
Dynamic Cryptographic Hash Functions

William R. Speirs II and Samuel S. Wagstaff, Jr.

Center for Education and Research in Information Assurance and Security (CERIAS)
Department of Computer Sciences, Purdue University

Abstract. We present the dynamic cryptographic hash function, a new
type of hash function which takes two parameters instead of one. The ad-
ditional parameter specifies the internal workings and size of the digest
produced. We provide formal definitions for a dynamic cryptographic
hash function and security properties required for a dynamic hash func-
tion to be considered cryptographically secure. Two additional proper-
ties, second digest resistance and increasing security, are also formally
defined. We also present a construction that enables a compression func-
tion to be extended to create a dynamic cryptographic hash function.
Proofs of our construction’s security are provided.

Keywords: Hash function, dynamic, preimage resistance, collision resistance,
construction.

1 Introduction

In this paper we introduce a new type of cryptographic hash function that is a
natural extension of traditional hash functions. We call this new type of hash
function a dynamic hash function. Dynamic hash functions take a second in-
put parameter, besides the message, that specifies the level of security required
from the function. By changing the security parameter the function dynamically
changes the way a digest is computed, hence the reason for the name. The dy-
namic change might be as simple as changing the number of rounds used for
processing a message block or the size of the output of the function.

Requiring a hash function to have a security parameter is advantageous for
a number of reasons. First, it allows designers to more easily test functions by
scaling down the number of rounds to a manageable amount and then launching
attacks against this reduced version. If attacks can be launched against a reduced
version then there is the possibility of extending the attack to the full version
of the function. This technique has been used numerous times in the past: [7, 9,
10], etc.

Second, if the security parameter relates to the size of the digest, as suggested
in this paper, then a single dynamic hash function can be used in a number
of different applications without modification. For example, the hash-then-sign
paradigm that is commonly used in a number of protocols. If the signing algo-
rithm has the ability to vary the number of bits used for the key (like RSA,

ElGamal, or Pohlig-Hellman), then why should the hash function used be re-
stricted to a fixed size digest? If a user requires increased security by selecting a
larger key size, the size of the digest should also increase to provide potentially
increased security.1

Finally, using a dynamic hash function in a protocol makes implementation
much easier when it is mandated that the size of the digest be increased. Instead
of being forced to rewrite software to include the option for a new hash function,
the protocol can be designed from the start with a field to specify the size of the
digest. Several protocols need to be reimplemented now that attacks on MD5 [8,
19] have became prevalent. The same type of reimplemention is currently needed
as systems migrate from SHA-1 to SHA-256 or SHA-512. Using a dynamic hash
function and specifying in the design that the digest can change size makes
reimplemention easier when attacks are discovered; the security parameter used
only needs to be changed.

1.1 The Contributions of This Paper

In this paper we formally define a dynamic cryptographic hash function and the
security requirements for such a function. This definition generalizes the defi-
nition for a traditional cryptographic hash function. The security requirements
of a traditional cryptographic hash function are extended to a dynamic crypto-
graphic hash function and new security requirements are provided that do not
have analogs in the traditional setting. These new requirements are needed to
thwart new attacks related to the different behavior of dynamic cryptographic
hash functions.

We also introduce a construction that uses a compression function to create
a dynamic hash function. The construction uses the security parameter to spec-
ify the size of the dynamic hash function’s digest. We provide proofs that our
construction is preimage resistant, collision resistant, and increasingly secure as
defined for dynamic hash functions. Also, the relative speed of our construction,
using the SHA-1 compression function, is compared to SHA-1, SHA-256, and
SHA-512.

1.2 Overview of this Paper

This paper begins by providing a background on traditional cryptographic hash
functions and the security properties a hash function needs to be considered cryp-
tographically secure. Next, we present the dynamic cryptographic hash function
and formally define the security properties a dynamic hash function needs to be
considered cryptographically secure. We also define additional security proper-
ties unique to dynamic cryptographic hash functions. In Section 4 we present
our construction which creates a dynamic cryptographic hash function from a
compression function. The implementation details and proofs on the security of
the construction provided.

1 Increasing the size of a key or digest of a hash function does not always relate to
increased security.

2 Traditional Cryptographic Hash Functions

There are different definitions in the literature for a cryptographic hash function,
including [6, 12, 15, 17] and others. While superficially these definitions are dif-
ferent, they all define the same concept of a cryptographic hash function. For the
purposes of this paper, a hash function will be defined as follows. Let N define
the set of natural numbers and Σ = {0, 1}. The length of a message M being
hashed in bits is n. A hash function H is a function of the form H : Σ∗ → Σl(n)

where Σ∗ is the infinite set of all finite binary strings and l(n) is a monotone
increasing function l : N → N. The running time of l(n) is bounded by O(nk)
where k is a constant independent of n. This defines H as a function from strings
of arbitrary length to strings of a length determined by a monotone increasing
function. The definition closely follows the one provided in [15]. The output of
H is called the digest of the message M .

2.1 Cryptographic Hash Function Properties

While the above definition describes the shape of a hash function, there is no
mention of what is required of a hash function to be considered cryptographically
secure. There are three informal properties a hash function must have to be
considered cryptographically secure. They are enumerated below, taken from
[12]:

1. Preimage Resistance - For essentially all pre-specified outputs, it is com-
putationally infeasible to find any input which hashes to that output, i.e.,
to find any preimage x′ such that h(x′) = y when given any y for which a
corresponding input is not known.

2. 2nd-Preimage Resistance - It is computationally infeasible to find any second
input which has the same output as any specified input, i.e., given x, to find
a 2nd-preimage x′ 6= x such that h(x) = h(x′).

3. Collision Resistance - It is computationally infeasible to find any two distinct
inputs x, x′ which hash to the same output, i.e., such that h(x) = h(x′).2

Unfortunately, there are deficiencies in the description of these requirements
based on the lack of formal definitions for “essentially all” and “pre-specified
outputs”. In [17] these properties are defined formally and expanded to seven
notions of security across three different attack models. For the purposes of
this paper, only preimage resistance (one-wayness) and collision resistance are
considered.3 Formal definitions, like the ones provided in Section 3.1, can be
found in [6] and [15].

2 There is a free choice in both x and x
′ by the adversary.

3 Collision resistance implies 2nd-preimage resistance so a formal definition is not
provided. See [17] for a formal treatment of 2nd-preimage resistance.

3 Definition of a Dynamic Cryptographic Hash Function

A dynamic cryptographic hash function is the same as a traditional crypto-
graphic hash function except that a security parameter is provided which can
affect how the function works internally and the size of the output. The definition
of a traditional hash function is modified to define a dynamic hash function as
follows. Let l(n), u(n), and d(s) all be monotone increasing functions l : N → N,
u : N → N and d : N → N such that 0 < l(n) ≤ u(n) and 0 < d(s) < n for
all n > 1. The running time of l(n), u(n), and d(s) is bounded from above by a
polynomial. Let [a, b] = {i ∈ N : a ≤ i ≤ b}. A dynamic hash function is then
defined as follows.

Definition 1. Dynamic Hash Function – A dynamic hash function is a func-

tion H of the form: H : Σ∗ × [l(n), u(n)] → Σd(s), for some security parameter

s ∈ [l(n), u(n)].

One should note that a dynamic cryptographic hash function creates a family
of traditional cryptographic hash functions each meeting the properties of a
traditional cryptographic hash function. Since a dynamic cryptographic hash
function takes a second parameter that can potentially vary the digest’s size
and how the function is computed, the traditional properties must be modified
appropriately.

3.1 Traditional Properties for Dynamic Hash Functions

Before defining preimage and collision resistance for a dynamic hash function,
a dynamic hash function family must be defined. The reason for this is that for
both preimage and collision resistance one could imagine a probabilistic polyno-
mial time algorithm which has a table of (message, security parameter, digest)
triples encoded in the algorithm for a specific dynamic hash function. When
asked to compute either the preimage of a given digest, or a collision for the
hash function, the algorithm would search the table, in polynomial time, for
either a preimage or a collision and output accordingly [16]. However, defining
a function family as an infinite family of finite sets of hash functions prevents
such an algorithm from succeeding for all hash functions in the family, because
there are infinitely many.

Definition 2. Dynamic Hash Function Family – A dynamic hash function

family H with security parameter interval [l(n), u(n)] is an infinite family of

finite sets H = {Hn}
∞

n=1 where the members of Hn are called “instances” of size

n. An instance I ∈ Hn is a triple,

I = (hn, Dn, Rn),

where Dn = Σn, Rn ⊆ Σd(s) for some s ∈ [l(n), u(n)], and hn : Dn×[l(n), u(n)] →
Rn so that for all s ∈ [l(n), u(n)], hn(·, s) : Dn → Σd(s).

Three requirements are imposed on the dynamic hash function family H.

1. Hn is accessible, that is, there is a probabilistic polynomial time algorithm,
which on input n outputs an instance chosen uniformly from Hn.

2. Dn is samplable, that is, there is a probabilistic polynomial time algorithm,
which on input I selects an element uniformly from Dn.

3. hn is polynomial time computable, that is, on input I, and x ∈ Dn there
is a polynomial time algorithm (polynomial in n and in |x|) that computes
hn(x).

Preimage Resistance for Dynamic Hash Functions Analogous to the def-
inition of preimage resistance for traditional hash functions, preimage resistance
for dynamic hash functions can only be defined once an appropriate definition
for a preimage finder is given.

Definition 3. Dynamic Preimage Finder – A dynamic preimage finder M

for a dynamic hash function family H is a probabilistic polynomial time algorithm

that on input n and hn(x, s) ∈ Rn, where (hn, Dn, Rn) ∈ Hn and x is selected

randomly from Dn, outputs either “?” or an element M(n, hn(x, s)) ∈ Dn such

that hn(M(n, hn(x, s)), s) = hn(x, s).

Definition 4. Preimage Resistant Dynamic Hash Function Family – A

dynamic hash function family H is preimage resistant if for all preimage finders

M , for all polynomial Q, and for all sufficiently large n

Pr{hn(M(n, hn(x, s)), s) = hn(x, s)} <
1

Q(n)

where the probability is taken over all hn ∈ Hn, x ∈ Dn and the random choices

of M .

This definition states that the probability of an adversary successfully finding
a message that will hash to a given digest is bounded by the reciprocal of any
polynomial in n.

Collision Resistance for Dynamic Hash Functions Like preimage resis-
tance, collision resistance can only be defined for dynamic cryptographic hash
functions once an appropriate definition for a dynamic collision string finder is
given.

Definition 5. Dynamic Collision String Finder – A dynamic collision

string finder F for a dynamic hash function family H is a probabilistic polynomial

time algorithm that on input n, a function hn ∈ Hn and s ∈ [l(n), u(n)] outputs

either “?” or a pair x, x′ ∈ Dn with x 6= x′ and hn(x, s) = hn(x′, s).

Definition 6. Collision Resistance Dynamic Hash Function Family –

A dynamic hash function family H is collision resistant if for all collision string

finders F , for all polynomials Q, and for all sufficiently large n

Pr{F (n, hn, s) 6= “?”} <
1

Q(n)

where the probability is taken over all hn ∈ Hn and the random choices of F .

This definition states that the probability of an adversary successfully finding
two message that will hash to the same digest is bounded by the reciprocal of
any polynomial in n.

3.2 Additional Properties for Dynamic Hash Functions

Since the way in which the digest is computed can change and the size of the
digest can be arbitrary, a dynamic hash function must have additional proper-
ties to be considered cryptographically secure. Having these properties prevent
simple and potentially dangerous constructions that use naive modifications of
traditional hash functions to create a dynamic hash function. The additional
properties of second digest resistance, and increasing security are defined next.

Second Digest Resistance Second digest resistance states that that it is
computationally infeasible to compute the digest of a message and security pa-
rameter using the digest of the same message and a different security parameter.
This property indicates the digest of some message and security parameter is
generated independently of all other digests of the same message and different
security parameters. Before the formal definition for second digest resistance can
be stated, the definition of a dynamic digest generator must be given.

Definition 7. Dynamic Digest Generator – A dynamic digest generator G

for a dynamic hash function family H is a probabilistic polynomial time algorithm

that on input n, s ∈ [l(n), u(n)], s′ ∈ [l(n), u(n)], and hn(x, s) ∈ Rn, where

s 6= s′, (hn, Dn, Rn) ∈ Hn, x is selected randomly from Dn, outputs either “?”

or an element G(n, s, s′, hn(x, s)) ∈ Rn such that G(n, s, s′, hn(x, s)) = hn(x, s′).

Definition 8. Second Digest Resistant Dynamic Hash Function Fam-

ily – A dynamic hash function family H is second digest resistant if for all

dynamic digest generators G, for all polynomials Q, and for all sufficiently large

n

Pr{G(n, s, s′, hn(x, s)) = hn(x, s′)} <
1

Q(n)

where the probability is taken over all hn ∈ Hn, x ∈ Dn, s ∈ [l(n), u(n)], s′ ∈
[l(n), u(n)], and the random choices of G.

This property ensures, among other things, that a dynamic cryptographic
hash function is not constructed by concatenating or truncating a standard
cryptographic hash function. One motivation for this property is to protect key
generation algorithms that use a dynamic hash function. It is insecure for the
128-bit digest of message to be a substring of the 256-bit digest of the same
message when using this function to generate cryptographic keys.

Suppose Alice wants to securely communicate with Bob and Carol. Alice
and Bob will communicate using a 128-bit key while Alice and Carol will use
a 256-bit key. Suppose Alice creates both keys by hashing the current time
concatenated with some random data. If Alice creates the 128-bit and 256-bit

keys immediately after each other, using the construction above, there is a very
good chance that the 128-bit key will simply be the 256-bit key truncated to 128
bits if the granularity of the clock is too large. With minimal effort Carol can
compute the key Alice made for Bob..

While one might argue that protocol designers and implementers should be
aware that such an attack might be possible, it is all too often that such attacks
are overlooked. Instead, we argue the burden of having this property should be
placed on the function designer. Such a requirement is relatively easy to achieve,
assuming a preimage and collision resistant hash function, by concatenating the
value of the security parameter to the message.

Increasing Security Since dynamic hash functions contain a security param-
eter that changes how the digest of a message is computed, it is desirable to
be able to say something about the security of the function with respect to the
security parameter. The obvious relationship is simply that as you increase the
value of the security parameter it becomes harder to break the function with
respect to Definitions 4, 6, and 8. The notion of increasing security is formally
defined below.

Definition 9. Increasingly Secure Dynamic Hash Function Family – A

dynamic hash function family H is increasingly secure if for all dynamic preim-

age finders M , for all dynamic collision string finders F , for all dynamic digest

generators G, and for all sufficiently large n

Pr{hn(M(n, hn(x, s)), s) = hn(x, s)} ≥ Pr{hn(M(n, hn(x, s+1)), s+1) = hn(x, s+1)}

and

Pr{F (n, hn, s) 6= “?′′} ≥ Pr{F (n, hn, s + 1) 6= “?′′}

and

Pr{G(n, s, s′, hn(x, s)) = hn(x, s′)} ≥ Pr{G(n, s, s′+1, hn(x, s)) = hn(x, s′+1)}

where s 6= s′, s 6= s′ + 1, and the probability is taken over all hn ∈ Hn, x ∈ Dn,

{s, s + 1, s′, s′ + 1} ∈ [l(n), u(n)], and the random choices of M , F , and G

respectively.

This definition states that as you increase the value of the security param-
eter the probability of a successful attack against preimage resistance, collision
resistance, and second digest resistance does not become larger.

While in the concrete model this is extremely difficult, if not impossible, to
prove, usually certain assumptions can be made about the underlying pieces
used to build the function that allow such a property to be proved. While these
assumptions cannot usually be realized in practice, such as the existence of ran-
dom oracles, proving it true in a theoretical model results in a stronger function
than functions where it is not true.

4 A Dynamic Hash Function Construction

In this section we present a construction that creates a dynamic cryptographic
hash function from a compression function. This construction is similar to the
Merkle-Damg̊ard construction except that it incorporates a security parameter
that changes the resulting digest’s size.4 Our construction has the ability to se-
curely create a digest that is larger or smaller than the output of the compression
function.

In [3] Dunkelman and Biham present HAIFA, or a Hash Iterative Frame-
work. Part of this framework explains a method for creating a variable size hash
function which can produce digests of sizes less then or equal to that of the
underlying compression function’s output size. Two of the ideas discussed in
HAIFA are used to create the dynamic cryptographic hash function construc-
tion presented in this paper. HAIFA however has no provision for creating a
digest with a size larger then the output of the underlying compression function.
This construction extends HAIFA by providing a method for securely creating
digests of sizes larger than the output of the underlying compression function.
Also, rigorous proofs for the security properties defined earlier are provided.

4.1 Construction Description

Our construction modifies the Merkle-Damg̊ard construction in three ways to
create a dynamic cryptographic hash function. A block diagram of our construc-
tion is provided in Figure 1, where mi is the ith block of the message and yi is
the ith output of the compression function.

The first change is that the initial value depends on the security parameter.
The initial value is generated by creating a “message block” that is the con-
catenation of a specified initial value, the security parameter as a 32-bit binary
number, and enough zeros to pad the message block to the required size. The
resulting value IVs = g(IV, IV ‖ s ‖ 0 · · · 0) is the initial value for a digest with
security parameter s. The same method is used in [3] to help ensure that two
digests of different sizes computed from the same message will not result in one
being the truncation of the other. This method is also used by SHA-224 and
SHA-384 so that the digest of a message will not be the truncation of SHA-256
and SHA-512 respectively [14].

The second change to the Merkle-Damård construction is in the way that
messages are padded. In our construction a single 1 bit is concatenated to the
end of the message followed by enough 0 bits to allow for the message’s size as a
64-bit number and the security parameter as a 32-bit number to be concatenated.
The suffix of all messages will be of the form: 10 · · · 0 ‖ |M | ‖ s. This change was
also outlined in [3].

The final change allows the size of the digest to be larger then the size of
the output of the compression function, extending HAIFA. This is accomplished

4 The security parameter could also affect the internal workings of the underlying com-
pression function (like the number of rounds used); however, we do not investigate
this case.

Fig. 1. The dynamic hash function construction with multiple XORs.

by XORing the output of the final chaining value with the previous chaining
values. Figure 1 shows the last three chaining values used: yn−3, yn−2, yn−1.
Each of these chaining values is XORed with the final chaining value, yn, and
concatenated together to form the digest before truncation: yn−3 ⊕ yn ‖ yn−2 ⊕
yn ‖ yn−1⊕yn. Truncation is performed, if needed, to form a digest of the desired
size. Truncation is always done on the most significant bits of the result.

Security Parameter Bounds In our construction the size of the digest d(s)
is simply the security parameter provided: d(s) = s. As for all dynamic hash
functions, the range of possible security parameters must be specified. Our con-
struction specifies that bits are truncated from the result until the desired digest
size is met. Therefore, there is no restriction on how small a digest could the-
oretically be, except that one must exist. Hence, the theoretical limit for lower
bound is l(n) = 1. Let c = |g(·)| or the size of the output of the compression
function. We recommend that l(n) ≥ c ≥ 256. The upper bound on the range
of possible digest sizes is bounded by the ability to encode the digest size in a
message block with the initial value. Let b = |m| > 97 bits, where m is a message
block that is processed by the compression function g. Let n be the size of the
message M in bits. The function u(n) is then defined as follows:

u(n) =

c, 1 ≤ n ≤ b − 97

⌈n

b
⌉c, b − 97 < n ≤

(

232

c
− 1

)

b

232,
(

232

c
− 1

)

b < n

The upper bound on the security parameter is defined this way to ensure
that the message is long enough to produce enough chaining values to create a
digest of the requested size. Since the security parameter is encoded as a 32-bit
number in the padding algorithm, the maximum value it can be is 232.

4.2 The Impact on Implementations

The most invasive and cumbersome implementation change is the need to save
chaining values while the message is being computed. The security parameter
dictates how many chaining values need to be saved to compute the digest. If
the entire message size is known before hashing begins, then only those chaining
values required need to be saved. However, if the size of the message is not know
before hashing, as is often the case with streaming data, an appropriately sized
array can store the last set of chaining values. These chaining values are replaced
one by one as new chaining values are computed. While this change does require
a bit of re-tooling with respect to current implementations, it is not too costly
because these values must be computed already.

Our construction was implemented along with the SHA-1, SHA-256, and
SHA-512 functions to compare the relative speed. The implementation of these
functions is not optimal with respect to speed; however, they are all optimized
in the same fashion providing a good relative comparison. In the case of our
construction, the underlying compression function used was the same as SHA-1.
Our construction, when producing a 160-bit digest, is only slightly slower then
the SHA-1 algorithm. This result is not surprising because our construction must
process an extra message block and also performs additional work with respect
to padding, saving chaining values and combining them to produce the digest.
What is most interesting is the difference in time with respect to the 256-bit and
512-bit digests. To create a digest for 1 MB of data, SHA-256 took 14 clock ticks
and SHA-512 required 21.9; whereas, our construction took only 7.7 and 8.0 for
respective digest sizes. This is not too surprising because the only additional
work for our construction to create a larger digest is to save more intermediate
values and combine them at the end.

4.3 The Security of This Construction

Our construction, under certain assumptions, has the required properties of
preimage resistance, collision resistance, second digest resistance, and increasing
security making it a cryptographically secure dynamic hash function. Theorems
and a conjecture are provided for each property that state the assumptions of
the underlying compression function to result in the construction having the
required properties.

Preimage Resistance

Theorem 1. If the underlying compression function used in the dynamic hash

function construction is preimage resistant, then the dynamic hash function con-

struction is preimage resistant as defined in Definition 4.

Proof. Up to the point yn−2 the construction is exactly the same as the Merkle-
Damg̊ard construction, which is preimage resistant if the underlying compression

function is preimage resistant [13]. Since the value of yn−1 cannot be forced to
result in a specific value, the only way to force the digest to a specific value is
to force yn to a specific value. By the properties of XOR, there is only one value
for yn that will force the digest to a specific digest given a fixed yn−1. However,
finding an mn that forces yn to that specific value breaks the assumption that
g is a preimage resistant compression function.

Since the digest is constructed by concatenating chaining values, once they
are XORed with the final value yn, it is clear that this same argument applies
to each piece of the overall digest independently. Since the argument is true
for each piece independently, concatenating them together does not violate the
argument. Therefore, the entire construction is preimage resistant under the
stated assumption. ⊓⊔

Collision Resistance

Theorem 2. If the underlying compression function used in the dynamic hash

function construction is both preimage resistant and collision resistant, then the

dynamic hash function construction is collision resistant as defined in Definition

6.

Proof. Since there are two different variables that can be changed to cause a
collision, the first n − 1 message blocks or block mn, there are four possible
combinations for modifying these blocks. Let m∗ be all of the n − 1 message
blocks up to block mn. Let a ′ denote a message block(s) that is modified from
the original. One of these cases, H(m∗ ‖ mn) = H(m∗ ‖ mn), is not a collision
because the message does not change. The remaining three cases are investigated.

CASE 1: H(m∗ ‖ mn) = H(m∗ ‖ m′

n
)

In this case none of the first n − 1 message blocks are modified to cause a colli-
sion. Therefore, a collision can only be caused by modifying block mn. The only
way to cause a collision is for an attacker to find two message blocks mn and m′

n

such that the resulting values yn and y′

n are the same. This can only be done
if the underlying compression function is not collision resistant. Therefore, the
only way to cause a collision in this case is by breaking our assumption that the
underlying compression function is collision resistant.

CASE 2: H(m∗ ‖ mn) = H(m′

∗
‖ mn)

In this case at least one of the first n − 1 message blocks is modified to cause a
collision. This means that the value for yn−1 = y′

n−1. However, up to the point
yn−1 the construction is exactly the same as the Merkle-Damg̊ard construction
which is known to be collision resistant if the underlying compression function
is collision resistant [6]. Therefore, the only way to cause a collision in this case
is to break our assumption that the underlying compression function is collision
resistant.

CASE 3: H(m∗ ‖ mn) = H(m′

∗
‖ m′

n)
In this case at least one of the first n− 1 message blocks is modified along with

the last message block to cause a collision. The only way to cause a collision in
this case is for yn−1 ⊕ yn = y′

n−1 ⊕ y′

n. However, in the process of calculating
yn or y′

n, yn−1 or y′

n−1 respectively must be calculated first. This leads to the
situation where the message block mn or m′

n
must be picked to force a particular

value for yn or y′

n respectively. The only way to achieve this is if the underly-
ing compression function is not preimage resistant. Therefore, the only way to
cause a collision is by breaking the assumption that the underlying compression
function is preimage resistant.

Since all cases result in our assumptions being broken, the theorem is proved
correct for a single XOR. Since this argument is true for each piece independently,
concatenating them together does not violate the argument. Therefore, the entire
construction is collision resistant under the stated assumptions. ⊓⊔

Second Digest Resistance Second digest resistance states that given h(x, s),
s, and s′ one cannot create the digest h(x, s′) from the given information. It
is conjectured that that if our construction is preimage resistant, then the con-
struction is second digest resistant.

Conjecture 1. If the dynamic hash function construction is preimage resistant,
then the dynamic hash function construction is second digest resistant as defined
in Definition 8.

It is clear that preimage resistance is needed. If the construction were not
preimage resistant, an attacker could compute the inverse of the construction,
discover x, and compute h(x, s′). However, this can only be done if the construc-
tion were not preimage resistant.

The difficulty in proving that our construction is second digest resistant is
the possibility of some other method for attacking the construction that does not
rely on how the construction works. Such an attack would be able to compute
one digest given another without calculating the preimage. It is difficult to prove
if such an algorithm exists or not for our construction. Therefore, we are unable
to state with absolute certainty that our construction is second digest resistant;
however, we believe it to be second digest resistant.

Increasing Security The motivation behind the property of increasing security
is to ensure that the function’s security will not become weaker as the value of
the security parameter increases. While in practice this is very hard to prove, we
are able to make some statement about our construction’s security with respect
to the security parameter assuming the underlying compression function acts
as a random oracle. While creating such a compression function in practice is
impossible, proving such a relation between the security of the construction and
the security parameter in theory is helpful [1].

Theorem 3. If the underlying compression function acts as a random oracle,

then the overall construction will be increasingly secure as defined in Definition

9 as the security parameter increases.

Before proving this theorem true, the following lemma is provided and proved
to aid in proving the theorem. This lemma states that if the underlying com-
pression function acts as a random oracle, then the dynamic hash function con-
struction acts as random oracle.

Lemma 1. If the underlying compression function used in the dynamic hash

function construction acts as a random oracle, then the dynamic hash function

construction acts as a random oracle.

Proof. To show that the construction acts as a random oracle if the underlying
compression function acts as a random oracle, we will borrow the proofs for the
“Chop Solution” and the “NMAC Construction” presented in [5] from Sections
3.4 and 3.5 respectively. Let c = |g(·)| where g is the underlying compression
function. There are two cases, when d(s) | c and when d(s) ∤ c.

CASE 1: d(s) | c

When the size of the digest divides the size of the compression function’s output,
bits are not chopped from the result of the construction. In this case we apply the
“NMAC Construction” proof presented in Section 3.5 of [5]. In our construction
instead of applying a second random oracle function to the output, the output is
generated by XORing two outputs of g. This follows the same intuition given in
the paper. Applying an XOR to the final value prevents the “extension” attack
described in [11]. Therefore, our construction is indifferentiable from a random
oracle in this case if the underlying compression function acts as a random oracle.

CASE 2: d(s) ∤ c

When the size of the digest does not divide the size of the compression function’s
output, bits are chopped from the resulting output. In this case we apply the
“Chop Solution” proof presented in Section 3.4 of [5]. While our construction is
not exactly the same as the Merkle-Damg̊ard construction, what prevents the
distinguisher from differentiating between the two is not the underlying workings
of the Merkle-Damg̊ard construction, but the fact that bits are chopped from
the output. Therefore, our construction is indifferentiable from a random oracle
in this case if the underlying compression function acts as a random oracle.

Since in both cases our construction is indifferentiable from a random oracle
if the underlying compression function is a random oracle, our construction is
indifferentiable from a random oracle given the stated assumption. ⊓⊔

The proof for Theorem 3 follows directly from the application of the lemma
and the birthday paradox.

Proof. By definition of the construction, as the security parameter increases the
size of the digest increases as well. By application of Lemma 1 the construction
can be shown to act as a random oracle under the stated assumption. Because
of this the security of the construction will increase as the security parameter
increases. The birthday attack defines precisely how much more secure it will be
preimage resistance and collision resistance.

The proof that second digest resistance also increases as the security param-
eter increases, under the stated assumption, is essentially the same as preimage
resistance. An attacker must compute a digest of size d(s′); however, as the length
of the digest increases the probability of success decreases since all digests are
random binary strings.

Therefore, as the security parameter of the construction is increased, the
security of the construction also increases under the stated assumption. ⊓⊔

5 Conclusion

In this paper we extend the notion of a cryptographic hash function to a dy-
namic cryptographic hash function which takes two parameters, a message and a
security parameter. The security parameter is used to specify the internal work-
ings of the function and the size of the output. Definitions for the properties
of preimage and collision resistance were provided. The additional properties of
second digest resistance and increasing security were also defined to ensure a
secure function with the addition of a security parameter. We also presented a
new construction that allows a dynamic hash function to be created from an
underlying compression function. Under certain assumptions this construction
was proved to be preimage resistant, collision resistant, increasingly secure, and
believed to be second digest resistant as defined for dynamic hash functions.

Acknowledgments

We would like to thank Moses Liskov and Bart Preneel for their insight and
comments on earlier versions of this paper.

References

1. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In First ACM Conference on Computer and Commu-

nications Security, November 1993.
2. Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Advances in Cryptology

- CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science. Springer-
Verlag, 2004.

3. Eli Biham and Orr Dunkelman. A framework for iterative hash functions – HAIFA.
Technical report, National Institute for Standards and Technology, August 2006.

4. Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In CRYPTO

’98: Proceedings of the 18th Annual International Cryptology Conference on Ad-

vances in Cryptology, Lecture Notes in Computer Science, pages 56–71, London,
UK, 1998. Springer-Verlag.

5. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, CRYPTO 2005: 25th Annual International Cryptology Conference, number
3621 in Lecture Notes in Computer Science, page 430. Springer-Verlag, 2005.

6. Ivan Damg̊ard. A design principle for hash functions. In G. Brassard, editor,
CRYPTO ’89: Proceedings, volume 435 of Lecture Notes In Computer Science,
page 416. Springer-Verlag, 1990.

7. Bert den Boer and Antoon Bosselaers. An attack on the last two rounds of MD4.
In J. Feigenbaum, editor, CRYPTO ’91: Proceedings, volume 576 of Lecture Notes

in Computer Science, pages 194 – 203. Springer-Verlag, 1991.
8. Bert den Boer and Antoon Bosselaers. Collisions for the compression function of

MD5. In T. Helleseth, editor, EUROCRYPT ’93: Workshop on the Theory and

Application of Cryptographic Techniques, volume 765 of Lecture Notes in Computer

Science, page 293. Springer-Verlag, 1993.
9. Hans Dobbertin. The first two rounds of MD4 are not one-way. In S. Vaude-

nay, editor, Fast Software Encryption: 5th International Workshop, volume 1372
of Lecture Notes in Computer Science. Springer-Verlag, 1998. To appear.

10. Hans Dobertin. RIPEMD with two-round compress function is not collision-free.
In Journal of Cryptology, volume 10, pages 51 – 68. Springer Verlag, 1997.

11. Stefan Lucks. Design principles for iterated hash functions. In IACR preprint

archive, 2004.
12. Alfred Menezes, Paul Van Oorschot, and Scott Vanstone. Handbook of applied

cryptography. The CRC Press series on discrete mathematics and its applications.
CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431, 1997.

13. Ralph Merkle. A fast software one-way hash function. In Journal of Cryptology,
pages 43 – 58, 1990.

14. NIST. FIPS PUB 180-2: Secure Hash Standard. National Institute of Standards
and Technology, Gaithersburg, MD, USA, May 2002.

15. Bart Preneel. Analysis and Design of Cryptographic Hash Functions. Thesis
(Ph.D.), Katholieke Universiteit Leuven, Leuven, Belgium, January 1993.

16. Bart Preneel. E-Mail correspondence with Bart Preneel, December 2005.
17. Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics:

Definitions, implications, and separations for preimage resistance, second-preimage
resistance, and collision resistance. In Bimal Roy and Willi Meier, editors, Fast

Software Encryption: 11th International Workshop, FSE 2004, volume 3017 of
Lecture Notes in Computer Science, pages 371 – 388. Springer-Verlag, 2004.

18. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Victor Shoup, editor, CRYPTO 2005: 25th Annual International Cryptology

Conference, volume 3621 of Lecture Notes in Computer Science, page 17. Springer-
Verlag, 2005.

19. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
EUROCRYPT 2005: 24th Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, volume 3494 of Lecture Notes in Computer

Science, pages 19–35. Springer-Verlag, 2005.

