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Abstract

The nonlinearity profile of Boolean functions is an important cryptographic crite-
rion, whose role against attacks on stream and block ciphers has been illustrated by
many papers. We introduce a method for lower bounding its values and we deduce
bounds on the second order nonlinearity for several classes of cryptographic Boolean
functions, including the Welch and the inverse functions (which are used in the S-
boxes of the AES). In the case of inverse function, we are able to bound the whole
profile and to show the good behavior of this function with respect to this criterion.
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1 Introduction

Boolean functions are central objects for the design and the security of symmetric cryp-
tosystems (stream ciphers and block ciphers), see [2, 3]. In cryptography, the most usual
representation of these functions is the algebraic normal form (ANF):

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI

∏
i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The algebraic degree d◦f
of a Boolean function f equals the maximum degree of those monomials whose coefficients
are nonzero in its (unique) algebraic normal form. Affine functions are those Boolean
functions of algebraic degrees at most 1.

A characteristic of Boolean functions, called their nonlinearity profile, plays an impor-
tant role with respect to the security of the cryptosystems in which they are involved. Let
f : Fn

2 → F2 be an n-variable Boolean function. For every non-negative integer r ≤ n, we
denote by nlr(f) the minimum Hamming distance between f and all functions of algebraic
degrees at most r (in the case of r = 1, we shall simply write nl(f)). In other words, nlr(f)
equals the distance from f to the Reed-Muller code RM(r, n) of length 2n and of order r.
This parameter is called the r-th order nonlinearity of f (simply the nonlinearity in the
case r = 1). The nonlinearity profile of the function is the sequence of those values nlr(f)
for r ranging from 1 to n− 1.

The cryptographic relevance of this parameter has been illustrated by (e.g.) Courtois,
Golic, Iwata-Kurosawa, Knudsen-Robshaw, Maurer and Millan [10, 14, 15, 17, 21, 22].
Very little is known on nlr(f) for r > 1. The best known upper bound [7] on nlr(f) has
asymptotic version:

nlr(f) = 2n−1 −
√

15
2

· (1 +
√

2)r−2 · 2n/2 + O(nr−2).
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It can be proved [9, 4] that, for every positive real number such that c2 log2(e) > 1
(e.g. for c = 1), there exist, for sufficiently large values of n, functions with r-th order
nonlinearity greater than

2n−1 − c

√√√√ r∑
i=0

(
n

i

)
2

n−1
2 ≈ 2n−1 − c nr/2 2n/2

π1/4 r(2r+1)/4 23/4
.

This proves that the best possible r-th order nonlinearity of n-variable Boolean functions
is asymptotically equivalent to 2n−1, and that its difference with 2n−1 is polynomially
proportional to 2n/2, whatever is the fixed value of r. But the proof of this fact is obtained
by counting the number of functions having upper bounded r-th order nonlinearity (or
more precisely by upper bounding this number) and it does not help obtaining explicit
functions with non-weak r-th order nonlinearity.

Computing the r-th order nonlinearity of a given function with algebraic degree strictly
greater than r is a hard task for r > 1. Even the second order nonlinearity is unknown for
all functions except for a few peculiar ones and for functions in small numbers of variables.
A nice algorithm due to G. Kabatiansky and C. Tavernier and improved and implemented
by Fourquet et al. [13, 16, 12] works well for r = 2 and n ≤ 11 ( in some cases, n ≤ 13),
only. It can be applied for higher orders, but it is then efficient only for very small numbers
of variables. No better algorithm is known.
Proving lower bounds on the r-th order nonlinearity of functions (and therefore proving
their good behavior with respect to this criterion) is also a quite difficult task, even for the
second order. Until recently, there had been only one attempt, by Iwata-Kurosawa [15], to
construct functions with lower bounded r-th order nonlinearity. But the obtained value,
2n−r−3(r+5), of the lower bound was small. A lower bound on the r-th order nonlinearity
of functions with given algebraic immunity1 has been given in [6] and improved in [5]. It
gives better results than those of [15] for functions f with good algebraic immunity AI(f)
(i.e. with AI(f) not much smaller than dn/2e), but the corresponding values of the lower
bound, which is roughly equal to max

(∑AI(f)−r−1
i=0

(
n
i

)
, 2

∑AI(f)−r−1
i=0

(
n−r

i

))
, are small

too.
In the present paper, we introduce a new method for lower bounding the nonlinearity

profile of a given function and we deduce, for some classes of functions, explicit lower
bounds on the second order nonlinearity (extendable in some cases to bounds on higher
order nonlinearities, but the expressions become then more complex). Most interestingly,
we obtain lower bounds for the whole nonlinearity profile of the inverse functions.
The paper is organized as follows. After some recalls and some simple observations done
at Section 2, we give the general lower bounds at Section 3. We apply them at Section 4
to the Maiorana-McFarland functions, to the functions of univariate degree 2t − 1 on the
field F2n , and to some classes of functions whose first order nonlinearities are known good
(the Welch functions, some related functions, and the inverse functions), to deduce bounds
on their second order nonlinearities. In Section 5, we obtain, for every r, a lower bound on
the r-th order nonlinearity of the inverse function, and we deduce that it is asymptotically
equivalent to 2n−1.

2 Some simple facts

In this section, we recall some known facts on the nonlinearity profile and we make some
easy observations.

• Adding to a function f a function of algebraic degree at most r clearly does not
change the r-th order nonlinearity of f .

1The algebraic immunity is a parameter quantifying the resistance to basic algebraic attacks.
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• Since RM(r, n) is invariant under affine automorphism, composing a Boolean function
by an affine automorphism does not change its r-th order nonlinearity (i.e. nlr is affine
invariant).

• The minimum distance of RM(r, n) being equal to 2n−r for every r ≤ n, we have
nlr(f) ≥ 2n−r−1 for every function f of algebraic degree exactly r + 1 ≤ n. Moreover,
any minimum weight function f of algebraic degree r + 1 (that is, the indicator of any
(n− r − 1)-dimensional flat, see [20]), has r-th order nonlinearity equal to 2n−r−1 since a
closest function of algebraic degree at most r to f is clearly the null function.

• As observed by Iwata and Kurosawa [15] (for instance), if f0 is the (n − 1)-variable
restriction of f to the linear hyperplane H of equation xn = 0 and f1 the restriction of f
to the affine hyperplane H ′ of equation xn = 1, then we have nlr(f) ≥ nlr(f0) + nlr(f1)
since, for every function g of algebraic degree at most r, the restrictions of g to H and H ′

having both algebraic degree at most r, we have dH(f, g) ≥ nlr(f0) + nlr(f1) where dH

denotes the Hamming distance (obviously, this inequality is more generally valid if f0 is
the restriction of f to any linear hyperplane H and f1 its restriction to the complement of
H).
- Moreover, if f0 = f1, then there is equality since if g is the best approximation of algebraic
degree at most r of f0 = f1, then g now viewed as an n-variable function lies at distance
2nlr(f0) from f .
- Since nlr is affine invariant, this implies that, if there exists a nonzero vector a ∈ Fn

2 such
that f(x + a) = f(x), then the best approximation of f by a function of algebraic degree
r is achieved by a function g such that g(x + a) = g(x) and nlr(f) equals twice the r-th
order nonlinearity of the restriction of f to any linear hyperplane H excluding a.
- Note that the equality nlr(f) = 2nlr(f0) is also true if f0 and f1 differ by a function of
algebraic degree at most r − 1 since the function xn(f0 + f1) has then algebraic degree at
most r.
- The r-th order nonlinearity of the restriction of a function f to a hyperplane is lower
bounded by means of the r-th order nonlinearity of f (this simple result will be a very
useful tool in the sequel):

Proposition 1 Let f be an n-variable Boolean function, r a positive integer smaller than
n and H an affine hyperplane of Fn

2 . Then the r-th order nonlinearity of the restriction f0

of f to H (viewed as an (n− 1)-variable function) satisfies:

nlr(f0) ≥ nlr(f)− 2n−2.

Proof: We assume without loss of generality that H = Fn−1
2 × {0}. Let g be any (n− 1)-

variable function of algebraic degree at most r. Let us extend it to an n-variable function
of algebraic degree at most r, that we shall still denote by g. Then we have:

dH(f0, g) = 2n−2 − 1
2

∑
x∈H

(−1)f(x)+g(x) =

2n−2 − 1
4

 ∑
x∈F n

2

(−1)f(x)+g(x) +
∑

x∈F n
2

(−1)f(x)+g(x)+xn

 =

2n−2 − 1
4

(2n − 2dH(f, g) + 2n − 2dH(f, g + xn)) ≥ −2n−2 + nlr(f).

�
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3 Lower bounds on the nonlinearity profile of a func-
tion by means of the nonlinearity profiles of its deriva-
tives

Notation: We denote by Daf the so-called derivative of f in the direction of a ∈ Fn
2 :

Daf(x) = f(x) + f(x + a).

Applying such discrete derivation several times to a function f leads to the so-called higher
order derivatives Da1 · · ·Dak

f(x) =
∑

u∈F k
2

f(x +
∑k

i=1 uiai).
Note that if a1, · · · , ak are not linearly independent then Da1 · · ·Dak

f is null and, if they
are linearly independent, then the set {x +

∑k
i=1 uiai; u ∈ F k

2 } is a k-dimensional flat.
Note also that every derivation reduces the algebraic degree of f at least by 1.

We first give a (rather weak, but tight) lower bound on the r-th order nonlinearity of
any function f , knowing a lower bound on the (r− 1)-th order nonlinearity of at least one
of its derivatives (in nonzero directions).

Proposition 2 Let f be an n-variable function and r a positive integer smaller than n.
For every nonzero a ∈ Fn

2 , we have:

nlr(f) ≥ 1
2

max
a∈F n

2

nlr−1(Daf).

Proof: Let a0 be an element such that nlr−1(Da0f) = maxa∈F n
2

nlr−1(Daf). For every n-
variable function h of algebraic degree at most r, we have, denoting by wH the Hamming
weight: dH(f, h) = wH(f + g) and wH(Da0(f + h)) = dH(Da0f,Da0h) ≥ nlr−1(Da0f),
since the function Da0h has algebraic degree at most r−1. So let us show that wH(f +h) ≥
1
2wH(Da0(f + h)). Let H be a linear hyperplane such that a0 6∈ H. The Hamming weight
of the function Da0(f + h) equals twice the Hamming weight of its restriction to H. For
every x ∈ H such that Da0(f +h)(x) = 1, either x or x+a0 belongs to the support of f +h.
Hence, the Hamming weight of f + h is at least half the Hamming weight of Da0(f + h).
This completes the proof. �

This bound is tight. Indeed, take for f any Boolean function of algebraic degree r + 1
and of Hamming weight 2n−r−1 (i.e. the indicator of any (n − r − 1)-dimensional flat).
The r-th order nonlinearity of f equals its weight (see Section 2). The nonzero derivatives
of f are the indicators of (n− r)-dimensional flats and their (r − 1)-th order nonlinearity
equals their weight 2n−r.

Obviously, Proposition 2 can be repeatedly applied: for every i, we have

nlr(f) ≥ 1
2i

max
a1,...,ai∈F n

2

nlr−i(Da1 · · ·Dai
f).

This bound is also tight (take the same function as above). Proposition 2 and its itera-
tion are particular cases of a more general result that we give in Appendix (see Proposition
8). But we see clearly the limitation of this approach since we do not get a bound which
is equivalent to 2n−1.

We give now (in Corollary 1) a potentially stronger lower bound, valid when a lower
bound on the (r − 1)-th order nonlinearity is known for all the derivatives (in nonzero
directions) of the function.
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Proposition 3 Let f be any n-variable function and r a positive integer smaller than n.
We have:

nlr(f) ≥ 2n−1 − 1
2

√
22n − 2

∑
a∈F n

2

nlr−1(Daf).

Proof: Let h be any n-variable function of algebraic degree at most r. We have: ∑
x∈F n

2

(−1)f(x)+h(x)

2

=
∑

x,y∈F n
2

(−1)f(x)+f(y)+h(x)+h(y)

=
∑

a∈F n
2

∑
x∈F n

2

(−1)f(x)+f(x+a)+h(x)+h(x+a)

=
∑

a∈F n
2

∑
x∈F n

2

(−1)Daf(x)+Dah(x).

For every a ∈ Fn
2 , the derivative Dah has algebraic degree at most r − 1. Hence, we have∑

x∈F n
2
(−1)Daf(x)+Dah(x) = 2n − 2dH(Daf,Dah) ≤ 2n − 2nlr−1(Daf). This implies:

dH(f, h) = 2n−1 − 1
2

∑
x∈F n

2

(−1)f(x)+h(x) ≥ 2n−1 − 1
2

√
22n − 2

∑
a∈F n

2

nlr−1(Daf).

�

This bound also is tight. Take for f the indicator of any (n − r − 1)-dimensional flat
again. It has 2n−r−1 null derivatives (when a belongs to the direction of the flat). The
2n − 2n−r−1 nonzero derivatives of f are the indicators of (n − r)-dimensional flats and
have therefore (r − 1)-th order nonlinearity 2n−r.
We deduce 2n−1− 1

2

√
22n − 2

∑
a∈F n

2
nlr−1(Daf) = 2n−1− 1

2

√
22n − (2n+1 − 2n−r)2n−r =

2n−1 − 1
2

√
(2n − 2n−r)2 = 2n−r−1 = nlr(f).

Remark. It is not clear to us whether the bound of Proposition 3 is always better (or
equal) than that of proposition 2: for every function h of algebraic degree at most r, we
have the inequality

2n−1 − 1
2

√ ∑
a∈F n

2

∑
x∈F n

2

(−1)Daf(x)+Dah(x) = min(dH(f, h), dH(f, h + 1))

≥ 1
2

max
b∈F n

2

dH(Dbf,Dbh)

but when upper bounding
∑

x∈F n
2
(−1)Daf(x)+Dah(x) by 2n−2 nlr−1(Daf) and lower bound-

ing dH(Dbf,Dbh) by nlr−1(Dbf), we cannot know whether this inequality will remain true.
However, we could not find examples where the bound of Proposition 3 is worse than that
of Proposition 2.

Corollary 1 Let f be an n-variable function and r a positive integer smaller than n.
Assume that, for some non-negative integers K and k, we have nlr−1(Daf) ≥ 2n−1−K 2k

for every nonzero a ∈ Fn
2 , then

nlr(f) ≥ 2n−1 − 1
2

√
(2n − 1)K2k+1 + 2n ≈ 2n−1 −

√
K 2(n+k−1)/2.
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Proof: According to Proposition 3, we have

nlr(f) ≥ 2n−1 − 1
2

√
22n − 2(2n − 1)(2n−1 −K 2k)

= 2n−1 − 1
2

√
(2n − 1)K 2k+1 + 2n.

�

Remark. Let f have algebraic degree exactly 3. Proposition 2 implies only that nl2(f) ≥
2n−3. If we assume that all the derivatives Daf , a 6= 0 have algebraic degree exactly 2, then
Corollary 1 with K = 1 and k = n−2 implies that nl2(f) ≥ 2n−1− 1

2

√
(2n − 1)2n−1 + 2n =

2n−1 − 1
2

√
(2n + 1)2n−1 ≈ 2n−1 − 2n−3/2, which is slightly stronger. Note that n-variable

cubic functions whose derivatives Daf , a 6= 0 all have algebraic degree 2 do exist for n ≥ 5,
since the number of functions of algebraic degrees at most 3 equals 2(n

3)+(n
2)+n+1, the num-

ber of functions of algebraic degrees at most 3 having at least one affine derivative is upper
bounded by (2n − 1) 2(n−1

3 )+(n−1
2 )+2n (indeed, such function is an affine-type extension of

a function of algebraic degree at most 3 on a linear hyperplane of Fn
2 ) and the difference

between these two numbers is strictly positive for n ≥ 5.

Applying two times Proposition 3, we obtain the bound

nlr(f) ≥ 2n−1 − 1
2

√√√√ ∑
a∈F n

2

√
22n − 2

∑
b∈F n

2

nlr−2(DaDbf).

Applying it ` times, we get

nlr(f) ≥ 2n−1 − 1
2

√√√√√ ∑
a1∈F n

2

√√√√ ∑
a2∈F n

2

· · ·
√

22n − 2
∑

a`∈F n
2

nlr−`(Da1 · · ·Da`
f).

4 Functions with provably lower bounded second order
nonlinearity

We study now the main classes of Boolean functions which are used in cryptography: the
Maiorana-McFarland functions (which have led to many constructions of functions allowing
good trade-off between several cryptographic criteria, such as nonlinearity, resiliency ...)
and the Boolean functions tr(λF (x)) where F is a vectorial Boolean function over the field
F2n whose nonlinearity is provably high.

4.1 Maiorana-McFarland functions

Let k be a positive integer smaller than n, let g be a Boolean function on Fn−k
2 and let φ

be a mapping from Fn−k
2 to F k

2 . Set:

fφ,g(x, y) = x · φ(y) + g(y), x ∈ F k
2 , y ∈ Fn−k

2

where “·” is the usual inner product in F k
2 .

We have (see e.g. [2]):

nl1(fφ,g) ≥ 2n−1 − 2k−1 max
u∈F k

2

|φ−1(u)|, (1)
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where |φ−1(u)| denotes the size of φ−1(u). Any derivative of such Maiorana-McFarland
function is a Maiorana-McFarland function: for every a ∈ F k

2 and every b ∈ Fn−k
2 , we have

Da,b (fφ,g(x, y + b)) = x ·Db φ(y) + a · φ(y) + Db g(y) = fDb φ,a·φ+Dbg(x, y). Note that for
b = 0, we have maxu∈F k

2
|(Dbφ)−1(u)| = (Dbφ)−1(0)| = 2n−k. We deduce from Proposition

3 and from Relation (1) that
nl2(fφ,g) ≥

2n−1 − 1
2

√
22n − 2 (2n − 2k)(2n−1 − 2k−1 max

u∈F k
2 ,b∈(F n−k

2 )∗
|(Db φ)−1(u)|) =

2n−1 − 1
2

√
2n+k + 2k(2n − 2k) max

u∈F k
2 ,b∈(F n−k

2 )∗
|(Db φ)−1(u)|.

Similar bounds on nlr(fφ,g) can also be given.

4.2 Functions of univariate degree 2t − 1

Let us identify Fn
2 with the field F2n and denote by tr the absolute trace function over

Fn
2 . Let t ≤ n be a positive integer and g(x) a univariate polynomial of degree 2t − 1 over

Fn
2 . Let f(x) = tr(g(x)). Then every derivative Daf , a 6= 0, is the trace of a univariate

function of degree 2t − 2 and equals in fact the trace of a univariate function of degree at
most 2t− 3, after reduction using the equality tr(y2) = tr(y). The term in x2t−3 can come
from x2t−1 +(x+a)2

t−1 only, and thus cannot vanish. Hence, according to the Weil bound
[19], its first-order nonlinearity is then at least 2n−1 − (2t − 4)2n/2−1. Corollary 1 with
K = 2t − 4 and k = n/2− 1 implies that nl2(f) ≥ 2n−1 − 1

2

√
(2n − 1)(2t − 4)2n/2 + 2n ≈

2n−1 − 23n/4+t/2−1.

4.3 The Welch function

The vectorial Welch function x → x2t+3, where t = n−1
2 , n odd, is an AB function, i.e.

has the best possible nonlinearity as a vectorial function [1]. It is a permutation. So all
the Boolean functions tr(λx2t+3), λ 6= 0, are affinely equivalent to each others (through
the automorphisms x → µx). We shall therefore study only the function tr(x2t+3) that we
shall denote by fwelch(x). The second order nonlinearity of this function is good, for all the
values of n for which it could be computed; we shall see at Subsection 4.5 that it is slightly
better than that of the inverse function (for instance, for n = 9, it equals 184, according to
[13, 16, 12]). Note however that this function cannot be used as a cryptographic function
since its algebraic degree (which equals, for any such function, the 2-weight of the exponent,
i.e., the number of 1’s in its binary expansion, that is 3 here for the exponent 2t +3) is too
low and does not allow resistance to higher order differential cryptanalyses. Nevertheless,
let us determine a lower bound on the first-order nonlinearities of its derivatives, in order
to compare what we get thanks to Corollary 1 with the actual values of its second order
nonlinearity obtained by running a computer.

Lemma 1 Any derivative, in a nonzero direction, of the function fwelch(x) = tr(x2t+3)
has nonlinearity at least 2n−1 − 2

n+3
2 .

Proof: A straightforward calculation (which was the starting point of Dobbertin’s proof of
the almost perfect nonlinearity of the Welch function [11]) gives for every nonzero a ∈ Fn

2

that, denoting r = t + 1, we have Dafwelch(ax) = tr(a2t+3[q(x + x2t

) + 1]), where q(x) =
x2r+1 + x3 + x.
The function ga(x) = tr(a2t+3(q(x+x2t

)) is such that ga(x+1) = ga(x). According to what
we have seen at Section 2, this implies that nl(Dafwelch) equals twice the nonlinearity of
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the restriction of ga to the linear hyperplane H = {x ∈ Fn
2 / tr(x) = 0} (indeed, H

excludes 1 since n is odd). Since the function x ∈ H → x + x2t

is a linear automorphism
of H, nl(Dafwelch) therefore equals twice the r-th order nonlinearity of the restriction of
tr(a2t+3q(x)) to H.
Let us denote b = a2t+3. The nonlinearity of the n-variable quadratic function tr(bq(x))
equals 2n−1 − 2

n+k
2 −1 where k is the dimension of the vectorspace E = {x ∈ Fn

2 /∀y ∈
Fn

2 , tr(b q(x))+tr(b q(y))+tr(b q(x+y)) = 0} and has same evenness as n (see [20, 2]). We
have tr(b q(x))+ tr(b q(y))+ tr(b q(x+ y)) = tr(b (x2r

+x2)y + b (y2r

+ y2)x) = tr([b (x2r

+
x2) + b2t

x2t

+ b2n−1
x2n−1

]y), since r + t = n, tr(u2) = tr(u) and u2n

= u, for every
u ∈ Fn

2 . We deduce that E = {x ∈ Fn
2 / b (x2r

+ x2) + b2t

x2t

+ b2n−1
x2n−1

= 0} = {x ∈
Fn

2 / b2(x2r+1
+ x4) + b2r

x2r

+ b x = 0}. We use now the multivariate method initiated in
numerous papers by H. Dobbertin. Let us denote y = x2r

and d = b2r

, then the equation
becomes

E1 : b2y2 + d y = b2x4 + b x.

Squaring gives
E2 : b4y4 + d2y2 = b4x8 + b2x2

and raising E1 to the 2r power gives

E3 : d2x4 + b2x2 = d2y4 + d y , i.e., d2y4 + d y = d2x4 + b2 x2.

The square root (that is, the 2n−1-th power) of equation E1 + E3 is

E′1 : d y2 + b y = b x2 + (b x)2
n−1

+ d x2 + b x.

The equation b4E3 + d2E2 gives

E′2 : d4y2 + b4d y = b4d2x4 + b6x2 + b4d2x8 + b2d2x2.

The equation b2E′1 + d E1 gives

E′′1 : (b3 + d2)y = b3x2 + b2(b x)2
n−1

+ b2d x2 + b3x + b2d x4 + b d x

and the equation d4E1 + b2E′2 gives

E′′2 : (d5 + b6d)y = b2d4x4 + b d4x + b6d2x4 + b8x2 + b6d2x8 + b4d2x2.

The square of the equation obtained by elimination of y between the two equations E′′1
and E′′2 gives an equation of degree 16 in x. Hence, we have k ≤ 4 and therefore k ≤ 3
since n is odd. Applying then Proposition 1, we deduce that the first-order nonlinearity of
Dafwelch is at least 2 (2n−1 − 2

n+1
2 − 2n−2) = 2n−1 − 2

n+3
2 . �

Corollary 1 with K = 1 and k = n+3
2 gives then:

Proposition 4 Let fwelch(x) = tr(x2t+3), t = n−1
2 . Then we have:

nl2(fwelch) ≥ 2n−1 − 1
2

√
(2n − 1)2

n+5
2 + 2n ≈ 2n−1 − 2(3n+1)/4.

In Table 1, for n ranging from 5 to 13, we indicate the values given by this bound,
compared with the actual values, computed by running a computer, with an algorithm
due to G. Kabatiansky and C. Tavernier and improved and implemented by Fourquet et
al. [13, 16, 12]. For values of n smaller than 5, the bound gives negative numbers and for
values greater than 13, the algorithm is unable to produce results. Note that Proposition
4 gives an approximation of the actual value which is proportionally better and better
when n increases. Moreover, the difference between 2n−1 and our bound equals twice the
difference between 2n−1 and the actual value, in average for 5 ≤ n ≤ 13. In Table 2 we
give, for n = 15 and 17, the values given by our bound, compared with upper bounds
obtained by Fourquet et al. [13, 16, 12].

8



n 5 7 9 11 13
the bound 0 19 128 662 3072

the actual values 6 36 184 848 between 3360 and 3696
% 0 53 70 78 between 83 and 91

Table 1: The values of the lower bound on nl2(fwelch) given by Proposition 4,
the actual values and the ratio

n 15 17
the lower bound 13487 57343

overestimation of the values 15488 63680
% 87 90

Table 2: The values of the lower bound on nl2(fwelch) given by Proposition 4,
an overestimation of the actual values and the ratio

4.4 A power function with better second-order nonlinearity

We study now a function which is similar to the Welch function, but whose second order
nonlinearity computed in [13, 16, 12] gives better results than for the Welch function. The
Boolean function fwelch′(x) = tr(x2r+3), r = n+1

2 (that we shall call the modified-Welch
function) has derivatives Dafwelch′(x) = tr(a x2r+2 + a2x2r+1 + a2r

x3) + `(x) where ` is
affine. The nonlinearity of this quadratic function equals 2n−1 − 2

n+k
2 −1 where k is the

dimension of the vectorspace E = {x ∈ Fn
2 / a2n−1

x2r−1
+ a2r−1

x2r

+ a2x2r

+ a2r

x2r−1
+

a2r

x2 + a2r−1
x2n−1

= 0}. We denote y = x2r

and b = a2r

. The square of the equation
above becomes:

E1 : (a + b2)y + (b + a4)y2 + b2x4 + bx = 0.

The square of E1 is:

E2 : (a2 + b4)y2 + (b2 + a8)y4 + b4x8 + b2x2 = 0

and its 2r-th power is:

E3 : (b + a4)x2 + (a2 + b4)x4 + a4y4 + a2y = 0.

Eliminating y4 from equations E2 and E3 gives the following equation E′1:

(a6 + a4b4)y2 + (a10 + a2b2)y + a4b4x8 + (a2 + b4)(b2 + a8)x4 + (a4b2 + (b + a4)3)x2 = 0.

Eliminating y from E1 and E3 and taking the square root of the resulting equation gives

E′2 : (a5·2n−1
+ a2b)y2 + (ab2n−1

+ a3)y + (ab + (a + b2)3·2
n−1

)x2+

(a2n−1
+ b)(b2n−1

+ a2)x + ab2n−1
x2n−1

= 0.

Eliminating then y2 from E′1 and E′2 gives an equation E′′1 in y, x8, x4, x2, x and x2n−1
.

Eliminating y2 from equations E1 and E′1 gives and equation E′′2 in y, x8, x4, x2 and x.
Eliminating y from E′′1 and E′′2 and squaring the resulting equation gives an equation of
degree 16 in x. This shows that k ≤ 3. We deduce that the nonlinearity of Dafwelch′ is at
least 2n−1 − 2

n+1
2 and Corollary 1 with K = 1 and k = n+1

2 gives then:

Proposition 5 Let fwelch′(x) = tr(x2r+3), r = n+1
2 . Then we have:

nl2(fwelch′) ≥ 2n−1 − 1
2

√
(2n − 1)2

n+3
2 + 2n ≈ 2n−1 − 2(3n−1)/4.

9



Remark. The methods we used for lower bounding the second order nonlinearities of the
Welch functions and of the modified-Welch functions are not exactly the same. In fact, the
method used to prove Proposition 4 is slightly more complex than that used for Proposition
5. This is because the method of Proposition 5 gives worse results in the case of the Welch
function. In the case of the modified-Welch function, both methods give the same result
and we presented the simplest one.

The bound of Proposition 5 is better than for the Welch function. And actually, for
n = 9, we can see in Table 3 below that the value of nl2(fwelch′) is 188 as shown in
[13, 16, 12], which is better than for the Welch function (that is, 184). Note at the last line
of Table 3 that our bound is better than in the case of the Welch function. The difference
between 2n−1 and our bound is in average 1.5 times the difference between 2n−1 and the
actual value (for these values of n). Finally, note that our bound gives a lower bound for
n = 13 which is better than what could give the algorithm.
In Table 4 we give, for n = 15 and 17, the values given by our bound, compared with upper
bounds obtained by Fourquet et al. [13, 16, 12].

n 5 7 9 11 13
the bound 5 32 165 768 3371

the actual values 6 36 188 848 between 3300 and 3696
% 83 89 88 90 between 91 and 100

Table 3: The values of the lower bound on nl2(fwelch′) given by Proposition 5,
the actual values and the ratio

n 15 17
the lower bound 14335 59741

overestimation of the values 15504 63648
% 92 94

Table 4: The values of the lower bound on nl2(fwelch′) given by Proposition 6,
an overestimation of the actual values and the ratio

4.5 The inverse function

Let us consider the so-called inverse functions fλ(x) = tr(λx2n−2), where λ is any element
of F ∗

2n and where n is any positive integer. Here again, all the Boolean functions fλ, λ 6= 0,
are affinely equivalent to each others. We shall write finv for f1. But we shall need however
the notation fλ in the calculations below. We have fλ(x) = tr

(
λ
x

)
, with the convention

that λ
0 = 0 (we shall always assume this kind of convention in the sequel). Recall that the

component functions of the S-boxes of the AES are of this type (with n = 8).
We shall be able to obtain a lower bound for the whole nonlinearity profile of finv.

For every nonzero a ∈ F2n , we have (Dafλ)(ax) = tr
(

λ
ax + λ

ax+a

)
= tr

(
λ/a

x2+x

)
=

fλ/a(x2 +x) if x 6∈ F2 and (Dafλ)(ax) = tr(λ/a) if x ∈ F2. We deduce that, for every r, we
have nlr(Dafλ) ≥ nlr(gλ/a)− 2, where gλ/a(x) = fλ/a(x2 + x) is such that gλ/a(x + 1) =
gλ/a(x). We have seen at Section 2 that this implies that nlr(gλ/a) equals twice the
r-th order nonlinearity of the restriction of gλ/a to any linear hyperplane H excluding
1. Since the function x → x2 + x is a linear isomorphism from H to the hyperplane
{x ∈ F2n / tr(x) = 0}, we see that nlr(gλ/a) equals twice the r-th order nonlinearity of the
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restriction of fλ/a to this hyperplane. Applying then Proposition 1, we deduce that

nlr(Dafλ) ≥ 2 nlr(fλ/a)− 2n−1 − 2. (2)

The first order nonlinearity of the inverse function is lower bounded by 2n−1 − 2n/2 (it
equals this value if n is even). It has been more precisely proven in [18] that the character
sums

∑
x∈F2n

(−1)fλ(x)+tr(ax), called Kloosterman sums, can take any value divisible by 4
in the range [−2n/2+1 + 1, 2n/2+1 + 1].
We deduce:

Lemma 2 Every derivative (in a nonzero direction) of any inverse Boolean function has
first-order nonlinearity at least 2n−1 − 2n/2+1 − 2.

Remark.
In [8] is proven that, when a ranges over F ∗

2n , the values of the sums
∑

x∈F2n
(−1)Dafinv(x)

are all integers divisible by 8 in the range [−2n/2+1 − 3, 2n/2+1 + 1]. Nothing is proven
for the sums

∑
x∈F2n

(−1)Dafinv(x)+tr(bx). This property of the former sums cannot be ex-
tended to all of the latter, since the derivatives of the inverse Boolean function would then
have nonlinearities at least 2n−1 − 2n/2 − 1 and this would lead, thanks to Corollary 1, to
a lower bound on the second order nonlinearity of this function which is in contradiction
with the actual values given at Table 5. Is it possible to prove that some of the derivatives
of finv have nonlinearities at least 2n−1 − 2n/2 − 1? The nice idea of [8] for proving the
result in the case b = 0 does not seem to work for b 6= 0: denoting y = x2n−2 and observing
that (Dafλ)(ax) = tr

(
λ y2

a(y+1)

)
= tr

(
λ
a (y + 1) + λ

a(y+1)

)
brings back to Kloosterman sums

when b = 0, but when b 6= 0, we have (Dafλ)(ax) + tr(bx) = tr
(
λ(y + 1) + λ

a(y+1) + b
y

)
and this leads to a sum which is more complex than a Kloosterman sum.

Applying Corollary 1 with r = 2, K = 2n/2+1 + 2 and k = 0, we deduce:

Proposition 6 Let finv(x) = tr(x2n−2). Then we have:

nl2(finv) ≥ 2n−1 − 1
2

√
(2n − 1)(2n/2+2 + 4) + 2n ≈ 2n−1 − 23n/4.

In Table 5, for n ranging from 4 to 12 (for smaller values of n, the bound gives negative
numbers), we indicate the values given by this bound, compared with the actual values
computed by Fourquet et al. [13, 16, 12]. Note that, here again, Proposition 6 gives
an approximation of the actual value which is proportionally better and better when n
increases. In fact, the approximation is better than for the Welch function. The difference
between 2n−1 and our bound is in average 1.5 times the difference between 2n−1 and the
actual value (for these values of n).
In Table 6 we give, for n = 13, 14 and 15, the values given by our bound, compared with
upper bounds obtained by Fourquet et al. [13, 16, 12].

n 4 5 6 7 8 9 10 11 12
the bound 0 2 8 25 62 146 328 716 1532
the values 2 6 14 36 82 182 392 842 between 1720 and 1776

% 0 33 52 69 76 80 84 85 between 86 and 89

Table 5: The values of the lower bound on nl2(finv) given by Proposition 6,
the actual values and the ratio
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n 13 14 15
the lower bound 3230 6737 13941

overestimation of the values 3696 7580 15506
% 87 89 90

Table 6: The values of the lower bound on nl2(finv) given by Proposition 6,
an overestimation of the actual values and the ratio

4.6 Remark on the Kasami function

Determining or efficiently lower bounding the first-order nonlinearities of the derivatives of
Kasami functions is an open problem, and we could not obtain a lower bound on its nonlin-
earity profile by using Corollary 1. When n is odd, an obvious observation is that, for every
Boolean function g of algebraic degree strictly less than the algebraic degree k + 1 of the
Kasami function f(x) = tr(ax22k−2k+1), gcd(k, n) = 1, the Hamming distance between the
functions f and g is equal to the Hamming weight of the function tr(ax23k+1 + g(x2k+1)).
Indeed, the mapping x → x2k+1 is a permutation and f(x2k+1) = tr(ax23k+1). This func-
tion has algebraic degree at most 2r when the algebraic degree of g is at most r ≤ k. Since
the function f + g has algebraic degree k + 1 under this same condition, we deduce that
nlr(f) ≥ max(2n−2r, 2n−k−1), for every r ≤ k. The second order nonlinearities of Kasami
functions seem worse than those of the Welch, modified-Welch and inverse functions, ac-
cording to [13, 16, 12], but they seem much better than what gives this observation for
r = 2.

5 A bound for the whole nonlinearity profile of the
inverse function

Thanks to Proposition 6 and to Relation (2), we can now apply Corollary 1 with r = 3,
K =

√
(2n − 1)(2n/2+2 + 4) + 2n + 2 and k = 0, we deduce:

Proposition 7 Let finv(x) = tr(x2n−2). Then we have:

nl3(finv) ≥ 2n−1 − 1
2

√
(2n − 1)

(
2
√

(2n − 1)(2n/2+2 + 4) + 2n + 4
)

+ 2n ≈ 2n−1 − 27n/8.

Unfortunately, we cannot produce a table to compare this bound and the actual values, as
we did for the second order, because for small values of n (precisely, for n ≤ 8), the bound
gives negative numbers, and for greater values, the algorithm is unable to produce results.

The same process can be iteratively applied, giving a lower bound on the r-th order
nonlinearity of the inverse functions for r ≥ 4. The expression of this lower bound is:

nlr(finv) ≥ 2n−1 − lr,

where, according to Relation (2) and to Corollary 1, the sequence lr is defined by l1 = 2n/2

and lr =
√

(2n − 1)(lr−1 + 1) + 2n−2. The expression of lr is more and more complex
when r increases. Its value is approximately equal to kr, where k1 = n/2 and kr = n+kr−1

2 ,
and therefore kr = (1 − 2−r)n. Hence, nlr(finv) is approximately lower bounded by
2n−1 − 2(1−2−r) n and asymptotically equivalent to 2n−1.
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6 Appendix

In the next proposition, we generalize Proposition 2 and its iteration.

Proposition 8 Let f be an n-variable function and r a positive integer smaller than n.
Let E and F be two subspaces of Fn

2 whose direct sum equals Fn
2 . We denote the dimension

of E by m. For every u ∈ E, let us denote by fu the restriction of f to the flat u + F
(fu can be viewed as an (n − m)-variable function). Let k be a positive integer such that
k ≤ m and let {A1, · · · , A2m−k} be a partition of E by k-dimensional flats. For every
i = 1, · · · , 2m−k, let us denote by fi the function

∑
u∈Ai

fu. Then, for every r ≥ k, we
have:

nlr(f) ≥
2m−k∑
i=1

nlr−k(fi).

Proof: Let h be a function of algebraic degree at most r such that nlr(f) = wH(f + h).
We have wH(f + h) =

∑
u∈E wH(fu + hu) =

∑2m−k

i=1

(∑
u∈Ai

wH(fu + hu)
)
. For every

i = 1, · · · , 2m−k, we have
∑

u∈Ai
wH(fu + hu) ≥ wH(fi + hi) = dH(fi, hi). It is a simple

matter to prove by induction on k that, h having algebraic degree at most r, function hi

has algebraic degree at most r − k. This completes the proof. �

The bound nlr(f) ≥ 1
2nlr−1(Daf), a 6= 0, corresponds in Proposition 8 to the case

where E = {0, a} (and F is any vector space not containing a) and k = 1. The bound
nlr(f) ≥ 1

2i nlr−i(Da1 · · ·Daif), a 6= 0, corresponds to the case where E is an i-th dimen-
sional vector space and k = i.
Note that for k = r, Proposition 8 gives

nlr(f) ≥
2m−r∑
i=1

min(wH(fi), wH(fi + 1)).
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If every function fi is balanced then this gives nlr(f) ≥ 2m−r · 2n−m−1 = 2n−r−1. This is
the same bound as for a function of algebraic degree r +1, while we do not have to assume
here that f has algebraic degree r + 1. But we see clearly the limitation of this approach
since we do not get a bound which is equivalent to 2n−1.

Remark on Proposition 3: we could try considering similar sums as in the proof of this
proposition, but with exponents greater than 2. However, this leads to considering sets of
the form {x1, · · · , x`} instead of {x, y} and such set being not a flat when ` > 2, we would
not be led to derivatives of h; the algebraic degree would then remain r instead of being
reduced. A possible solution to this problem is to sum up sums of this form corresponding
to h ranging over a coset of the Reed-Muller code of order ` − 1. For every n-variable
function h of algebraic degree at most r, we have

∑
g∈RM(`−1,n)

 ∑
x∈F n

2

(−1)f(x)+h(x)+g(x)

2`

=

∑
x1,··· ,x2`∈F n

2

(−1)
P2`

i=1(f+h)(xi)

 ∑
g∈RM(`−1,n)

(−1)
P2`

i=1 g(xi)

 .

The sum
∑

g∈RM(`−1,n)(−1)
P2`

i=1 g(xi) is the character sum over a vector space of a linear

form; hence, it is null for every tuple (x1, · · ·x2`) such that the expression
∑2`

i=1 g(xi) is

not identically null. Since
∑2`

i=1 g(xi) equals the inner product between g ∈ RM(`− 1, n)
and the function equal to 1x1 + · · ·+ 1x2`

, where 1xi
denotes the indicator of the singleton

{xi}, this means that the sum is nonzero if and only if the function 1x1 + · · ·+1x2`
belongs

to the dual of RM(`−1, n), that is, RM(n− `, n). We know (see [20, 2]) that the elements
of weights at most 2` of the code RM(n− `, n) are the null element and the indicators of `-
dimensional flats. Denoting by E` the set of those 2`-tuples (x1, · · · , x2`) of vectors xi of Fn

2

which are pairwise equal to each others and by A` the set of those 2`-tuples (x1, · · · , x2`)
of vectors xi of Fn

2 such that {x1, · · · , x2`} is an `-dimensional flat, we deduce (since we
know that the maximum is achieved at least by two functions g):

max
g∈RM(`−1,n)

 ∑
x∈F n

2

(−1)f(x)+h(x)+g(x)

2`

≤

1
2

∑
g∈RM(`−1,n)

 ∑
x∈F n

2

(−1)f(x)+h(x)+g(x)

2`

=

1
2
|RM(`− 1, n)|

 ∑
(x1,··· ,x2` )∈E`

(−1)
P2`

i=1(f+h)(xi) +
∑

(x1,··· ,x2` )∈A`

(−1)
P2`

i=1(f+h)(xi)

 =

1
2
|RM(`− 1, n)|

|E`|+
∑

a1,··· ,a`∈F n
2

a1,··· ,a`linearly independent

∑
x∈F n

2

(−1)Da1 ···Da`
f(x)+Da1 ···Da`

h(x)

 .

Note that Da1 · · ·Da`
h has algebraic degree at most r − `. Then we deduce

nlr(f) ≥ 2n−1 − 1
2

2
√̀

∆,
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where ∆ equals

1
2
|RM(`− 1, n)|

|E`|+ 2n(2n − 1) · · · (2n − 2`−1)− 2
∑

a1,··· ,a`∈F n
2

nlr−`(Da1 · · ·Da`
f)

 .

But this bound is interesting only when
∑

a1,··· ,a`∈F n
2

nlr−`(Da1 · · ·Da`
f) has very small

value. Similarly to Corollary 1, we deduce that if, for some non-negative integers K and k,
we have nlr−2(Da1 · · ·Da`

f) ≥ 2n−1−K 2k for every linearly independent a1, · · · , a` ∈ Fn
2 ,

then

nlr(f) ≥ 2n−1 − 1
2

2
√̀

Λ

where Λ = 1
2 |RM(` − 1, n)|

(
|E`|+ K 2k+1(2n − 1)(2n − 2) · · · (2n − `)

)
. But this can be

useful only if K 2k is very small. �
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