
vi+1
n = 1

]
+Pr

[
vi
1 = 0

∧
vi
n = 1

]
− 1

2 ≥ p(k),
an argument as above gives an adversary corrupting players in A ∪ B who forces Pn to output 1
more often than can be achieved by any adversary in the ideal world.

Case 3(a). Say there exists an index i ∈ {1, . . . , r(k)} such that

Pr
[

vi
1 = 0

∧

vi
n = 0

]

+ Pr
[

vi−1
1 = 0

∧

vi
n = 1

]

−
1

2
≥ p(k)

(note that all indices have been shifted by 1 for convenience). Consider the adversary given auxiliary
input z = i who corrupts players in B ∪ C and acts as follows: it chooses random input for Pn

and then runs the protocol honestly up to the point when it is Pn−t+1’s turn to send a message
in segment i. (Recall that Pn−t+1 is the player with lowest index who is in C.) At this point, the
players in B ∪ C can jointly compute vi

n. If vi
n = 1, then all players in C abort in this segment

7Note that in the ideal model with abort, an adversary corrupting s players can bias the value of Pn’s output
conditioned on Pn not outputting ⊥, but still cannot force Pn to output 1 with probability more than 1

2
.
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and refuse to send any more messages (so the last messages sent by any parties in C were sent
in segment i − 1). If vi

n = 0, then all players in C send their (honestly-generated) messages in
segment i but will abort in segment i + 1. In either case, parties in B continue to run the entire
rest of the protocol honestly.

The probability that P1 outputs 0 in a real execution of the protocol is exactly

Pr
[

vi
1 = 0

∧

vi
n = 0

]

+ Pr
[

vi−1
1 = 0

∧

vi
n = 1

]

≥
1

2
+ p(k).

However, in an ideal execution with any adversary corrupting players in B ∪ C, the honest player
P1 will not output 0 with probability greater than 1

2 given that its input is chosen uniformly at
random. We conclude that π does not s-securely compute f with abort.

Case 3(b). If there exists an i such that Pr
[
vi
1 = 1

∧
vi
n = 1

]
+Pr

[
vi−1
1 = 1

∧
vi
n = 0

]
− 1

2 ≥ p(k),
an argument as above gives an adversary corrupting players in B ∪ C who forces P1 to output 1
more often than can be achieved by any adversary in the ideal world.

The observant reader will note that the argument above is very similar to that given by Cleve [8]
in showing the impossibility of fair coin tossing without honest majority. A key difference is that in
Cleve’s setting honest parties are required to output a bit no matter what (in particular, no matter
how many other parties abort); in our setting, if half or more of the parties abort then honest
parties can simply output ⊥. This introduces additional technical complications in the argument.

3.2 Ruling out Privacy

The argument in the previous section shows that we cannot hope to achieve the best of both
worlds. However, we might hope to obtain a t-secure protocol π that at least obtains s-privacy
(in the presence of malicious adversaries). By building on the result of the previous section we
unfortunately rule out this possibility as well.

Given n, t, s as before, we define a function f̃ that takes inputs from P1 and Pn, and returns
output to P1, Pn, and also (and here we differ from before) Pt+1. On input (b1, α0, α1) from P1 and
(bn, β0, β1) from Pn, where b1, bn, α0, α1, β0, β1 ∈ {0, 1}, functionality f̃ computes v = b1⊕ bn, gives
v to P1 and Pn, and gives (v, αv , βv) to Pt+1. That is:

f̃((b1, α0, α1), λ, . . . , λ, (bn, β0, β1)) =

(b1 ⊕ bn, λ, . . . , λ, (b1 ⊕ bn, αb1⊕bn
, βb1⊕bn

)
︸ ︷︷ ︸

output of Pt+1

, λ, . . . , λ, b1 ⊕ bn),

where we let λ denote an empty input/output.
Let π be a protocol that t-securely computes f̃ . Let A,B,C be a partition of the players as in

the previous section, and recall that Pt+1 ∈ B. Consider an experiment in which P1 and Pn choose
their inputs uniformly at random and all parties run protocol π honestly, except that players in A
or C may possibly abort. An argument exactly as in the previous section shows that there exists
a real-world adversary A who either

• corrupts the parties in A∪B and causes Pn to output some bit v with probability noticeably
greater than 1/2; or

• corrupts the parties in B ∪C and causes P1 to output some bit v with probability noticeably
greater than 1/2.

9



Assume without loss of generality that the first case holds, and there is an adversary A who corrupts
players in A∪B and causes Pn to output 0 with probability at least 1/2+ p(k) for some noticeable
function p. The key observation is that A only causes the t players in A to abort, and the remaining
corrupted players in B act entirely honestly. Since π is fully-secure for up to t malicious players,
all players in B ∪C should receive their outputs (except possibly with negligible probability) even
if all players in A abort. Moreover, t-security of π implies that the output of the honest-looking
Pt+1 should be consistent with the input and output of Pn (except with negligible probability).
Taken together, this means that the view of A — which includes the output honestly generated
by Pt+1 — includes β0 with probability at least 1/2 + p′(k) for some noticeable function p′, and

furthermore A knows when this occurs (since the output of Pt+1 includes v
def
= b1 ⊕ bn in addition

to βv). Thus, A can output a guess for β0 which is correct with probability at least

1

2
+ p′(k) +

1

2
·

(
1

2
− p′(k)

)

=
3

4
+

p′(k)

2
.

In contrast, no ideal-world adversary A′ corrupting A ∪ B can output a guess for β0 which is
correct with probability better than 3/4 when Pn chooses its inputs uniformly at random. This
shows that π does not s-privately compute f̃ .

3.3 Protocols with Expected Polynomial Round Complexity

A simple extension of the arguments given above applies to protocols having expected polynomial
round complexity (and, say, potentially running for an unbounded number of rounds). We sketch
the main idea here, with respect to the proof given in Section 3.1. Say we have a protocol π that t-
securely computes f and for which the expected number of segments in π is p(k). Security (or even
just correctness) of π implies that if π is run honestly to completion, then the outputs of P1 and Pn

are correct (and, in particular, agree) with all but negligible probability. Setting r(k) = 8 · r ′(k),
this means that except with probability negligibly close to 1/8 the outputs of P1 and Pn are correct
and are computed by the end of segment r(k). The remainder of the proof is as before.

4 A Lower Bound for Non-Rushing Adversaries

The stark impossibility result of the preceding section suggests that we must examine relaxations
of the original goal. We have already mentioned in Section 1.1 two such relaxations considered
by Ishai, et al. [19]. Here, we consider a different relaxation: the case of non-rushing adversaries.
This case is natural to consider since, for example, fair coin flipping is impossible for rushing
adversaries [8] but trivial to achieve for non-rushing adversaries; one might hope for something
similar here. Unfortunately, eliminating rushing does not seem to make the problem significantly
easier in our setting; we show that no logarithmic-round protocol can achieve the best of both
worlds even in this setting.

Theorem 2 Let n, t, s be such that t + s = n and t ≥ 1. Then there exists a finite n-party
functionality f for which there is no protocol π whose round complexity is logarithmic in the security
parameter and such that π simultaneously t-securely computes f (for non-rushing adversaries) and
s-privately computes f in the presence of malicious, non-rushing adversaries. This holds even if
we consider only fail-stop adversaries in each case.

10



For simplicity here, we look only at the case n = 3, t = 1, s = 2 (the argument generalizes in a
straightforward manner). As in [19], we consider the case of three parties A,B,C computing the
following functionality f : both A and C provides inputs a, c ∈ {1, 2, 3}; party B is given the output

f(a, λ, c)
def
=

{
a if a = c
? otherwise

,

where λ denotes an empty input and ? denotes a distinguished output that does not lie in {1, 2, 3}.
Let π be a protocol that 1-securely computes f , and let r(k) = O(log k) be the number of

rounds in π. In contrast to the previous section, here we allow for all parties to send messages in a
single round. Consider the experiment in which A and C each choose their inputs a, c uniformly at
random, and all parties run π honestly except that A or C may possibly abort the protocol early.
Define Ai to be the output that B generates if the last message sent by C was in round i (and
A,B continue to run the protocol honestly until the end), with A0 denoting the output of B in
case C never sends any messages. Similarly, define Ci to be the output that B generates if the last
message sent by A was in round i (and B,C continue to run the protocol honestly until the end).
Note that if an adversary controls both A and B, then Ai can be computed immediately after C
sends its round-i message. (And analogously for Ci.) Also, with all but negligible probability we
have Ai ∈ {a, ?} and Ci ∈ {c, ?} since π is fully secure when only one party aborts, and thus the
output of the (honest-looking) B must be consistent with the input of the remaining honest party.
For convenience, we will simply assume that this occurs with probability 1.

Define Sumi for odd i ∈ {1, . . . , r} as follows:

Sumi
def
=

(

Pr
[

Ai = a
∧

a = c
]

− Pr
[

Ai = a
∧

a 6= c
]

+ Pr
[

Ai = ?
∧

Ci−1 = c
]

−
1

3

)

+

(
1

3
− Pr

[

Ai = ?
∧

Ci−1 = c
]

− Pr
[

Ai = a
∧

Ci−1 = c
])

+2 ·

(

Pr
[

Ai = a
∧

a 6= c
]

+ Pr
[

Ai = a
∧

a = c
]

−
1

3

)

.

Sumi for even i ∈ {1, . . . , r} is defined analogously by interchanging the roles of A and C:

Sumi
def
=

(

Pr
[

Ci = c
∧

a = c
]

− Pr
[

Ci = c
∧

a 6= c
]

+ Pr
[

Ci = ?
∧

Ai−1 = a
]

−
1

3

)

+

(
1

3
− Pr

[

Ci = ?
∧

Ai−1 = a
]

− Pr
[

Ci = c
∧

Ai−1 = a
])

+2 ·

(

Pr
[

Ci = c
∧

a 6= c
]

+ Pr
[

Ci = c
∧

a = c
]

−
1

3

)

.

Define also Xi =
(

1
3 − Pr[Ai = a

∧
a = c]

)
for i odd, and Xi =

(
1
3 − Pr[Ci = c

∧
a = c]

)
for i even

(now including 0). The following claim follows by simple algebraic manipulation (see Appendix A):

Claim 1 For all i ∈ {1, . . . , r} it holds that 3 ·Xi + Sumi ≥ Xi−1.

By induction, it follows that for any j ≤ i we have 3j · Xi +
∑i

k=i−j+1 3k−(i−j+1) · Sumk ≥ Xi−j

and so in particular

3r ·Xr +

r∑

i=1

3i−1 · Sumi ≥ X0 (7)
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=

(
1

3
− Pr

[

C0 = c
∧

a = c
])

=

(
1

3
−

1

3
· Pr[C0 = c]

)

≥
2

9
− ε,

for ε approaching 0 as k grows large. The second equality uses the facts that C0 is independent
of a, and a, c are chosen uniformly in {1, 2, 3}. The final inequality is by the 1-security of π (since
if Pr[C0 = c] > 1

3 then an adversary corrupting A who aborts immediately causes the honest player
B to output c with probability greater than 1/3, something that cannot occur in the ideal world).

Since r = r(k) is logarithmic in k, Eq. (7) implies that either Xr ≥
1

poly(k) or, for some i,

Sumi ≥
1

poly(k) . Since a = c with probability 1/3 and Ar = Cr = a = c with all but negligible

probability when this occurs (this follows from correctness of π), the former cannot be the case. As
in Section 3.1, we show that the latter contradicts security of π. Without loss of generality, assume
Sumi ≥

1
poly(k) for an odd index i. Then one of the three summands in the definition of Sumi is

noticeable. Consider the three possibilities:

Case 1. Say
(

Pr [Ai = a
∧

a = c]− Pr [Ai = a
∧

a 6= c] + Pr [Ai = ?
∧

Ci−1 = c]− 1
3

)

is notice-

able. Consider the adversary A with auxiliary input z = i who corrupts A and B, chooses input
a uniformly at random, and runs the protocol honestly except that it aborts A at round i (so A’s
last message is sent in round i− 1). Player B runs the entire protocol honestly, and so the output
of (the adversarially-controlled player) B is exactly Ci−1. Furthermore, using the message sent by
C in round i as well as the internal states of players A and B at that stage of the protocol, A can
also compute Ai. If Ai 6= ?, then A outputs Ai. If Ai = ? and Ci−1 6= ? then A outputs Ci−1.
Finally, if Ai = ? = Ci−1 then A outputs “don’t know.”

Viewing A as outputting a guess for the value of c (and allowing A to output “don’t know”),
we see that A is correct with probability Pr [Ai = a

∧
a = c] + Pr [Ai = ?

∧
Ci−1 = c] (recall that

Ci−1 ∈ {c, ?}) and incorrect with probability Pr [Ai = a
∧

a 6= c]. Thus, its bias in guessing c
(defined as the probability that it guesses correctly minus the probability that it guesses incorrectly)
is noticeably better than 1/3. Yet in the ideal model, no adversary corrupting A and B can guess
c with bias better than 1/3 when C’s input is chosen uniformly at random: the best strategy is to
send an arbitrary input a to the trusted party computing f , output a if the trusted party returns a
as output, and output a random guess otherwise (or simply output “don’t know” in this case). It is
easy to turn this observation into a method for distinguishing, with noticeable probability, between
the output of A (in the real world) and the output of any ideal-world adversary.8 We conclude that
π does not 2-privately compute f in the presence of malicious adversaries.

Case 2(a). Say
(

1
3 − Pr [Ai = ?

∧
Ci−1 = c]− Pr [Ai = a

∧
Ci−1 = c]

)
is noticeable, and note that

this means that Pr[Ci−1 = c] ≤ 1
3−1/poly(k). Then consider the adversary who corrupts A, chooses

input a at random, and runs honestly until round i− 1 at which point it aborts. Then the output
of the honest party B is equal to C’s input c with probability noticeably different from 1/3. But no
adversary corrupting A in the ideal world (without abort) can cause B to output c with probability
different from 1/3 when c is chosen uniformly at random. Thus, this possibility cannot occur since
it would contradict the assumption that π 1-securely computes f .

Case 2(b). The case when
(
Pr [Ai = a

∧
a 6= c] + Pr [Ai = a

∧
a = c]− 1

3

)
is noticeable is analo-

gous to the above, in that we can construct a real-world adversary who corrupts C and causes B

8For example, consider the distinguisher that with probability half outputs 1 if the guess for c is correct (and 0
otherwise), and with probability half outputs 0 if the guess for c is incorrect (and 1 otherwise).
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to output A’s input a with probability noticeably different from 1/3. This would again contradict
the assumption that π 1-securely computes f .

5 A Positive Result

The previous section shows that even if we allow simultaneous message transmission, positive results
will be hard to come by (at least in the sense that the round complexity for any protocol achieving
the “best of both worlds” must be super-logarithmic). In fact, we conjecture (though, obviously,
have not yet been able to prove) that even protocols with polynomially-many rounds cannot achieve
the best of both worlds in that setting, and so some additional relaxation is needed.

Here, we show a positive result for our problem: for any p, we show a protocol with round
complexity O(pn2) which is (1) fully secure in the presence of an honest majority, even for the case
of a rushing adversary and (2) can be simulated to within O(1/p) (in a sense we will soon precisely
define) in the presence of arbitrarily-many malicious (but non-rushing) parties. The protocol is
also fully-secure for any number of semi-honest parties; see further discussion below.

We now define the notion to which we have informally referred above. Say two distribution

ensembles X,Y are indistinguishable to within δ, denoted X
δ
≈ Y , if there exists a negligible function

ε such that for every ppt algorithm D and all a we have

∣
∣
∣Pr[D(1k, a,X(k, a)) = 1]− Pr[D(1k, a, Y (k, a)) = 1]

∣
∣
∣ ≤ δ(k) + ε(k).

If f is an n-party functionality and π is an n-party protocol, then π t-securely computes f with abort

to within δ if for any ppt adversary A there exists a ppt adversary A′ such that for any I ⊂ [n]

with |I| ≤ t we have realπ,A,I
δ
≈ idealf,A′,I . (We could define a similar notion for the case of full

security but we will not need it.) The main result of this section is the following:

Theorem 3 Under suitable cryptographic assumptions (inherited from [20, 22]), for any n, any
t < n/2, any s < n, any n-party poly-time functionality f , and any polynomial p, there exists
an O(pt2)-round protocol that t-securely computes f (for rushing adversaries) and s-securely com-
putes f with abort to within O(1/p) (for non-rushing adversaries). The protocol also s-securely
computes f for semi-honest adversaries.

Our protocol does not weaken the security obtained when fewer than half the parties are corrupted
(namely, we achieve the standard notion of security in that setting, even for rushing adversaries);
thus, the protocol is an improvement over “standard” protocols achieving security for honest ma-
jority in that at least not all is lost in case half or more of the parties are corrupted. Furthermore,
our protocol is a strict improvement of the main positive result from [19] since we also achieve (full)
security against an arbitrary number of semi-honest adversaries. Though not explicitly mentioned
in the theorem, our protocol is also a strict improvement of the second positive result from [19]
since our protocol also has the property that the view of a malicious adversary corrupting any s < n
parties can be simulated by an ideal-world adversary that is allowed to invoke the functionality
s + 1 times (this holds even when rushing is allowed).

We now present the details. Fix n, and let f be a poly-time n-party functionality. We assume
for ease of presentation that f is a single-output functionality; this is without loss of generality since
protocols computing such functionalities can be used in the standard way to compute functionalities
where each party gets a possibly different output. We also fix t = b(n− 1)/2c, though reducing the
number of rounds (as claimed) for smaller values of t is straightforward.
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Assume that the output of f can be viewed as lying in some field
�

which also contains [n].
(Actually, if the output of f is v bits long we need a field which can represent strings of length at
least v + 1.) Let h = bn/2c + 1. For a polynomial p given as a parameter, define the following
randomized functionality F for parties H ⊆ [n] and inputs {xi}i∈H :

For each i 6∈ H, set xi to some fixed default value (as determined by f)
Compute y ← f(x1, . . . , xn)
Choose random s∗ ∈

�
and random i∗ ∈ {1, . . . , pn}

Generate an h-out-of-|H| sharing of s∗

For 1 ≤ i < i∗, generate an |H|-out-of-|H| sharing of si def
= 0

For i∗ ≤ i ≤ pn, generate an |H|-out-of-|H| sharing of si def
= 1‖(y + s∗)

Each party in H receives as output its share of each of the above pn + 1 values

When we refer to “secret sharing,” we always intend the classical scheme by Shamir [25]. We also
require implicitly that the shares given to the parties are authenticated, e.g., by being signed with
respect to a public key generated by F and given to all parties. (We do not explicitly mention this
in what follows.)

We now have the following protocol to compute f . Each party begins by setting H = {P1, . . . , Pn}
(intuitively, this represents the set of parties currently believed to be honest). Then:

Phase 1. Do the following until it either completes successfully or until |H| < h:

1. Run an |H|-party protocol πF among parties in H that (|H| − 1)-securely computes F with
abort (even for rushing adversaries) on inputs {xi}i∈H .

2. If all parties receive their output, proceed to phase 2. Otherwise, if honest parties abort
because of detected cheating9 by a party Pi, remove Pi from H and return to step 1.

If |H| < h at any point, parties output ⊥ and terminate the entire protocol.

Phase 2. In round i, for i = 1, . . . , pn, each party Pj ∈ H broadcasts its share of si. This occurs
until either si is of the form 1‖y′ or until some player cheats in round i (a player is considered
cheating if they do not broadcast their share, or if they broadcast an incorrect value; recall our
assumption that all shares are authenticated). Note that if i > 1 then all parties can compute the
secret si−1 from the shares correctly broadcast in the previous round. Then:

• If si = 1‖y′, then each party broadcasts its share of s∗. If at least h parties broadcast
their share of s∗ correctly, then reconstruct s∗ and output y′ − s∗; otherwise, output ⊥ and
terminate the protocol.

• If the above does no occur, and some player cheats in round i (and so i = 1 or si−1 = 0),
remove all parties who were caught cheating from H. If |H| < h then output ⊥ and terminate
the protocol. Otherwise, return to phase 1.

Using [20, 22], there exists a constant-round protocol πF with the necessary security properties.
Thus, the worst-case round complexity of the above protocol is pn · b(n− 1)/2c = O(pn2).

We sketch the claimed security properties for the above protocol in Appendix B.

9We assume πF has the property that cheaters are identified; known protocols have this property.
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A Proof of Claim 1

We consider the case of i odd; the case when i is even follows similarly. Note first that the expression
defining Sumi simplifies to

Sumi = 3 · Pr
[

Ai = a
∧

a = c
]

− Pr
[

Ai = a
∧

Ci−1 = c
]

+ Pr
[

Ai = a
∧

a 6= c
]

−
2

3
.

We then have

3 ·Xi + Sumi

= 3 ·

(
1

3
− Pr

[

Ai = a
∧

a = c
])

+ Sumi

= Pr
[

Ai = a
∧

a 6= c
]

− Pr
[

Ai = a
∧

Ci−1 = c
]

+
1

3

= Pr
[

Ai = a
∧

a 6= c
∧

Ci−1 = c
]

+ Pr
[

Ai = a
∧

a 6= c
∧

Ci−1 6= c
]

− Pr
[

Ai = a
∧

Ci−1 = c
∧

a = c
]

− Pr
[

Ai = a
∧

Ci−1 = c
∧

a 6= c
]

+
1

3

= Pr
[

Ai = a
∧

a 6= c
∧

Ci−1 6= c
]

− Pr
[

Ai = a
∧

Ci−1 = c
∧

a = c
]

+
1

3

≥
1

3
− Pr

[

Ci−1 = c
∧

a = c
]

= Xi−1 .
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B Proof of Theorem 3 (Sketch)

We consider each of the claimed security properties in turn.

B.1 Security for n− 1 Semi-Honest Adversaries

We first show that the protocol of Section 5 is fully secure for any number of semi-honest adversaries.
This is quite easy to see. Consider a semi-honest adversary corrupting s < n parties. Phase 1 will
complete successfully with H = {P1, . . . , Pn}. Security of πF implies that the adversary learns no
information in phase 1 other than its output, which consists of the relevant shares of the secrets
s∗, s1, . . . , spn. Its shares may completely determine s∗, but this is just a random value. In phase 2,
the adversary learns the values s1, . . . , si∗ , s∗; the first i∗ − 1 of these are just the value “0,” while
si∗ and s∗ are random subject to the fact that their xor is equal to the correct output y. All honest
players also output y, which is distributed correctly since it was computed by πF in phase 1.

B.2 Security for t < n/2 Malicious, Rushing Adversaries

Here, we show that the protocol of Section 5 is fully secure for any t < n/2 malicious, rushing
adversaries. Intuitively, we may argue as follows: Regardless of the adversary’s actions in phase 1,
it learns nothing more than t shares of secrets s∗, s1, . . . , spn. Since the threshold for each of these
secrets is strictly greater than t, the adversary learns nothing about the actual secrets.

In phase 2, the adversary is essentially reduced to a fail-stop adversary since all shares are
authenticated. If the adversary never aborts in a particular iteration of phase 2, then all parties
learn a (correctly-distributed) output y in that iteration. It is also clear that honest parties will
eventually compute some correctly-distributed output y that takes into account the inputs of all
honest parties. We need only show that the adversary does not learn more than it is supposed to.

Consider what happens if some set of adversarially-controlled parties aborts in round i of an
iteration of phase 2. There are two cases:

• If i = 1 or si−1 = 0, the adversary may learn the value y ′ = s∗ + y (from the shares broadcast
by the honest parties in round i) but this value is random and independent of the correct
output y (the key point is that the adversary learns nothing about s∗ and so y′ is indeed
random). Then the protocol continues by eliminating some corrupted parties from H and
again running phase 1.

• If si−1 = 1‖y′, then all parties reconstruct y and terminate the protocol (and the adversary
learns only the output value y).

Formally, note that the protocol described above can be viewed naturally as a protocol π running
in the F -hybrid model. We will prove that π defined in this way t-securely computes f in the F -
hybrid model; that is (roughly speaking), that for every ppt adversary A corrupting at most t
parties and running π in the F -hybrid model, there exists an adversary A′ corrupting at most t
parties in the ideal world with access to a trusted party computing f such that the outcomes of
these two executions (which includes, as in Section 2, both the output of the adversary as well as
the outputs of the honest parties) are indistinguishable. The composition theorem of Canetti [6]
then implies that the entire real-world protocol (in which access to F is emulated using a secure
protocol πF ) is secure.

Let A be a hybrid-model adversary controlling corrupted parties in I. Consider the following
ideal-world adversary A′ that interacts with a trusted party computing f . A′ begins by setting
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H = {P1, . . . , Pn}. Then it operates in the following phases: (Note that it will always hold that
|H| ≥ h since we have an honest majority here; we use this to simplify what follows.)

Phase 1. A′ does the following:

1. If I ∩H = ∅, then choose a random index i∗ ∈ {1, . . . , pn} and proceed to phase 2.

2. Otherwise, obtain from A inputs {xi}i∈I∩H for F on behalf of all parties in I ∩H. Adversary
A′ records these values, but does not yet send these to the trusted party computing f .

3. A′ provides to A, on behalf of each party in I ∩ H, randomly-generated shares of pn + 1
random secrets. (These shares are also authenticated in the obvious way.) At this point, A is
allowed to determine whether to abort computation of F or whether to allow computation of
F to continue. In the former case, A′ chooses a random index i∗ ∈ {1, . . . , pn} and proceeds
to phase 2. In the latter case, at least one party in I ∩ H is identified as10 malicious; this
party is removed from H and A′ returns to step 1.

Phase 2. Entering phase 2, A′ holds inputs {xi}i∈I∩H and an index i∗. For each round i of (the
current iteration of) this phase, A′ does the following:

Case 1: i < i∗. Do:

1. Broadcast (on behalf of the honest parties) random shares consistent with the appropriate
shares given to A in phase 1 (if any) and the secret si = 0.

2. After receiving the above, A broadcasts its round-i messages on behalf of players in I ∩H.
If these messages are exactly the appropriate shares given to A in phase 1 (or if I ∩H = ∅),
continue to the next round. Otherwise, identify the cheating parties in I ∩H, remove them
from H, and return to phase 1.

Case 2: i = i∗. Do:

1. Broadcast (on behalf of the honest parties) random shares consistent with the appropriate
shares given to A in phase 1 (if any) and the secret si∗ = 1‖y′ for random y′.

2. After receiving the above, A broadcasts its round-i∗ messages on behalf of players in I ∩H.
If these messages are exactly the appropriate shares given to A in phase 1 (or if I ∩H = ∅),
then:

• Send {xi}i∈I∩H to the trusted party computing f ; obtain in return an output y.

• Broadcast (on behalf of the honest parties) random shares consistent with the appropri-
ate shares given to A in phase 1 (if any) and the secret s∗ = y′ − y.

Otherwise, identify the cheating parties in I∩H, remove them from H, and return to phase 1.

It is not hard to see that the above provides a good simulation.

10Technically, we need to augment the ideal world for the case of security with abort so that the adversary is
allowed to choose which malicious players are identified as malicious.
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B.3 Security for s < n Malicious, Non-Rushing Adversaries

We now show that the protocol in Section 5 is secure with abort to within O(1/p) for s < n
malicious, non-rushing adversaries. Intuitively, we may argue as follows: in phase 1 the adversary
learns nothing, even if it aborts execution of πF after receiving its own outputs (but before honest
players receive theirs). In a given iteration of phase 2, the adversary learns “more than it is supposed
to” only if it aborts in round i∗: if it aborts in round i < i∗ then (as in the previous case) it learns
nothing and the protocol continues with another execution of phase 1; if it aborts in round i > i∗

then (similar to the previous case) it learns the output y but all honest parties either learn y also
or else terminate the protocol with output ⊥.

Thus, the only difficulty is in case there exists an iteration of phase 2 in which some adversarial
party aborts in round i∗. Note that in the previous section (when the number of corrupted parties
is less than n/2), the adversarial parties did not learn the value of s∗ and so learning y′ did not
leak any information. Here, however, the adversary may have corrupted h or more parties in which
case it learns s∗ in addition to y′.

However, the adversary can abort in round i∗ only with probability at most 1/pn in any given
iteration because it has no information about the value of i∗ (since it corrupts strictly fewer than
n parties). We remark that here is where we rely on the fact that the adversary is non-rushing: it
must decide whether or not to abort in a given round before learning whether or not that round
corresponds to round i∗. In contrast, a rushing adversary could always wait until the honest parties
send their round-i messages; determine whether the secret si reconstructs to 1‖y′, and abort if and
only if this is the case.

Since there are at most O(n) iterations of phase 2, and the adversary guesses i∗ correctly with
probability only 1/pn in any given iteration, a union bound shows that the adversary can correctly
guess i∗ in some iteration only with probability at most O(1/p). This observation leads naturally
to an ideal-world adversary which generates an execution that is indistinguishable from a real
execution to within O(1/p).

Formally, we again view the main protocol as a protocol π running in the F -hybrid model. As
before, we prove that π defined in this way s-securely computes f (with abort) to within O(1/p)
in the F -hybrid model. Although the composition theorem of Canetti [6] no longer applies directly
(since we prove security to within O(1/p) rather than security to within a negligible factor), it is
not hard to see that the proof from [6] extends to imply that the entire real-world protocol (in
which access to F is emulated using a secure protocol πF ) is similarly secure.

Let A be a hybrid-model adversary controlling corrupted parties in I, where we assume |I| ≥ n/2
since otherwise the proof given previously applies. Consider the following ideal-world adversary A ′

that interacts with a trusted party computing f . A′ begins by setting H = {P1, . . . , Pn}. Then it
operates in the following phases:

Phase 1.

1. If |H| < h, A′ sends arbitrary inputs to the trusted party computing f , receives output (that
it ignores), and aborts the trusted party before it gives output to any of the honest parties.

2. Otherwise, A′ obtains from A inputs {xi}i∈I∩H for F on behalf of all parties in I ∩H. Ad-
versary A′ records these values, but does not yet send these to the trusted party computing f .

3. A′ chooses random s∗, and provides to A (on behalf of each party in I ∩ H) randomly-
generated shares of s∗ as well as pn other, random secrets. (These shares are authenticated
in the obvious way.) At this point, A is allowed to determine whether to abort computation
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of F or whether to allow computation of F to continue. In the former case, A′ chooses a
random index i∗ ∈ {1, . . . , pn} and proceeds to phase 2. In the latter case, at least one party
in I ∩ H is identified as malicious (see footnote 10); this party is removed from H and A ′

returns to step 1.

Phase 2. Entering phase 2, A′ holds inputs {xi}i∈I∩H and an index i∗. For each round i of (the
current iteration of) this phase, A′ does the following:

Case 1: i < i∗. Do:

1. A broadcasts its round-i messages on behalf of players in I∩H. (Recall that we are assuming
a non-rushing adversary, and so A must decide on its round-i messages before it observes the
round-i messages of the honest parties.)

2. A′ broadcasts (on behalf of the honest parties) random shares consistent with the appropriate
shares given to A in phase 1 (if any) and the secret si = 0.

3. If the round-i messages sent by A are exactly the appropriate shares given to A in phase 1,
continue to the next round. Otherwise, identify the cheating parties in I ∩H, remove them
from H, and return to phase 1.

Case 2: i = i∗. Do:

1. A broadcasts its round-i∗ messages on behalf of players in I ∩H.

2. If the round-i∗ messages sent by A are exactly the appropriate shares given to A in phase 1,
then

• Send {xi}i∈I∩H to the trusted party computing f ; obtain in return an output y.

• Broadcast (on behalf of the honest parties) random shares consistent with the appropri-
ate shares given to A in phase 1 and the secret si∗ = 1‖(y + s∗).

• A then broadcasts its supposed shares of s∗ and A′ broadcasts the honest parties’ shares
of s∗. If at least h (correct) shares of s∗ were broadcast in total, A′ tells the trusted party
computing f to continue; otherwise, it tells the trusted party computing f to abort.

Otherwise (i.e., at least one round-i∗ message broadcast by A is incorrect), A′ terminates the
simulation (unsuccessfully) and outputs fail.

It is not too difficult to see that when A′ does not output fail, it outputs a good simulation.
Furthermore, it outputs fail with probability at most O(n)/pn = O(1/p).
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