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Abstract

We present an attack on one of the Hidden Pairing schemes proposed
by Dent and Galbraith. We drastically reduce the number of variables
necessary to perform a multivariate attack and in some cases we can com-
pletely recover the public key. Our attack relies only on knowledge of the
public system parameters.

1 Introduction

The use of pairings in cryptography has had a number of important impli-
cations. In [4] the Weil pairing is used to reduce the Discrete Logarithm
problem from the group of points of an elliptic curve E(Fq) to the multi-
plicative group of invertible elements of a finite field F∗

qn for a suitable n.
In recent years, pairings for elliptic curves have found more constructive
applications (see [1]), which simply stated depend on the fact that they
provide some elliptic curves with a gap Diffie-Hellman group structure: a
group in which the decision Diffie-Hellman problem is easy, and yet the
computational Diffie-Hellman problem remains hard.

In [2], Dent and Galbraith take this construction one step further and
explore the idea of Trapdoor Decisional Diffie-Hellman groups: groups
for which the knowledge of certain trapdoor information is sufficient to
efficiently solve the DDH, whereas solving the DDH without the trapdoor
information is believed to be hard. In [2] the authors describe two such
constructions, both based on elliptic curves. The first one depends on
elliptic curves over the ring Z/NZ where N = pq is an RSA moduli (we
refer the reader to the original paper for further details). The second
construction is based on an idea of Frey [3] that consists of “disguising”
elliptic curves. In the next section we will give a detailed description of
this construction and then we will proceed to describe an attack on it.
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2 Disguising Elliptic Curves

This proposal consists of taking the Weil restriction of an elliptic curve
with respect to Fqn/Fq and then transforming the group operation equa-
tions using a linear change of variables. We will first explain how to obtain
multivariate polynomials describing the group law and then we will de-
scribe the blinding proccedure using an invertible linear transformation.

Let E be an elliptic curve defined over a finite field Fqn , and let
Pi = (xi : yi : zi) for i ∈ {1, 2} be two points on the curve, then the ad-
dition of P1 and P2 is given by P1 + P2 = (fx, fy, fz) where fx, fy, fz are
homogeneous polynomials in Fqn [x1,2, y1,2, z1,2]. Analogously, the dou-
bling formula is given by polynomials in the coordinates of the point with
coefficients in Fq.

Take now {αi} an Fq-basis of Fqn . Every element x of Fqn can be
described an n-tuple (x0, x1, . . . , xn−1). Furthermore, multiplication of
two n-tuples is given by n degree two polynomials.

If we describe a represent a point in E as a 3n-tuple of elements of Fq,
then the addition formula can be given by 3n polynomials of degree 8 in
the 6n variables describing the two points (respectively, point doubling is
given by 3n polynomials of degree 7). To establish some notation let’s say
that the addition is given by polynomials fi, that is

(x1 : y
1

: z2) + (x2 : y
2

: z2) =
“
fi

“
x1, y1

, z1, x2, y2
, z2

””3n

i=1
.

We will also denote the doubling polynomials as gi(x, y, z).
In order to blind the elliptic curve we will choose some matrix U ∈

GL3n(Fq), and define the blinded polynomials“
f̃i(x1, y1

, z1, x2, y2
, z2)

”3n

i=1
= U

„
fi

“
U−1(x1, y1

, z1), U
−1(x2, y2

, z2)
”3n

i=1

«
.

We will construct the blinded doubling polynomials g̃i in a similar
fashion and to blind a point P = (x, y, z) we simply write its coordinates
as n-tuples with respect to our basis and act on the 3n-tuple thus obtained
with U as P̃ = U · P .

The blinded description of the elliptic curve will consist of the polyno-
mials f̃i and g̃i, the image under U of a point on E and the order of the
curve.

In [2] different variants of the scheme are discussed, for instance, it is
suggested to take U mapping the XZ space onto itself, both for function-
ality and implementation convenience.A further variant of the scheme has
a more restrictive public key, consisting of a blinded point P̃ = U · P and
the blinded version of the doubling and “tranlation by P” formulae, this
has the disadvantage that it is not possible to compute arbitrary multiples
of a point (see the original paper for the details). Our attack does not
include this variant.

The goal of disguising an elliptic curve is to construct a trapdoor
DDH group. Thus, an attack on the scheme is any algorithm that allows
someone in possesion of the public key to compute the Weil pairing on the
curve. Under such considerations, to break the scheme one does not need
to recover the original blinding matrix U , all that is needed is a matrix
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U ′ taking our blinded curve to an Fqn isomorphic curve, in particular, if
we start with a different Fq basis of Fqn , recovering U conjugated by an
invertible matrix is enough to break the scheme.

3 The Attack

In this section we describe our attack on the disguised curve scheme. The
attack is based on some simple observations coupled with standard linear
algebra. For some implementations we are able to completely recover the
disguising matrix U (with respect to our Fq basis).

We first present a general attack that will work on any implementation
with basic functionality, this attack alone does not recover U , but will
greatly reduce the search space. We then show how to completely recover
U in some special cases.

Throughout this section we will fix an Fq basis {αi}n
1 of Fqn and

whenever we speak of the matrix associated with multiplication by λ ∈
Fqn , it will be with respect to this basis. If P = (x, y, z) is a point in
F3

qn , then [λ] will denote the matrix corresponding to multiplication by λ
in each coordinate.

For future reference, we present the standard addition formulae for
curves given by equations of the form y2 = x3 + Ax + B:

(x1, y1, z1) + (x2, y2, z2) = (fx, fy, fz)

where

fx = z1z2DN2 − D3(x1z2 + x2z1) (1)

fy = N(z1z2N
2 − D2x1z2 − 2D2x2z1) + D3x2z1 (2)

fz = D3z1z2 (3)

N = y1z2 − y2z1 and D = x1z2 − x2z1. (4)

3.1 Attack 1

In this first attack we assume that we know the blinded image of a point P0

in E(Fqn) and blinded doubling and adding formulae. We don’t assume
knowledge of the size of E(Fqn) or of the unblinded version of the curve
addition formulae. Notice that we can find random points on E computing
random powers of P0.We can also find different representatives of the same
point, for example

2 ∗ (P0 + Q) = 2 ∗ (P0) + Q + Q.

Let P1 and P2 be two different blinded representations of the same
point. If the unblinded coordinates (in Fqn) of P1 and P2 are (x1 : y1 : z1)
and (λx1 : λy1 : λz1) respectively, then there is a fixed number s such that
the unblinded coordinates of the points P1 + Q and P2 + Q will differ by
λs for every i.This is because the point addition polynomials must be
homogeneous in the coordinates of each point. It also tells us how to
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compute s: we can read it off from the degree of the addition formulae in
each set of variables.

Now let {Qi} be a “large” set of random points. The discussion above
tells us that the blinded representations of P1+Qi and P2+Qi are related
by the linear transformation M = U [λs]U−1.

If our set of random points is large (m > 3n would be enough) we can
recover the matrix M = U [λs]U−1. The eigenvalues of M will be λs and
its Galois conjugates. We choose one of them 1 and work with it as λs.

Once we have identified λs, we can trivially compute the matrix [λs].
We have thus found a restriction in the possible choices for U , as they
must satisfy

M = U [λs]U−1 (5)

and have coefficients in Fq
2. There is not a unique solution to equa-

tion (5), so further work has to be done to recover U . Notice that not
every matrix U satisfying (5) can be used as secret key, as its action
on points must also be compatible with the point adding and doubling
operations.

If λ is a random element of Fqn , the probability that λs does not gen-
erate Fqn over Fq is bounded above by s(q−1)/(qn−1), so we can repeat
the construction described above until we find λ such that λs generates
Fqn . It is reasonable to assume that the two representations of the same
point P1 and P2 that we have constructed differ by a random element of
Fqn as , for instance, the polynomials giving 2P + Q + Q and 2(P + Q)
have different degrees and one is not a multiple of the other, so there is no
reason to expect any constraint in the value by which this two projective
points differ when P and Q are taken at random.

It would be natural to try to repeat the previous construction using
different pairs of points {P ′

1, P
′
2} to further narrow down the possibilities

for U . However, this wouldn’t give us any extra information: suppose that
P ′

1 and P ′
2 differ by µ and we find a matrix N such that N = U [µ]U−1. If

µ =
P

aiλ
i (we substitute λs by λ and use that it generates Fqn ) then

[µ] =
P

ai[λ]i and

U [µ]U−1 = U
“X

ai[λ]i
”

U−1 =
X

aiM
i,

so every matrix U working for λ would work for µ and we don’t get any
extra infomation repeating the construction.

Finally notice that the condition M = U [λs]U−1 puts some serious
restrictions on the possible U ’s. If we just represent the coefficients of
U as variables in Fq, instead of having 9m2 variables (5m2 when the Y -
space is mapped separately) we reduce the possibilities to 9m variables
(resp. 5m). See Appendix A for further dettails.

1Choosing the “wrong” λ amounts to twisting the original elliptic curve with some element
σ of the Galois group of Fqn over Fq , this doesn’t affect the attack as the DDH would still
be solvable. Equivalently this can be seen as choosing the Fq basis {ασ

j }.
2See Appendix A for a method to compute the vector space which contains all possible

U ’s.
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3.2 Attack 2

To perform this attack we make a series of assumptions on the system
implementation. We will assume knowledge of at least one blinded point
in the curve, we also assume that the unblinded version of the addition
formulae is given by the polynomials we presented above (one could give
different addition formulae, i.e., multiplying the standard formulae with
a fixed homogeneous polynomial). We will also assume that the XZ
(resp. Y ) space is mapped onto itself under U (see [2]). We also assume
char(Fq) > 2, although the same techniques can be used for characteristic
2 curves.

In this attack we will first identify the image of the vectors of the form
Z = 0 under the scrambling matrix U .

Take two 3n-tuples A1 and A2, which correspond to the blinded rep-
resentation of the points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) (points in
F3

qn). If we apply the addition formulae to these two 3n-tuples we will
get a 3n-tuple corresponding to UP3 for some point P3 = (x3, y3, z3). It
is clear that P3 is the result of applying the unblinded addition formula
to the points P1 and P2

3.
If we now consider the 3n-tuple A′

1 obtained from A1 by multiplying
the coordinates corresponding to the XZ space by 2 (and which would
thus correspond to the point P ′

1 = (2x1, y, 2z1)) and add it to A2 to obtain
the 3n-tuple A′

3 (corresponding to P ′
3 = (x′3, y

′
3, z

′
3), a simple analysis of

the addition formulae shows that 8z3 = z′3 and 8x3 6= x′3.
It is now clear that the 3n-tuple 8A3 − A′

3 is the image under U of a
point of the form (X, Y, 0). If we repeat this experiment sufficiently many
times we can find a basis for the vector space U ((X, Y, 0)|X, Y ∈ Fqn).
Since the XZ space and the Y space are scrambled onto themselves this
is equivalent to finding a basis for the vector space U ((X, Y, 0)|X ∈ Fqn).

We will now find the matrix U using only linear algebra.
Consider a 3n-tuple A1 corresponding to a point with z1 = 0 (we can

identify this point using the previous construction). If we “add” it to an-
other 3n-tuple A2 (corresponding to (x2, y2, z2)) and analyze the addition
formulae (1), we see that the n-tuple corresponding to the Y coordinate
of the addition is given by U(x3

1z
4
2y1). Notice that this is a linear function

in the n-tuple corresponding to Y given by L = U [x3
1z

4
2 ]U−1. Remember

that from step 1 we have a matrix M = U [λ]U−1; since λ generates Fqn

over Fq, then there exist ai ∈ Fq such that

x3
1z

4
2 =

n−1X
i=0

aiλ
i,

but this implies that

L =

n−1X
i=0

aiM
i,

turning the process around, using linear algebra we can recover the ai’s
since we know M and L. We can now find the value of x3

1z
4
2 which is given

by
Pn−1

i=0 aiλ
i.

3It doesn’t matter that the points might not be on the elliptic curve, as our interest is only
in evaluating the polynomials corresponding to the addition formulae.
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If we repeat this computation using A′
1 and A′′

1 with corresponding X
coordinates x′1 and x1+x′1 we can find the values of x′31 z4

2 and (x1+x′1)
3z4

2 .
Knowing x3

1z
4
2 , x′31 z4

2 and (x1 +x′1)
3z4

2 , taking cube roots we can calculate
x1/(x1 + x′1) and x′1/(x1 + x′1), from which we can recover x1,x

′
1 and z4

2 .
We can now recover U . Knowing how points with Z = 0 are trans-

formed gives us half the entries of U as follows: if we write vectors v
corresponding to the XZ space as 2m-tuples v = (x, z), then writing
U = UXZ ⊕UY we know how UXZ · (x, 0) behaves, which is equivalent to
knowing half the entries of UXZ . Coupling this with the first attack we
described, which finds a 2m dimensional vector space in which UXZ lies,
gives a unique possibility for UXZ .

A Appendix: Some linear algebra

Take M and N two n× n matrices with entries in Fq. Suppose there is a
matrix U in Fq such that

M = U−1NU, (6)

and we want to know what are the possible U ’s with this property.
First we will describe how to compute an n-dimensional Fq vector

space which contains all the possible U ’s if the characteristic polynomial
of M is irreducible. Then we will say how to compute such a vector space
for M and N as in our attack.

If the characteristic polynomial of M is irreducible we know that it
has n different roots, and that they all lie in Fqn . Therefore, we can
find a basis of Fn

qn formed with eigenvectors of M , all of which have
different eigenvalues. Notice that standard linear algebra tells us that the
characteristic polynomial of M is the same as that of N , we can therefore
find a corresponding basis for N .

It is easy to see that if M = U−1NU , then U needs to map an eigen-
vector of M with eigenvalue λ to an eigenvector of N with the same
eigenvalue. That is, if uλ is a λ-eigenvector of M and vλ a λ-eigenvector
of N , then

U · uλ = µvλ (7)

for some µ ∈ F∗
qn .

If we take some σ ∈ Gal(Fqn/Fq) and make it act on equation (7)
(remembering that U has coefficients in Fq), we get

Uσ(uλ) = σ(µ)σ(vλ)

and since σ(uλ) is an eigenvector of M with eigenvalue σ(λ), we conclude
that knowing U · uλ is enough to calculate U . Notice that the set of
possible U ’s is in bijection with F×

qn , which is a 1-dimensional Fqn vector
space, we will now describe how to compute a n dimensional Fq basis for
it.

Take a Fq-basis {αi} of Fqn . Compute the n Fq-matrices Ui that send
vλ to αiuλ as we have just described. Then U =

P
aiUi for some ai ∈ Fq,

in other words, {Ui} is a Fq basis for a vector space containing all the U ’s
such that M = U−1NU .
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In the case of our attack, we have matrices M and N , possibly of size
3n × 3n, and the characteristic polynomial is the cube of an irreducible
polynomial. The construction of a basis of a vector space containing all
the U ’s is a trivial generalization of the previous case.

The only thing we have to take into account is that the dimension of the
eigenspace of each eigenvalue is 3, so all we know is that the image under
U of a λ-eigenvector lies in a 3-dimensional Fqn vector space. Again, if we
know how U maps the eigenspace associated to some λ, we can compute
the action of U in the whole vector space, so in order to compute a basis for
a space containing the U ’s (notice that now there are non-zero matrices
which are not invertible) we just repeat the previous algorithm with 3
eigenvectors instead of just 1 in the eigenspaces of both M and N .
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