
White Box Cryptography: a new attempt

Julien Bringer1, Hervé Chabanne1, and Emmanuelle Dottax?

1 Sagem Défense Sécurité

Abstract. At CMS 2006 Bringer et al. show how to conceal the alge-
braic structure of a “traceable block cipher” by adding perturbations
to its description. We here exploit and strengthen their ideas by further
perturbing the representation of a cipher towards a white box implemen-
tation. Our technique is quite general, and we apply it – as a challenging
example in the domain of white box cryptography – to the block cipher
AES.

Key words: white box cryptography, obfuscation, perturbations, AES.

1 Introduction

In this work, we aim at protecting the design of a block cipher, as well
as any secrets involved in the computations, while the whole implemen-
tation is actually available to attackers, i.e. in a white box environment.
White box cryptography is indeed intended to provide a practical level of
protection of software implementations on an untrusted host. The main
constraint is that the result must be directly executable.

Here, the attacker has in his possession the full implementation of a
keyed block cipher and he looks for the key. The general idea to secure
an implementation is to add one or more input and output encodings
resulting in a obfuscated function that is harder to analyse or tamper
with. Chow et al. introduce this idea and propose a white box imple-
mentation of DES in [4] by interleaving affine transformations and using
de-linearization techniques. An improvement is explained in [10]. An im-
plementation of AES is also given in [5] by representing it with a set
of key-dependent look-up tables. Some attacks that can exploit the non-
linear properties of S-boxes have also been proposed regarding these at-
tempts, such as the statistical bucketing attack and the injection of faults
(e.g. see [9, 10]) for DES implementation or by the analysis of look-up
tables composition for AES [2]. Our approach here is different since, in

? Work done while the third author was at Sagem Défense Sécurité.



addition to mixing transformations, we introduce some perturbations in
the cipher.

In [1], Billet and Gilbert proposed a traceable block cipher. The idea
was to represent and implement the same instance of a cipher in different
ways. An authority, which knows secret components of the cipher, is able
to distinguish the different instances, while attackers are unable to forge
untraceable representations. The security of this scheme is based on the
Isomorphism of Polynomials (IP) problem [12]. In [8], algorithms to solve
this problem were proposed, and a challenging example of [1] has been
broken.

In [7], the idea of introducing perturbations to reinforce an IP-based
cryptosystem is introduced. In a similar approach, Bringer et al. show
in [3] how to perturb the representation of the traceable block cipher by
Billet and Gilbert to move it away from these attacks [8]. The principle of
the protection is to add perturbations to the original equations in order to
dissimulate the algebraic structure, which is actually needed to mount the
attack. Based on this work, we here propose new ideas which should help
protecting better. Particularly, we add specific terms to the first round
which are cancelled only in the last round such that every round is tightly
linked to the others. As a challenging example, we give an application of
our techniques to the AES block cipher, and propose an implementation
in a white box cryptography approach.

The paper is organized as follows. In Sect. 2, we give a brief recall of
the principle of the protection and of the perturbations introduced by [3].
In Sect. 3, we present our modifications of these previous protections.
In Sect. 4, we give practical implementations of our ideas to AES for a
white box representation. In Sect. 5 we analyse the security of this new
representation. Finally, we conclude in Sect. 6.

2 Bringer et al.’s perturbations [3]

The traceable block cipher introduced by Billet and Gilbert [1] consists of
rounds, Gi,j denoting the system of equations of user j’s representation
of the i-th round. The attack of [8] uses the algebraic structure of this
system to recover the secret components, thus the aim of [3] is to hide this
structure (or merely to modify it). To describe the protection proposed
by [3], we first have to introduce some notations. Let 0̃ be a polynomial
which “often” vanishes – or, say, in a controlled way – and P̃ = P + 0̃,
where P is a polynomial. By the way, S̃ stands for a system S of equations
where such substitutions are made, replacing some equations P by P̃ .



The idea of [3] is simply to replace the original systems of polynomials

Gi,j by G̃i,j and to insert random linear transformations between two
rounds to hide this modification. Then, the algebraic structure of each
round is made less accessible to an attacker, and the attack [8] seems
hard to apply anymore since the description of the original system is not
available.

On the other hand, as the new system does not always give the right
result anymore, the system Gi,j has to be replaced by distinct, concurrent

systems G̃i,j with correlated polynomials 0̃, such that a majority vote
allows to decide which result has to be kept.

The way polynomials 0̃ are constructed is recalled below as they are
part of our new protection. They start with well-known linearized poly-
nomials:

Definition 1. Let q0 a power of 2 and q = qm
0 ,

– a q0-polynomial over GF (q) is a polynomial of the form L(X) =∑e
i=0 aiX

q0
i
, with e ∈ N and (a0, . . . , ae) ∈ GF (q)e+1,

– an affine q0-polynomial over GF (q) is a polynomial of the form A(X) =
L(X) − α where α ∈ GF (q) and L is a q0-polynomial.

Proposition 1. Let L be a q0-polynomial, then the set of its roots is a

linear subspace of its splitting field, i.e. L(X) =
∏

α∈V (X − α)κ
for V a

linear subspace and some κ ≥ 1. In fact, for a q0-polynomial with simple

roots, κ = 1.

The construction of a polynomial 0̃ given in [3] is then the following:

1. let Q be an affine q0-polynomial over GF (qm
0 ) which equals zero over

a subspace U of dimension e,

2. a multivariate version of Q is made by choosing a random multivariate
polynomial with a small number of terms f ∈ GF (qm

0 )[X1, . . . , Xnf
],

computing Qf = Q(f(X1, . . . , Xnf
)) and checking if at least 1/2m−e

points of GF (qm
0 )nf have an image following f in U ,

3. then 0̃ = L(f(X1, . . . , Xnf
))H(X1, . . . , Xn) where H is a random

polynomial in n variables over GF (q) chosen s.t. 0̃ has at least some
monomials of chosen shapes.

The resulting polynomial vanishes at least on 1/2m−e points.



3 Perturbing a block cipher to hide its structure

3.1 Overview

We present a generalization of the ideas above by modifying rounds of a
block cipher, when these rounds are expressed as a system of polynomial
equations in a finite field. It leads to a polynomial white box implemen-
tation.

For this, we introduce additional terms that are mixed to the ones of
the original system by linear transformations:

– we introduce random variables in every round (but the last one), they
are here to dissimulate the information;

– we also add specific terms to the first round, that will often take some
predetermined value. These terms generalize the 0̃ described in the
previous section. They are carried round after round, up to the last
one;

– finally, corresponding polynomials – chosen for vanishing when the
predetermined value is reached – are added to the last round.

Thus doing, intermediate results given by rounds are ‘false’ with a high
probability as the specific terms added in the first round perturb all the
intermediate values until they are cancelled in the last round.

3.2 Notations

Now, we work with a generic block cipher and in the remainder of the
paper, we will adopt the following notations:

– X = (x1, . . . , xn) denotes the input variable of the cipher,
– Y 1

i = (y1
i,1, . . . , y

1
i,n) the output variable of the i-th round.

These variables lie in a finite field and each operation – including S-boxes
– appearing in the round can be expressed as a polynomial, obtained
by combination of its component functions. This way, we compute the
system of equations representing the whole round and denote by Si the
system for the i-th round of the cipher.

We get Y 1
1 = S1(X) and, for the other rounds, Y 1

i = Si(Y
1
i−1). We

also introduce the following variables, associated to the i-th round:

Y 2
i =(y2

i,1, . . . , y
2
i,s),

Y 3
i =(y3

i,1, . . . , y
3
i,ti

),

Zi =(zi,1, . . . , zi,n+s+ti).



In the new representation, the i-th round outputs n + s + ti variables,
written Zi. We now describe the operations implemented in the modified
rounds for a cipher consisting of R rounds. We distinguish the first and
the last ones.

3.3 Modifying the representation of each round

First round. The first round consists in the execution of the following
operations (see. Fig. 1):

1. Y 1
1 = S1(X), Y 2

1 = Φ̃(X), Y 3
1 = R1(X),

2. Z1 = M1(Y
1
1 , Y 2

1 , Y 3
1 ),

where:

– S1 is the system corresponding to the first round of the original cipher;

– Φ̃ is a system of s polynomials taking “often” a value (ϕ1, . . . , ϕs)
and constructed as Φ̃(X) = (0̃(X) + ϕ1, . . . , 0̃(X) + ϕs) for a given
polynomial 0̃ (e.g. as in Sec. 2);

– R1 is a random system of t1 polynomial equations;

– M1 is a linear bijection, represented by an n + s + t1 square matrix.

The first round is implemented as the composition of these operations,
i.e. by a system of n + s + t1 equations: Z1 = S′

1(X).

PSfrag replacements

X = (x1, . . . , xn)

Y 1

1 = S1(X) Y 2

1 = eΦ(X) Y 3

1 = R1(X)

M1

M2

S′

1

Z1

Fig. 1. Protected representation of first round.



Following rounds. The following rounds, except the last one, consist
in the following operations (see. Fig. 2). For i ∈ {2, . . . , R − 1},

1. (Y 1
i−1, Y

2
i−1, Y

3
i−1) = M−1

i−1(Zi−1),
2. Y 1

i = Si(Y
1
i−1), Y 2

i = Y 2
i−1, Y 3

i = Ri(Zi−1),
3. Zi = Mi(Y

1
i , Y 2

i , Y 3
i ),

where:

– Si is the system corresponding to the i-th round of the original cipher;
– Ri is a new random system of ti polynomial equations;
– Mi is a linear bijection, represented by an n + s + ti square matrix.

The i-th round is then implemented as the composition of these opera-
tions: Zi = S′

i(Zi−1).

PSfrag replacements

M−1

i−1

Zi−1

Mi

Zi

Y 1

i = Si(Y
1

i−1) Y 2

i = Y 2

i−1 Y 3

i = Ri(Zi−1)

S′

i

Fig. 2. Protected representation of inside rounds.

Last round. For the last round we execute (see Fig. 3):

1. (Y 1
R−1, Y

2
R−1, Y

3
R−1) = M−1

R−1(ZR−1),
2. Y 1

R = SR(Y 1
R−1), Y 2

R = OΦ(Y 2
R−1),

3. ZR = Y 1
R + Y 2

R,

where:

– SR is the system corresponding to the last round of the original cipher;
– OΦ is a system of n polynomial equations that vanishes in (ϕ1, . . . , ϕs).

Last round is implemented as the system representing the composition of
these operations: ZR = S′

R(ZR−1).



PSfrag replacements

M−1

R−1

ZR

ZR−1

Y 1

R
= SR(Y 1

R−1
) Y 2

R = OΦ(Y 2

R−1
) Y 3

R

+

S′

R

Fig. 3. Protected representation of last round.

3.4 Getting the right result

As we see, the resulting algorithm gives the right result (i.e. the result
that would be given by the original algorithm) only when the system
Φ̃ actually takes the value (ϕ1, . . . , ϕs). So several instances should be
implemented, with well chosen Φ̃’s, so that the right result can be deduced
from a majority vote (cf. Sec. 4.4).

Remark 1. Note that, when the finite field is GF (2) (the cipher can al-
ways be expressed by boolean equations), one instance of the protected
cipher is enough. Indeed, the system Φ̃(X) = (0̃(X) + ϕ1, . . . , 0̃(X) + ϕs)
will take only two different values, (ϕ1, . . . , ϕs) and (ϕ1 + 1, . . . , ϕs + 1).
By taking OΦ such that OΦ(ϕ1, . . . , ϕs) = OΦ((ϕ1 + 1, . . . , ϕs + 1)) = 0,
we can get the right result with only one instance of the protected cipher.

It is not always practical to represent a block cipher in GF (2), as for
AES which representation would be too large, but some ciphers are nat-
urally fitted to. For instance, we can compute a practical implementation
of the block cipher 3-Way [6] in GF (2) following our ideas. We can also
remark the simplicity of its polynomial representation and it seems well-
suited for our work, but its white box implementation does not resist to
interpolation (see Sec. 5.2).



4 An example: white box represention of AES

In the following, we present a practical set-up of our method on the AES
block cipher [11]. Its main advantage, for this work, is that it can be
efficiently written as a transformation on elements in GF (28) (cf. [13]).

4.1 Brief description of AES

AES takes as input a 16-byte block and consists mainly in the iteration
of a round. The 16-byte block is represented as a 4 × 4 square called a
state and subject to the following operations:

– AddRoundKey: this operation adds a round key to the state by a bitwise
XOR operation;

– SubBytes: the non-linear byte substitution operates independently on
each byte;

– ShiftRows: it is a permutation on the 16 bytes;

– MixColumns: this operation treats each column as a 4-byte vector and
multiplies it by a matrix.

The complete algorithm consists in the sequence of operations on the left
part below but for our application, we will write the algorithm, as on the
right part, i.e. in a slightly different, though equivalent, way.

1. AddRoundKey(K0)
2. for i from 1 to 9:

(a) SubBytes;
(b) ShiftRows;
(c) MixColumns;
(d) AddRoundKey(Ki).

3. SubBytes;
4. ShiftRows;
5. AddRoundKey(K10).

1. for i from 1 to 9:
(a) AddRoundKey(Ki−1);
(b) SubBytes;
(c) ShiftRows;
(d) MixColumns;

2. AddRoundKey(K9).
3. SubBytes;
4. ShiftRows;
5. AddRoundKey(K10).

Thus, the cipher consists now in the repetition of a sequence of oper-
ations named rounds 1 to 9, the four remaining operations compose the
10-th and last round.

4.2 Representation of the original rounds

If we compose the operations of one round we obtain the previously de-
fined systems (Si)1≤i≤9; they are systems of n = 16 equations in GF (28),



each one depending on 4 variables and having around 1020 monomials of
maximal degree 254. The last round gives a system S10 of 16 equations,
each having around 255 monomials of maximal degree 254.

4.3 Choice of parameters

Firstly, we choose a polynomial 0̃ following Sec. 2, which equals zero at
least half of the time, and we will construct Φ̃ accordingly.

Now, there are two important points to deal with: the efficiency of
the representation, and the protection of the original rounds. Let i ∈
{2, . . . , 10} be a round index, let Ni−1 = n + s + ti−1 be the number of
inputs involved in this round and let (Li−1,1, . . . , Li−1,Ni−1

) be the lines
of M−1

i−1. Then, we obtain

Y 1
i = Si(




Li−1,1
...

Li−1,n


Zi−1) and Y 2

i =




Li−1,n+1
...

Li−1,n+s


Zi−1.

The parameters should be chosen according to the following conditions:

Cond. 1 The size s of Φ̃ is chosen in order to give a sufficient number
of possible values for (ϕ1, . . . , ϕs), and such that it consists in enough
equations to ensure that the intermediate rounds are not valid, with
a high probability when evaluated individually with random inputs
(i.e. the system Y 2

R will not be cancelled in the last round). We choose
here a system of s = 4 equations.

Cond. 2 For the n first lines of M−1
i−1, the number of non-zero coeffi-

cients in a line should be small, otherwise the number of terms in the
resulting image Y 1

i of the block Si would have an exponential num-
ber of monomials in variables zi−1,1, . . . , zi−1,Ni−1

. For instance with
our example of AES white box representation, we set this number to
exactly 2 variables by lines.

Cond. 3 As the value of Y 2
i will be a constant with a probability greater

than one half when the inputs come from the previous rounds, the
number of non-zero inputs of lines Li−1,j (for j ∈ {n + 1 . . . n + s}),
which determines the number of variables zi−1,1, . . . , zi−1,Ni−1

involved
in the computation of Y 2

i , should be sufficient to avoid an attacker to
guess the value of the line; note that for this he could validate his guess
by looking for an almost constant result (with probability > 1/2).

Cond. 4 We should also control the number of non-zero coefficients in
Mi−1 to bound the number of monomials in each equations at the
output of the (i − 1)-th round.



Cond. 5 At last, random systems Ri−1 should contain a sufficient num-
ber of equations (say at least as many as the total number of equations
of Y 1

i−1 and Y 2
i−1) and should look like the other systems in order to

mask all the operations.

To manage all these points, we chose random systems Ri of ti = 23
equations for the i-th round (1 ≤ i ≤ 9) and matrix Mi are constructed
as block matrix having the following form:

Mi = πi ◦




A
(1)
i

. . .

A
(7)
i

Bi




◦ σi,

where

– the A
(j)
i are random invertible blocks of size 5 × 5 such that their

inverses have exactly 2 non-zero coefficients on each line;
– Bi is a random invertible submatrix of size 8×8 with its inverse having

at least 7 non-zero coefficients by line;
– πi is a random permutation of {1, . . . , Ni};
– σi a random permutation of {1, . . . , Ni} such that

σi({1, . . . , n} ∪ {n + s + 1, . . . , n + s + 19}) = {1, . . . , n + 19},

σi({n + 1, . . . , n + s} ∪ {n + s + 20, . . . , Ni}) = {n + 20, . . . , Ni}

In other words, the A
(j)
i are used to mix the 16 original equations with

19 random equations (19 is in fact the first number k greater than n = 16
such that 5 | k + n) and Bi is used to mixed the second system Y 2

i (of s
equations) with exactly s = 4 other random equations.

Thus, the choice of a diagonal block matrix helps for Cond. 4. The

construction of A
(j)
i is implied by Cond. 2, the one of Bi comes from

Cond. 3. For Cond. 5, the Ri will be taken with about the same number
of terms as Y 1

i and Y 2
i gathered with the aim to look like both these

systems. The parameter ti is chosen to have enough equations to mask
all other equations and with respect to the construction of Mi, i.e. to
make possible the cutting in seven blocks of size 5 × 5 and one block of
size 8× 8. The size of each block has been set according to some security
concerns as it will be explained in Sec. 5. As this construction is regular
and limits the transformations, the matrix are preceded and followed by
the two permutations πi and σi in order to enlarge the space of possible
transformations.



4.4 Resulting cipher

We have actually computed one instance of the resulting cipher according
to the previous parameters. Table 1 gives the results of our implementa-
tion. Considering that each monomial can be coded on 17 bytes for the

Table 1. Size of the new representation of the cipher

round s ti # monomials

1 4 24 161.353
2 to 9 4 24 3.445.848

10 4 - 201.600

first round (one for the coefficient and the remainder for the exponents of
the x1, . . . , xn), on 5 bytes (one for the coefficient, two for the variables
and two for the exponents, as there are in fact only binomials) in the
rounds 2 to 9, and 44 bytes (one for the coefficient and the remainder for
the exponents) for the last round, then 142MB are necessary to code one
instance of the whole cipher.

To get the right result by a majority vote – as explained in Sect. 3.4
– four concurrent implementations are necessary. To this end, we choose
four correlated polynomials 0̃ such that, for any input, two of them equal
zero while the two others will give two different values (i.e. the good result
will be distinguishable).

5 Security analysis

5.1 General observations

Each round, taken individually, always returns ‘false’ results due to the
random equations and the block Y 2

i . But, the whole algorithm often gives
the right result. The rounds are in fact linked all together as the specific
terms, Φ̃, are cancelled only at the end. The crucial point here is that an
attack against all the rounds at the same time seems hard to conceive.

The random systems Ri are chosen such that they hide the equations
of original systems Si and additional systems, namely Φ̃ in the first round
and identity in the following ones.

In Mi, the block’s size are chosen such that each submatrix lie in
a subspace large enough to prevent an attacker to find them, one after
the other by exhaustive search. Indeed, a block of size 5 × 5 was the



minimum to have more than 280 invertible matrices in GF (28) with 2
non-zero coefficients on each line.

For the choice of the blocks Bi (with regard to the fourth condition
page 9), it thwarts an attacker to recover (ϕ1, . . . , ϕs) and the correspond-
ing lines of M−1

i as there are too many guesses to make. To recover one
line for the i-th round, all the linear combination involving seven inputs
of Zi have to be checked (by looking for the probability of constancy),
which means more than

(
43
7

)
(28 − 1)7 > 280 possibilities.

5.2 Resistance to a specific attack: interpolation

An attacker could try to recover the original system by using interpolation
and solve the system to recover the value of the key. In this configura-
tion, where the attacker is restricted to perform the interpolation in the
base field, the best algorithm [14] has the following characteristics: for an
equation of k terms and n variables in GF (q), the complexity is given

by q4n log(k) klog(q). Note also that this algorithm assumes the attacker
can choose the points, which is not the case in our problem due to the
perturbations.

If we consider our example with AES, the original systems lie in
GF (28) and have the following characteristics:

– for all rounds except the last one: k = 1020, n = 4;

– for the last round: k = 255, n = 4.

The complexity is thus around 232 · 4 · 10 · 210·8 in the first case and
232 · 4 · 8 · 28·8 in the other, in each case it is more than 2100.

5.3 Additional protective measures

It seems that the beginning and the end of the algorithm, where no linear
mixing is introduced, are where an attacker would concentrate. Following
[5], additional operations could be added at this locations. Of course, such
an implementation is not anymore compliant with the specification of the
original cipher.

6 Conclusion

We give a new solution to the problem of white box representation of block
ciphers. Following Bringer et al. [3], we improve their work on the per-
turbation of the algebraic structure of a cipher, implemented as systems



of multivariate polynomials in a finite field. As a challenge, we describe
how our techniques can be applied to the AES block cipher and give some
elements to evaluate the security of our proposition against some specific
attacks. Intended to run in software on a general purpose processor, our
solution has still to be improved to achieve better performances. This
problem – or designing a new cipher dedicated to our white box solution
while staying efficient – and the scrutiny of the security are open avenues
for future works.

References

1. Olivier Billet and Henri Gilbert, A Traceable Block Cipher, Advances in Cryptology
– ASIACRYPT 2003 (C.S. Laih, Ed.), LNCS vol. 2894, Springer, 2003, pp. 331–346.

2. Olivier Billet, Henri Gilbert and Charaf Ech-Chatbi, Cryptanalysis of a White Box
AES Implementation, Selected Areas in Cryptography (H. Handschuh and M. A.
Hasan, Eds.), LNCS vol. 3357, Springer, 2004, pp. 227–240.

3. Julien Bringer, Hervé Chabanne and Emmanuelle Dottax, Perturbing and Protecting
a Traceable Block Cipher, CMS 2006, LNCS vol. 4237, Springer, 2006, pp. 109–119.

4. S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot, A White-Box DES Imple-
mentation for DRM Applications, Proceedings of ACM CCS-9 Workshop DRM 2002
(J. Feigenbaum Ed.), LNCS vol. 2696, Springer, 2003, pp. 1–15.

5. S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot, White-Box Cryptography and
an AES Implementation, Proccedings of SAC’02 (K. Nyberg and H. M. Heys, Eds.),
LNCS vol. 2595, Springer, 2003, pp 250–270.

6. Joan Daemen, René Govaerts, and Joos Vandewalle, A New Approach Towards Block
Cipher Design, Proceedings of FSE’93 (R. Anderson Ed.), LNCS vol. 809, Springer,
1994, pp 18–32.

7. Jintai Ding, A New Variant of the Matsumoto-Imai Cryptosystem through Pertur-
bation, Public Key Cryptography (F. Bao, R. H. Deng and J. Zhou, Eds.), LNCS
vol. 2947, Springer, 2004, pp. 305–318.

8. Jean-Charles Faugère and Ludovic Perret, Polynomial Equivalence Problems: Al-
gorithmic and Theoretical Aspects, Advances in Cryptology – EUROCRYPT 2006
(Serge Vaudenay, Ed.), LNCS vol. 4004, Springer, 2006, pp 30–47.

9. Matthias Jacob, Dan Boneh and Edward W. Felten, Attacking an Obfuscated Cipher
by Injecting Faults, Proceedings of ACM CCS-9 Workshop DRM 2002 (J. Feigenbaum
Ed.), LNCS vol. 2696, Springer, 2003, pp 16–31.

10. Hamilton E. Link and William D. Neumann, Clarifying Obfuscation: Improving
the Security of White-Box Encoding, Cryptology ePrint Archive, Report 2004/025,
http://eprint.iacr.org/2004/025, 2004.

11. National Institute of Standards and Technology, FIPS-197: Advanced Encryption
Standard, 2001, available at http://csrc.nist.gov/publications/fips/.

12. Jacques Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomi-
als (IP): two new Families of asymmetric Algorithms, EUROCRYPT’96, LNCS vol.
1070, Springer, 1996, pp. 33-48.

13. Joan Daemen and Vincent Rijmen, AES Proposal: Rijndael, Selected as the Ad-
vanced Encryption Standard, available from http://csrc.nist.gov/encryption/aes/.

14. Kai Werther, The Complexity of Sparse Polynomial Interpolation over Finite
Fields, Appl. Algebra Eng. Commun. Comput., vol. 5, 1994, pp. 91–103.


