Speeding up the Bilinear Pairings Computation on Curves with Automorphisms

Chang-An Zhao, Fangguo Zhang, and Jiwu Huang
${ }^{1}$ Department of Electronics and Communication Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R.China
${ }^{2}$ Guangdong Key Laboratory of Information Security Technology, Guangzhou 510275, P.R.China
zhcha@mail2.sysu.edu.cn
isszhfg@mail.sysu.edu.cn
isshjw@mail.sysu.edu.cn

Abstract

In this paper we present a new efficient algorithm for computing the bilinear pairings on a family of non-supersingular elliptic curves with non-trivial automorphisms. We obtain a short iteration loop in Miller's algorithm using non-trivial efficient automorphisms. The proposed algorithm is faster than the previous methods on these curves at the same levels of security.

Keywords: Tate pairing, non-suersingluar curves, pairing-based cryptosystems, automorphisms.

1 Introduction

The bilinear pairing is an explicit mapping from a set of certain points on an elliptic curve to a multiplicative subgroup of a finite field. It has been found many interesting applications in elliptic curve cryptography [11].

Many efficient algorithms for implementing the pairings have been proposed [6]. In particular, the eta pairing [1] and the ate pairing [8] are introduced for their efficient computations recently. Their main ideas are to shorten the main iteration loop in Miller's algorithm [10]. The eta pairing optimizes Miller's algorithm using some special automorphisms on supersingular curves, and the ate pairing speeds up the bilinear pairings computation mainly using Frobenius endomorphisms on non-supersingular elliptic curves.

In this paper, we shows that some non-trivial automorphisms on a family of non-supersingular ordinary elliptic curves can be used for accelerating the bilinear pairings computation. We obtain a short iteration loop using efficient automorphisms on these curves. The length of the main iteration loop in the new algorithm is half the length of the previous main loop in Miller's algorithm. We show that the proposed algorithm obtains a significant improvement over the previous methods.

This paper is organized as follows: Section 2 explains the Tate pairing and a family of non-supersingular elliptic curves with non-trivial automorphisms. Section 3 gives the main results and proposes a new efficient algorithm, and Section 4 analyzes the efficiency of the proposed algorithm and compares it with the previous methods. Section 5 gives the conclusions.

2 Mathematical Preliminaries

2.1 The Tate Pairing

Let \mathbb{F}_{q} be a finite field with $q=p^{m}$ elements, where p is a prime. Let E be an elliptic curve defined over \mathbb{F}_{q}, and let \mathcal{O} be the point at infinity. Let r be a prime such that $r \mid \# E\left(\mathbb{F}_{q}\right)$, and let k be the minimal positive integer such that $r \mid q^{k}-1$. This k is named the embedding degree. We also assume that r^{2} does not divide $q^{k}-1$ and k is greater than 1 .

Let $P \in E[r]$ and $Q \in E\left(\mathbb{F}_{q^{k}}\right)$, and let D be the divisor which is equivalent to $(Q)-(\mathcal{O})$. For every integer i and point P, let $f_{i, P}$ be a function such that

$$
\left(f_{i, P}\right)=i(P)-(i P)-(i-1)(\mathcal{O}) .
$$

Then the Tate pairing is a map

$$
\begin{gathered}
e: E[r] \times E\left(F_{q^{k}}\right) / r E\left(F_{q^{k}}\right) \rightarrow F_{q^{k}}^{*} /\left(F_{q^{k}}^{*}\right)^{r} \\
e(P, Q)=f_{r, P}(D)
\end{gathered}
$$

By Theorem 1 in [2], one can define the reduced Tate pairing as

$$
e(P, Q)=f_{r, P}(Q)^{\frac{q^{k}-1}{r}} .
$$

The above definition is convenient since we often require a unique element of $\mathbb{F}_{q^{k}}$ in cryptographic applications. Note that $f_{r, P}(Q)^{a\left(q^{k}-1\right) / r}=f_{a r, P}(Q)^{\left(q^{k}-1\right) / r}$ for any integer a.

2.2 Miller's Algorithm

We recall Miller's algorithm [10] for computing the Tate pairing in polynomial time simply in this section.

Let $P \in E[r]$ and $Q \in E\left(\mathbb{F}_{q^{k}}\right)$. Let $l_{R, T}$ be the equation of the line through points R and T, and let v_{S} be the equation of the vertical line through point S. Then for $i, j \in \mathbb{Z}$, we have

$$
f_{i+j, P}(Q)=f_{i, P}(Q) f_{j, P}(Q) \frac{l_{i P, j P}(Q)}{v_{(i+j) P}(Q)}
$$

Miller's algorithm is described as Algorithm 1.

Algorithm 1 Miller's algorithm

Input: $r=\sum_{i=0}^{n} l_{i} 2^{i}$, where $l_{i} \in\{0,1\} . P \in E[r]$ and $Q \in E\left(F_{q^{k}}\right)$.
Output: $e(P, Q)$

1. $T \leftarrow P, f_{1} \leftarrow 1$
2. for $i=n-1, n-2, \ldots, 1,0$ do
$2.1 f_{1} \leftarrow f_{1}^{2} \cdot \frac{l_{T, T}(Q)}{v_{2 T}(Q)}, T \leftarrow 2 T$
2.2 if $l_{i}=1$ then
$2.3 f_{1} \leftarrow f_{1} \cdot \frac{l_{T, P}(Q)}{v_{T+P}(Q)}, T \leftarrow T+P$
3. return $f_{1}^{\left(q^{k}-1\right) / r}$

2.3 A Family of Elliptic Curves with Non-trivial Automorphisms

We recall a family of elliptic curves with non-trivial automorphisms in this section. Let p be a large prime, consider these non-supersingular curves over \mathbb{F}_{p}

$$
\begin{gather*}
E: y^{2}=x^{3}+B, \text { where } p \equiv 1 \bmod 3 \tag{1}\\
E_{1}: y^{2}=x^{3}+A x, \text { where } p \equiv 1 \bmod 4 \tag{2}
\end{gather*}
$$

Both of them have efficiently-computable endomorphisms which have been used in fast point multiplication [7] and computations of the Tate pairing [12]. In fact, these endomorphisms are non-trivial automorphisms on non-supersingular elliptic curves which have been used for speeding up the discrete log computation [5].

With a small loss of generality, we will mainly consider the first curve (1) for accelerating the computations of the bilinear pairing. Note that some suitable
curves of this type have low embedding degrees such that they can be applied in pairing-based cryptosystems [12].

Suppose that β is an element of order three in \mathbb{F}_{p}. An automorphism of the above curve (1) is defined as

$$
\begin{gathered}
\phi: E \rightarrow E \\
(x, y) \rightarrow(\beta x, y) .
\end{gathered}
$$

Since this automorphism is also an isogeny, its dual isogeny is

$$
\begin{gathered}
\hat{\phi}: E \rightarrow E \\
(x, y) \rightarrow\left(\beta^{2} x, y\right) .
\end{gathered}
$$

It is not difficult to show that $\hat{\phi} \circ \phi=[1], \phi^{2}=\hat{\phi}$ and $\# k e r \phi=1$ (see Silverman [15] page 84-86). Note that ϕ and $\hat{\phi}$ are non-trivial automorphisms on the first curve (1).

We cite some useful facts from [7] since they are necessary in the following. Let $P \in E\left(\mathbb{F}_{p}\right)$ be a point of prime order r, where r^{2} does not divide the order of $E\left(\mathbb{F}_{p}\right)$. Then ϕ and $\hat{\phi}$ act restrictedly on the subgroup $<P>$ as multiplication maps $[\lambda]$ and $[\hat{\lambda}]$ respectively, where λ and $\hat{\lambda}$ are the two roots of the equation: $x^{2}+x+1=0(\bmod r)$. Note that $\lambda P=\phi(P)$ can be computed using one multiplication in \mathbb{F}_{p}.

3 Speeding up the Bilinear Pairing Computation

In this section, we give the main results for speeding up the computation of the bilinear pairings. As a consequence, a new efficient algorithm is presented.

3.1 Main Results

The main results of this paper are summarized in the following theorem.
Theorem 1. Let E be a non-supersingular curve over \mathbb{F}_{p} with automorphisms ϕ and $\hat{\phi}$ defined as above. Let k be its embedding degree. Let $P \in E\left(\mathbb{F}_{p}\right)$ be a point of prime order r, where r^{2} does not divide the order of $E\left(\mathbb{F}_{p}\right)$. Let $[\lambda]$ be the multiplication map of the subgroup $\langle P>$ defined as above such that $\lambda P=\phi(P)$. Let a be the integer such that $\lambda^{2}+\lambda+1=$ ar. Let $l_{\phi(P), \hat{\phi}(P)}$ be the equation of the line through points $\phi(P)$ and $\hat{\phi}(P)$. Then for $Q \in E\left(\mathbb{F}_{p^{k}}\right)$, we have

$$
e(P, Q)^{a}=\left(f_{\lambda, P}(Q)^{\lambda+1} \cdot f_{\lambda, P}(\hat{\phi}(Q)) \cdot l_{\phi(P), \hat{\phi}(P)}(Q)\right)^{\frac{p^{k}-1}{r}}
$$

Note that such a must exist since $\lambda^{2}+\lambda+1=0(\bmod r)$. A second useful remark is that $e(P, Q)^{a}$ is non-degenerate if r does not divide a. The proof of Theorem 1 is split into three short lemmas.

Lemma 1. Using the notation as above, we have

$$
e(P, Q)^{a}=\left(f_{\lambda^{2}+\lambda, P}(Q) \cdot l_{-P, P}(Q)\right)^{\frac{p^{k}-1}{r}} .
$$

Proof. By definition of the reduced Tate pairing, we have

$$
e(P, Q)^{a}=f_{r, P}(Q)^{\frac{a\left(p^{k}-1\right)}{r}}=f_{a r, P}(Q)^{\frac{p^{k}-1}{r}}
$$

Since $a r=\lambda^{2}+\lambda+1$, we get

$$
e(P, Q)^{a}=f_{a r, P}(Q)^{\frac{p^{k}-1}{r}}=f_{\lambda^{2}+\lambda+1, P}(Q)^{\frac{p^{k}-1}{r}} .
$$

Note that

$$
\left(f_{\lambda^{2}+\lambda+1, P}\right)=\left(f_{\lambda^{2}+\lambda, P} \cdot f_{1, P} \cdot l_{-P, P}\right)
$$

since $\left(\lambda^{2}+\lambda\right) P=-P$. Furthermore, $f_{1, P}=1$ up to a scalar multiple in \mathbb{F}_{p}^{*}, so we obtain

$$
e(P, Q)^{a}=f_{\lambda^{2}+\lambda+1, P}(Q)^{\frac{p^{k}-1}{r}}=\left(f_{\lambda^{2}+\lambda, P}(Q) \cdot l_{-P, P}(Q)\right)^{\frac{p^{k}-1}{r}}
$$

which proves the results.
Lemma 2. Using the notation as above, we can choose $f_{\lambda^{2}+\lambda, P} l_{-P, P}$ such that

$$
\left(f_{\lambda^{2}+\lambda, P} \cdot l_{-P, P}\right)=\left(f_{\lambda, P}^{\lambda+1} \cdot f_{\lambda, \lambda P} \cdot l_{\phi(P), \hat{\phi}(P)}\right)
$$

Proof. We have $\left(f_{i, P}\right)=i(P)-(i P)-(i-1)(\mathcal{O})$ and $\left(\lambda^{2}+\lambda\right) P=-P$. Therefore

$$
\begin{aligned}
\left(f_{\lambda^{2}+\lambda, P} \cdot l_{-P, P}\right) & =\left(f_{\lambda^{2}, P} \cdot f_{\lambda, P} \cdot \frac{l_{\lambda^{2} P, \lambda P}}{l_{\left(\lambda^{2}+\lambda\right) P,-\left(\lambda^{2}+\lambda\right) P}} \cdot l_{-P, P}\right) \\
& =\left(f_{\lambda^{2}, P} \cdot f_{\lambda, P} \cdot l_{\lambda^{2} P, \lambda P}\right)
\end{aligned}
$$

Furthermore, since $\lambda P=\phi(P)$ and $\lambda^{2} P=\phi^{2}(P)=\hat{\phi}(P)$, we have

$$
l_{\lambda^{2} P, \lambda P}=l_{\lambda P, \lambda^{2} P}=l_{\phi(P), \hat{\phi}(P)}
$$

Also, (see Lemma 2 in [1])

$$
\left(f_{\lambda^{2}, P}\right)=\left(f_{\lambda, P}^{\lambda} \cdot f_{\lambda, \lambda P}\right)
$$

Hence we have

$$
\left(f_{\lambda^{2}+\lambda, P} \cdot l_{-P, P}\right)=\left(f_{\lambda^{2}, P} \cdot f_{\lambda, P} \cdot l_{\lambda^{2} P, \lambda P}\right)=\left(f_{\lambda, P}^{\lambda+1} \cdot f_{\lambda, \lambda P} \cdot l_{\phi(P), \hat{\phi}(P)}\right)
$$

which completes the proof .

Lemma 3. For $P \in E\left(\mathbb{F}_{p}\right)[r]$ and $Q \in E\left(\mathbb{F}_{p^{k}}\right)$, we have $f_{\lambda, \lambda P}(Q)=f_{\lambda, P}(\hat{\phi}(Q))$, with ϕ and $\hat{\phi}$ defined as above.

Proof. By definition we have $\left(f_{\lambda, \lambda P}\right)=\lambda(\lambda P)-\left(\lambda^{2} P\right)-(\lambda-1)(\mathcal{O})$. We also have $\phi(P)=\lambda P$ and $\# k e r \phi=\operatorname{deg}[1]=1$ (see [15] Chapter III page 85-86). By properties of the pullback we obtain

$$
\begin{aligned}
\phi^{*}\left(f_{\lambda, \lambda P}\right) & =\phi^{*}\left(\lambda(\lambda P)-\left(\lambda^{2} P\right)-(\lambda-1)(\mathcal{O})\right) \\
& =\lambda(P)-(\lambda P)-(\lambda-1)(\mathcal{O}) \\
& =\left(f_{\lambda, P}\right) .
\end{aligned}
$$

Furthermore, $\phi^{*}\left(f_{\lambda, \lambda P}\right)=\left(f_{\lambda, \lambda P} \circ \phi\right)$, hence we can take (up to a scalar multiple in \mathbb{F}_{p}^{*})

$$
f_{\lambda, \lambda P} \circ \phi=f_{\lambda, P}
$$

Applying $\hat{\phi}$ to the above yields

$$
f_{\lambda, \lambda P} \circ \phi \circ \hat{\phi}=f_{\lambda, P} \circ \hat{\phi}
$$

Since $\phi \circ \hat{\phi}=[1]$, we have

$$
f_{\lambda, \lambda P}=f_{\lambda, P} \circ \hat{\phi}
$$

This completes the proof.
Proof of Theorem 1: Since $P \in E\left(\mathbb{F}_{p}\right)[r]$, Lemma 3 gives

$$
f_{\lambda, \lambda P}(Q)=f_{\lambda, P}(\hat{\phi}(Q))
$$

and applying the above into Lemma 2, we can easily obtain

$$
f_{\lambda^{2}+\lambda, P}(Q) \cdot l_{-P, P}(Q)=f_{\lambda, P}^{\lambda+1}(Q) \cdot f_{\lambda, P}(\hat{\phi}(Q)) \cdot l_{\phi(P), \hat{\phi}(P)}(Q)
$$

Substituting the above equality into Lemma 1, we have

$$
\begin{aligned}
e(P, Q)^{a} & =\left(f_{\lambda^{2}+\lambda, P}(Q) \cdot l_{-P, P}(Q)\right)^{\frac{p^{k}-1}{r}} \\
& =\left(f_{\lambda, P}(Q)^{\lambda+1} \cdot f_{\lambda, P}(\hat{\phi}(Q)) \cdot l_{\phi(P), \hat{\phi}(P)}(Q)\right)^{\frac{p^{k}-1}{r}} .
\end{aligned}
$$

This completes the whole proof of Theorem 1.
Note that $e(P, Q)^{a}$ gives a bilinear pairing since $e(P, Q)$ is bilinear. Furthermore, it is non-degenerate if r does not divide a. Since a is far smaller than r in practice, r indeed does not divide a. Therefore, we obtain a new non-degenerate, bilinear pairing which is equal to a fixed power of the traditional reduced Tate
pairing. Similarly, such a bilinear pairing also exists on the second curve (2). We does not describe it here for simplicity. It should be pointed out that computing the new pairing requires a shorter loop than the traditional Miller's algorithm. In practice, we can make that a is equal to 1 for some elliptic curves with non-trivial automorphisms. In this case, we can keep that the value of the new pairing is equal to a correct value of the Tate pairing.

3.2 The Proposed Algorithm for Computing the Bilinear Pairing

In this section, we will give a new algorithm for computing the pairing $e(P, Q)^{a}$ by Theorem 1. For simplicity, we only consider these non-supersingular elliptic curves with non-trivial automorphisms which have embedding degrees $k=2$. However, the new method can also apply to higher values of k.

Let Q be in the trace-zero subgroup $[3,13]$ for good efficiency. Note that the denominator can be omitted in Miller's algorithm since the x-coordinates of P, Q and $\hat{\phi}(Q)$ are contained in \mathbb{F}_{p}^{*} now. Let $l_{R, T}$ be the equation of the line through points R and T. The proposed algorithm is given in Algorithm 2.

We give some useful remarks on Algorithm 2. The equation of the line $l_{\phi(P), \hat{\phi}(P)}$ is easily obtained since $\phi(P)$ and $\hat{\phi}(P)$ have the same y-coordinate. Computing $\hat{\phi}(Q)$ only requires one multiplication since β^{2} and x-coordinate of Q are contained in \mathbb{F}_{p}^{*}. Let T be in $E\left(\mathbb{F}_{p}\right)$ with coordinates $\left(x_{T}, y_{T}\right)$, and let m be the slope of the line $l_{T, T}$. Then the equation of the line $l_{T, T}$ is $\left(y-y_{T}\right)-m(x-$ $\left.x_{T}\right)=0$. Therefore the evaluation of $l_{T, T}(Q)$ and $l_{T, T}(\hat{\phi}(Q))$ only requires two multiplications in \mathbb{F}_{p}. Similarly, computing $l_{T, P}(Q)$ and $l_{T, P}(\hat{\phi}(Q))$ also requires two multiplications in \mathbb{F}_{p}.

Algorithm 2 Computations of $e(P, Q)^{a}$ using automorphisms

Input: $\lambda=\sum_{i=0}^{n} l_{i} 2^{i}$, where $l_{i} \in\{0,1\} . P \in E\left(\mathbb{F}_{p}\right)[r]$ and $Q \in E\left(F_{p^{k}}\right)$.
Output: $e(P, Q)^{a}$

1. $T \leftarrow P, f_{1} \leftarrow 1, f_{2} \leftarrow 1, f_{3} \leftarrow l_{\phi(P), \hat{\phi}(P)}(Q)$
2. for $i=n-1, n-2, \ldots, 1,0$ do
$2.1 f_{1} \leftarrow f_{1}^{2} \cdot l_{T, T}(Q), f_{2} \leftarrow f_{2}^{2} \cdot l_{T, T}(\hat{\phi}(Q)), T \leftarrow 2 T$
2.2 if $l_{i}=1$ then
$2.3 f_{1} \leftarrow f_{1} \cdot l_{T, P}(Q), f_{2} \leftarrow f_{2} \cdot l_{T, P}(\hat{\phi}(Q)), T \leftarrow T+P$
3. $f_{1} \leftarrow f_{1}^{\lambda+1}$,
4. return $\left(f_{1} \cdot f_{2} \cdot f_{3}\right)^{(p-1)(p+1) / r}$

4 Efficiency Consideration

Now the performance of the proposed algorithm is considered in this section. We neglect the cost of field additions and subtractions, as well as the cost of multiplication by small constants. The computational cost of one multiplication in \mathbb{F}_{p}^{*} is denoted as M.

We first point out that $\hat{\phi}(Q)$ can be precalculated using only $1 M$ because β^{2} and x-coordinate of Q are in \mathbb{F}_{p}^{*}. The evaluation of $l(Q)$ and $l(\hat{\phi}(Q))$ cost $2 M$ since the equation of the line can be reused. One multiplication and one square in $\mathbb{F}_{p^{2}}^{*}$ require $3 M$ and $2 M$, respectively [13]. We assume that the computational cost of an inverse in \mathbb{F}_{p}^{*} is $10 M$. We also count one square as one multiplication in \mathbb{F}_{p}^{*}. One point doubling requires $14 M$ and one point addition requires $13 M$ in $E\left(\mathbb{F}_{p}\right)[9]$.

For good efficiency, we can make that λ has a low Hamming weight. Scott has found such a suitable elliptic curve with $\lambda=2^{80}+2^{16}$ using Cocks-Pinch algorithm [12]. We compute the Tate pairing on this curve using the proposed algorithm in the following. Note that $r=\lambda^{2}+\lambda+1$ has 161 bits there. Hence a is equal to 1 in this case. Therefore the value of $e(P, Q)^{a}$ is same as the value of the traditional Tate pairing. Note that the length of the iteration loop in the new algorithm is half the length of the iteration loop in the previous traditional algorithm. However, the new algorithm requires more multiplications than the traditional algorithm in one iteration loop.

Now we give a detailed efficiency consideration on the new algorithm. Let $P=\left(x_{P}, y_{P}\right) \in E\left(\mathbb{F}_{p}\right)[r]$ and $Q=\left(x_{Q}, y_{Q}\right) \in E\left(\mathbb{F}_{p^{2}}\right)$, where $x_{Q} \in \mathbb{F}_{p}$ and $y_{Q} \in \mathbb{F}_{p^{2}}$. We first consider the cost of line 1 in Algorithm 2 . It is easily checked that $l_{\phi(P), \hat{\phi}(P)}(Q)$ is equal to $y_{Q}-y_{P}$ since $P, \phi(P)$ and $\hat{\phi}(P)$ have the same y-coordinate. So line 1 requires no multiplications in Algorithm 2. Now we consider the computational cost of line 2.1 in Algorithm 2. The cost of one point doubling is $14 M$. The two line equation evaluations require $2 M$ since $\hat{\phi}(Q)$ can be precalculated easily. The remainder in 2.1 requires two squares and two multiplications in $F_{p^{2}}^{*}$, which cost $10 M$. Therefore line 2.1 requires $26 M$. The number of the main loop is 79 , so the total cost of line 2.1 is $26 \cdot 79=2054 M$. It is not difficult to show that the total cost of line 2.3 requires 21 M . Line 3 requires $80 \cdot 2=160 M$ for this exponentiation. By now we cost $2054+21+160=2235 M$. There are two multiplications in $\mathbb{F}_{p^{2}}$ in line 4 of Algorithm 2 , which require $6 M$. The exponentiation $(p-1)$ requires five multiplications and one inverse in \mathbb{F}_{p}^{*}
since the Frobenius map can be used here. The exponentiation $(p+1) / r$ requires $(512-161) \cdot 2=702 M$ using the Lucas laddering algorithm mainly [14]. So the total contribution of line 4 is $6+15+702=723 M$. Therefore the total computational cost of the new algorithm is $2235+723=2958 M$.

Finally, we compare the new algorithm with the previous methods at the same levels of security in Table 1. Algorithm 4 in [12] computes the Tate pairing on the same elliptic curve. However, it requires the whole iteration main loop in Miller's algorithm. In [12], Scott also gives the efficiency of the pairing calculation in IBE scheme [4], which requires $4070 M$. From Table 1, it shows that the proposed algorithm is more efficient than the previous algorithms indeed at the same levels of security .

Table 1. Cost comparisons of the proposed algorithms

Algorithm	Cost of Multiplications in \mathbb{F}_{p}^{*}
the proposed algorithm	2958 M
Algorithm 4 in [12]	3329 M
Miller's algorithm in IBE scheme	4070 M

5 Conclusion

A new efficient algorithm has been proposed for computing the bilinear pairing on a family of non-supersingular curves, which have non-trivial automorphisms. Similar to the eta pairing and the ate pairing, the main technique in the new algorithm is to shorten the main iteration loop. The proposed method is more efficient than the previous methods on these elliptic curves. It should be pointed out that the new method can be used for the large embedding degrees. It is possible that the new algorithm can be further optimized and be extended into hyperelliptic curves.

References

1. P.S.L.M. Barreto, S. Galbraith, C. ÓhÉigeartaigh, and M. Scott. Efficient Pairing Computation on Supersingular Abelian Varieties. In Designs, Codes and Cryp-
tography. Springer-Verlag, 2005. Also availabe from Cryptology ePrint Archive, Report 2004/375.
2. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient Algorithms for Pairing-based Cryptosystems. In Advances in Cryptology-Crypto'2002, volume 2442 of Lecture Notes in Computer Science, pages. 354-368. Springer-Verlag, 2002.
3. P.S.L.M. Barreto, H.Y. Lynn, M. Scott. On the Selection of Pairing-Friendly Groups. SAC: Annual International Workshop on Selected Areas in Cryptography, volume 3006 of Lecture Notes in Computer Science, pages. 17-25. Springer-Verlag, 2004.
4. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM Journal of Computing, 32(3):586C615, 2003.
5. I. Duursma, P. Gaudry, and F. Morain. Speeding up the Discrete Log Computation on Curves with Automorphisms, AsiaCrypt'g9, volume 1716 of Lecture Notes in Computer Science, pages. 203-121. Springer-Verlag, 1999.
6. S.D. Galbraith. Pairings - Advances in Elliptic Curve Cryptography. Cambridge University Press, 2005.
7. R.P. Gallant, R.J. Lambert and S.A. Vanstone. Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms, In Advances in Cryptology - Crypto 2001, volume 2139 of of Lecture Notes in Computer Science. Springer- Verlag, 2001.
8. F. Hess, N.P. Smart and F. Vercauteren. The Eta Pairing Revisited. IEEE Transactions on Information Theory, vol 52, Pages. 4595-4602, Oct. 2006. Also available from Cryptology ePrint Archive, Report 2006/110.
9. IEEE Std 1363-2000. Standard specifications for public-key cryptography. IEEE P1363 Working Group, 2000.
10. V.S. Miller. Short Programs for Functions on Curves. Unpublished manuscript, 1986.
11. K.G. Paterson. Cryptography from Pairing - Advances in Elliptic Curve Cryptography. Cambridge University Press, 2005.
12. M. Scott. Faster Pairings Using an Elliptic Curve with an Efficient Endomorphism. Progress in Cryptology - INDOCRYPT 2005, volume 3797 of Lecture Notes in Computer Science, pages. 258-269. Springer-Verlag, 2005.
13. M. Scott. Computing the Tate Pairing. In CT-RSA05, volume 3376 of Lecture Notes in Computer Science, pages. 293-304. Springer-Verlag, 2005.
14. M. Scott and P.S.L.M. Barreto. Compressed pairings. In Advances in CryptologyCrypto'2004, volume 3152 of Lecture Notes in Computer Science, pages. 140-156. Springer-Verlag, 2004.
15. J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, New York, 1986.
