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Abstract. In this paper we present a new efficient algorithm for com-

puting the bilinear pairings on a family of non-supersingular elliptic

curves with non-trivial automorphisms. We obtain a short iteration loop

in Miller’s algorithm using non-trivial efficient automorphisms. We show

that the proposed algorithm is faster than the previous methods on these

curves.
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1 Introduction

The bilinear pairing is an explicit mapping from a set of certain points on an

elliptic curve to a multiplicative subgroup of a finite field. It has been found

many interesting applications in elliptic curve cryptography [11].

Many efficient algorithms for implementing the pairings have been proposed

[6]. In particular, the eta pairing [3] and the ate pairing [8] are introduced for

their efficient computations recently. Their main ideas are to shorten the main

iteration loop in Miller’s algorithm [10] using some automorphisms of curves.

The former mainly takes advantage of the distortion maps [16] which are the

automorphisms on supersingular curves essentially for optimizing Miller’s algo-

rithm, and the latter utilizes Frobenius automorphisms on non-supersingular

elliptic curves for speeding up the bilinear pairings computation.
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In this paper, we shows that some other non-trivial automorphisms on a

family of ordinary elliptic curves can be used for accelerating the bilinear pairings

computation. We obtain a short iteration loop using efficient automorphisms

on these curves. The length of the main iteration loop in the new algorithm

is half the length of the previous main loop in Miller’s algorithm. We show

that the proposed algorithm obtains a significant improvement over the previous

methods.

This paper is organized as follows: Section 2 explains the Tate pairing and

a family of non-supersingular elliptic curves with non-trivial automorphisms.

Section 3 gives the main results and proposes a new efficient algorithm, and

section 4 analyzes the efficiency of the proposed algorithm and compares it with

the previous methods. Section 5 gives the conclusions.

2 Mathematical Preliminaries

2.1 The Tate Pairing

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be

an elliptic curve defined over Fq, and let O be the point at infinity. Let r be a

prime such that r|#E(Fq), and let k be the minimal positive integer such that

r divides qk − 1. This k is named the embedding degree. We also assume that

r2 does not divide qk − 1 and k is greater than 1.

Let P ∈ E[r] and Q ∈ E(Fqk ), and let D be the divisor which is equivalent

to (Q)− (O). For every integer i and point P , let fi,P be a function such that

(fi,P ) = i(P )− (iP )− (i− 1)(O).

Then the Tate pairing is a map

e : E[r]×E(Fqk )/rE(Fqk )→ F ∗

qk/(F ∗

qk )r,

e(P, Q) = fr,P (D).

By Theorem 1 in [1], one can define the reduced Tate pairing as

e(P, Q) = fr,P (Q)
qk

−1
r .

The above definition is convenient since we often require a unique element of Fqk

in cryptographic applications. Note that fr,P (Q)a(qk
−1)/r = far,P (Q)(q

k
−1)/r for

any integer a .
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2.2 Miller’s Algorithm

We recall Miller’s algorithm [10] for computing the Tate pairing in polynomial

time simply in this section.

Let P ∈ E[r] and Q ∈ E(Fqk ). Let lR,T be the equation of the line through

points R and T , and let vS be the equation of the vertical line through point S.

Then for i, j ∈ Z, we have

fi+j,P (Q) = fi,P (Q)fj,P (Q)
liP,jP (Q)

v(i+j)P (Q)
.

Miller’s algorithm is described as Algorithm 1.

Algorithm 1 Miller’s algorithm

Input: r =
∑n

i=0 li2
i, where li ∈ {0, 1}. P ∈ E[r] and Q ∈ E(Fqk ).

Output: e(P, Q)

1. T ← P , f1 ← 1

2. for i = n− 1, n− 2, ..., 1, 0 do

2.1 f1 ← f2
1 ·

lT,T (Q)
v2T (Q) , T ← 2T

2.2 if li = 1 then

2.3 f1 ← f1 ·
lT,P (Q)

vT+P (Q) , T ← T + P

3. return f
(qk

−1)/r
1

2.3 A Family of Elliptic Curves with Non-trivial Automorphisms

We recall a family of elliptic curves with non-trivial automorphisms in this sec-

tion. Let p be a large prime, consider these non-supersingular curves over Fp

E : y2 =x3 + B, where p ≡ 1 mod 3 (1)

E1 : y2 =x3 + Ax, where p ≡ 1 mod 4 (2)

Both of them have efficiently-computable endomorphisms which have been

used in fast point multiplication [7] and computations of the Tate pairing [12].

Actually these endomorphisms are the non-trivial automorphisms on these curves

which have been used in speeding up the discrete log computation [5]. With a

small loss of generality, we will mainly consider the first curve (1) for accelerating

the computations of the bilinear pairing. Note that some suitable curves of this

type have low embedding degrees such that they can be applied in pairing-based

cryptosystems [12].
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Suppose that β is an element of order 3 in Fp. An automorphism of the above

curve (1) is defined as

φ : E → E

(x, y)→ (βx, y).

Since this automorphism is also an isogeny, its dual isogeny is

φ̂ : E → E

(x, y)→ (β2x, y).

It is not difficult to show that φ̂ ◦φ = [1], φ2 = φ̂ and #kerφ = 1 (see Silverman

[15] page 84-86).

We cite some useful facts from [7] since they are necessary in the new al-

gorithm. Let P ∈ E(Fp) be a point of prime order r, where r2 does not divide

the order of E(Fp). Then φ and φ̂ act restrictedly on the subgroup <P > as

multiplication maps [λ] and [λ̂] respectively, where λ and λ̂ are the two roots of

the equation: x2 + x + 1 = 0 (mod r). Note that λP = φ(P ) can be computed

using one multiplication in Fp.

3 A New Algorithm for Computing the Bilinear Pairing

In this section, we will give the main results for computing the bilinear pairing.

As a consequence, A new algorithm will be proposed.

3.1 Main Results

The main results of this paper are summarized in the following theorem.

Theorem 1. Let E be a non-supersingular curve over Fp with non-trivial au-

tomorphisms φ and φ̂ defined as above. Let k be its embedding degree. Let Q∈

E(Fpk ) and P ∈ E(Fp) be a point of prime order r, where r2 does not divide

#E(Fp). Let [λ] be the multiplication map of the subgroup < P > defined as

above such that λP = φ(P ). Let a be the minimal positive integer such that

λ2 + λ + 1 = ar. Let lφ(P ),φ̂(P ) be the line through points φ(P ) and φ̂(P ). Then

e(P, Q)a = (fλ,P (Q)λ+1fλ,P (φ̂(Q))lφ(P ),φ̂(P )(Q))
pk

−1
r .
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Note that such a must exist since λ2 + λ + 1 = 0 (mod r). A second useful

remark is that e(P, Q)a is non-degenerate if r does not divide a. The proof of

Theorem 1 is split into three short lemmas.

Lemma 1. Using the notation as above, we have

e(P, Q)a = (fλ2+λ,P (Q)l−P,P (Q))
pk

−1
r .

Proof. By definition of the reduced Tate pairing, we have

e(P, Q)a = fr,P (Q)
(a)(pk

−1)
r = far,P (Q)

pk
−1
r .

Since ar = λ2 + λ + 1, we get

e(P, Q)a = far,P (Q)
pk

−1
r = fλ2+λ+1,P (Q)

pk
−1
r .

Note that

(fλ2+λ+1,P ) = (fλ2+λ,P f1,P l−P,P )

since (λ2 + λ)P = −P . Furthermore, f1,P = 1 up to a scalar multiple in F
∗

p, so

we obtain

e(P, Q)a = fλ2+λ+1,P (Q)
pk

−1
r = (fλ2+λ,P (Q)l−P,P (Q))

pk
−1
r

which proves the results. �

Lemma 2. Using the notation as above, we can choose fλ2+λ,P l−P,P such that

(fλ2+λ,P l−P,P ) = (fλ+1
λ,P fλ,λP lφ(P ),φ̂(P )).

Proof. We have (fi,P ) = i(P )−(iP )−(i−1)(O) and (λ2+λ)P = −P . Therefore

(fλ2+λ,P l−P,P ) =(fλ2,P fλ,P
lλ2P,λP

l(λ2+λ)P,−(λ2+λ)P
l−P,P )

=(fλ2,P fλ,P lλ2P,λP ).

Furthermore, since λP = φ(P ) and λ2P = φ2(P ) = φ̂(P ), we have

lλ2P,λP = lλP,λ2P = lφ(P ),φ̂(P ).

Also, (see Lemma 2 in [3])

(fλ2,P ) = (fλ
λ,P fλ,λP ).

Hence we have

(fλ2+λ,P l−P,P ) = (fλ2,P fλ,P lλ2P,λP ) = (fλ+1
λ,P fλ,λP lφ(P ),φ̂(P ))

which completes the proof . �
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Lemma 3. For P ∈ E(Fp)[r] and Q ∈ E(Fpk ), we have fλ,λP (Q) = fλ,P (φ̂(Q)),

with φ and φ̂ defined as above.

Proof. By definition we have (fλ,λP ) = λ(λP ) − (λ2P ) − (λ − 1)(O). We also

have φ(P ) = λP and #kerφ = deg[1] = 1 (see [15] Chapter III page 85-86). By

properties of the pullback we obtain

φ∗(fλ,λP ) =φ∗(λ(λP ) − (λ2P )− (λ− 1)(O))

=λ(P ) − (λP )− (λ− 1)(O)

=(fλ,P ).

Furthermore, φ∗(fλ,λP ) = (fλ,λP ◦φ), hence we can take (up to a scalar multiple

in F
∗

p)

fλ,λP ◦ φ = fλ,P .

Applying φ̂ to the above yields

fλ,λP ◦ φ ◦ φ̂ = fλ,P ◦ φ̂.

Since φ ◦ φ̂ = [1], we have

fλ,λP = fλ,P ◦ φ̂.

This completes the proof. �

Proof of Theorem 1: Since P ∈ E(Fp)[r], Lemma 3 gives

fλ,λP (Q) = fλ,P (φ̂(Q)),

and applying the above into Lemma 2, we can easily obtain

fλ2+λ,P (Q)l−P,P (Q) = fλ+1
λ,P (Q)fλ,P (φ̂(Q))lφ(P ),φ̂(P )(Q).

Substituting the above equality into Lemma 1, we have

e(P, Q)a =(fλ2+λ,P (Q)l−P,P (Q))
pk

−1
r

=(fλ,P (Q)λ+1fλ,P (φ̂(Q))lφ(P ),φ̂(P )(Q))
pk

−1
r .

This completes the whole proof of Theorem 1. �

Note that e(P, Q)a gives a bilinear pairing since e(P, Q) is bilinear. Further-

more, it is non-degenerate if r does not divide a. Since a is far smaller than r in

practice , r indeed does not divide a. Therefore, we obtain a new non-degenerate,

bilinear pairing which is equal to a fixed power of the traditional reduced Tate
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pairing. Similarly, such a bilinear pairing also exists on the second curve (2). We

does not describe it here for simplicity. It should be pointed out that computing

the new pairing requires a shorter loop than the traditional Miller’s algorithm. In

practice, we can make that a is equal to 1 for some elliptic curves with non-trivial

automorphisms. In this case, we can keep that the value of the new pairing is

equal to a correct Tate pairing value.

3.2 The Proposed Algorithm for Computing the Bilinear Pairing

In this section, we will give a new algorithm for computing the pairing e(P, Q)a

by Theorem 1. For simplicity, we only consider these non-supersingular elliptic

curves with non-trivial automorphisms which have embedding degrees k = 2.

However, the new method also applies to higher values of k.

Let Q be in the trace-zero subgroup [2, 13] for good efficiency. Note that the

denominator can be omitted in Miller’s algorithm since the x-coordinates of P ,

Q and φ̂(Q) belong to F
∗

p now. Let lR,T be the equation of the line through

points R and T . The proposed algorithm is given in Algorithm 2.

We give some useful remarks on Algorithm 2. The equation of the line

lφ(P ),φ̂(P ) is easily obtained since φ(P ) and φ̂(P ) only require two multipli-

cations in F
∗

p. φ̂(Q) can be computed using only one multiplication since β2

and x-coordinate of Q are in Fp. Let T be in E(Fp) with coordinates (xT , yT ),

and let m be the slope of the line lT,T . Then the equation of the line lT,T is

(y−yT )−m(x−xT ) = 0. Therefore the evaluation of lT,T (Q) and lT,T (φ̂(Q)) only

requires two multiplications in Fp. Similarly, computing lT,P (Q) and lT,P (φ̂(Q))

also requires two multiplications in Fp.

Algorithm 2 Computations of e(P, Q)a using automorphisms

Input: P , Q and λ =
∑n

i=0 li2
i , where li ∈ {0, 1}.

Output: e(P, Q)a

1. T ← P , f1 ← 1, f2 ← 1, f3 ← lφ(P ),φ̂(P )(Q)

2. for i = n− 1, n− 2, ..., 1, 0 do

2.1 f1 ← f2
1 · lT,T (Q), f2 ← f2

2 · lT,T (φ̂(Q)), T ← 2T

2.2 if li = 1 then

2.3 f1 ← f1 · lT,P (Q), f2 ← f2 · lT,P (φ̂(Q)), T ← T + P

3. f1 ← fλ+1
1 ,

4. return (f1f2f3)
(p−1)(p+1)/r
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4 Efficiency Consideration

Now the performance of the proposed algorithm is considered in this section.

We neglect the cost of field additions and subtractions, as well as the cost of

multiplication by small constants. The computational cost of one multiplication

in F
∗

p is denoted as M .

We first point out that φ̂(Q) can be precalculated using only 1M because β2

and x-coordinate of Q are in F
∗

p. The evaluation of l(Q) and l(φ̂(Q)) cost 2M

since the equation of the line can be reused. One multiplication and one square

in F
∗

p2 require 3M and 2M , respectively [13]. We assume that the computational

cost of an inverse in F
∗

p is 10M . We also count one square as one multiplication

in F
∗

p. One point doubling requires 14M and one point addition requires 13M in

E(Fp) [9].

For good efficiency, we can make that λ has a low Hamming weight. Scott

has found such a suitable elliptic curve with λ = 280 + 216 using Cocks-Pinch

algorithm [12]. We compute the Tate pairing on this curve using the proposed

algorithm in the following. Note that r = λ2 + λ + 1 has 161 bits there. Hence a

is equal to 1 in this case. Therefore the value of e(P, Q)a is same as the value of

the traditional Tate pairing. Furthermore, the length of the iteration loop in the

new algorithm is half the length of the iteration loop in the traditional Miller’s

algorithm. However, the new algorithm requires more multiplications than the

traditional algorithm in one iteration loop.

Now we give a detailed efficiency consideration on the new algorithm. Let

P = (xP , yP ) ∈ E(Fp)[r] and Q = (xQ, yQ) ∈ E(Fp2), where xQ ∈ Fp and

yQ ∈ Fp2 . We first consider the cost of line 1 in Algorithm 2. It is easily checked

that lφ(P ),φ̂(P )(Q) is equal to yQ − yP since P , φ(P ) and φ̂(P ) have the same

y-coordinate. So line 1 requires no multiplications in Algorithm 2. Now we con-

sider the computational cost of line 2.1 in Algorithm 2. The cost of one point

doubling is 14M . The two line equation evaluations require 2M since φ̂(Q) can

be precalculated easily. The remainder in 2.1 requires two squares and two multi-

plications in F ∗

p2 , which cost 10M . Therefore line 2.1 requires 26M . The number

of the main loop is 79, so the total cost of line 2.1 is 26 · 79 = 2054M . It is

not difficult to show that the total cost of line 2.3 requires 21M . Line 3 requires

80 ·2 = 160M for this exponentiation. By now we cost 2054+21+160 = 2235M .

There are two multiplications in Fp2 in line 4 of Algorithm 2, which require 6M .

The exponentiation (p−1) requires 5 multiplications and one inverse in F
∗

p since
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the Frobenius map can be used here. The exponentiation (p + 1)/r requires

(512 − 161) · 2 = 702M using the Lucas laddering algorithm mainly [14]. So

the total contribution of line 4 is 6 + 15 + 702 = 723M . Therefore the total

computational cost of the new algorithm is 2235 + 723 = 2958M .

Finally, we compare the new algorithm with the previous methods at the

same levels of security in Table 1. Algorithm 4 in [12] computes the Tate pairing

on the same elliptic curve. However, it requires the whole iteration main loop in

Miller’s algorithm. In [12], Scott also gives the efficiency of the pairing calculation

in IBE scheme [4], which requires 4070M . From Table 1, it shows that the

proposed algorithm is more efficient than the previous algorithms indeed at the

same levels of security .

Table 1. Cost comparisons of the proposed algorithms

Algorithm Cost of Multiplications in F
∗

p

the proposed algorithm 2958M

Algorithm 4 in [12] 3329M

Miller’s algorithm in IBE scheme 4070M

5 Conclusion

A new efficient algorithm has been proposed for computing the bilinear pairing

on a family of non-supersingular curves, which have non-trivial automorphisms.

Similar to the eta pairing and the ate pairing, the main technique in the new

algorithm is to shorten the main iteration loop. The proposed method is more

efficient than the previous methods on these elliptic curves. It should be pointed

out that the new method can be used for the large embedding degrees. It is

possible that the new algorithm can be further optimized and be extended into

hyperelliptic curves.
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