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Abstract

The security notion of indifferentiability was proposed by Maurer, Renner, and Holenstein in
2004. In 2005, Coron, Dodis, Malinaud, and Puniya discussed the indifferentiability of hash func-
tions. They have showed that the Merkle-Damg̊ard construction is not secure in the sense of
indifferentiability. In this paper, we analyze the security of single-block-length and rate-1 com-
pression functions in the sense of indifferentiability. We formally show that all single-block-length
and rate-1 compression functions, which include the Davies-Meyer compression function, are inse-
cure. Furthermore, we show how to construct a secure single-block-length and rate-1 compression
function in the sense of indifferentiability. This does not contradict our result above.

1 Introduction

Most of the hash functions are designed as iterative processes which hash an arbitrary-length message
by processing successive fixed-size blocks of the message. A function for processing the fixed-size
blocks is called a compression function. The Merkle-Damg̊ard construction is widely used to construct
a hash function by the iteration of the compression function [4][10]. To improve the security, other
constructions have been proposed recently (e.g., [3][7][14]).

In all constructions, the security of the underlying compression function is closely related with
that of the constructed hash function. Compression functions are usually designed using secure block
ciphers. For example, the Davies-Meyer compression function, the Matyas-Meyer-Oseas compression
function, and the Miyaguchi-Preneel compression function, which are the most popular compression
functions, are based on block ciphers [9]. Compression functions can be classified as the hash length
and the number of calls. Let n be the length of an output of the underlying block cipher, and let `
denote the length of an output of the compression function.

Hash length: If `/n = 1, then the compression function is called a single-block-length compression
function. If `/n = 2, then it is called a double-block-length compression function.

Number of calls: Let σ be the number of calling the underlying block cipher to produce one output of
the compression function. A rate r of the compression function is defined as r = `/(nσ), which
represents the efficiency of the compression function. A compression function with a rate of r is
called a rate-r compression function.

The security of compression functions has been discussed in the sense of preimage resistance,
second-preimage resistance, and collision resistance. In particular, the security of collision resistance
is theoretically and practically important. From the theoretical viewpoint, the complexity of collision
resistance is not larger than O(2n/2) where n is the output length. This fact is often called the birthday

1



bound. From the practical viewpoint, drawbacks of actual hash functions have been firstly found in
terms of collision resistance [5][15][16]. In addition to the three security notions above, the notion
of indifferentiability has been introduced to the security of hash functions and compression functions
recently [3][6]. The notion of indifferentiability is stronger than that of collision resistance. To design
more secure hash functions or more secure compression functions, it is necessary to discuss the security
in the sense of indifferentiability.

In this paper, we restrict our attention to single-block-length and rate-1 compression functions
(SBL-1 compression functions). The class of SBL-1 compression functions is practically important.
For example, the popular compression functions above are included in this class. The efficiency of
SBL-1 compression functions is optimal because, by definitions, the rate of any single-block-length
compression function is not larger than 1.

The security of SBL-1 compression functions has been studied in detail. Preneel, Govaerts, and
Vandewalle [13] have discussed the security against several attacks, and concluded that 12 compression
functions are secure against the attacks. We note that 64 possible SBL-1 compression functions exist.
Black, Rogaway, and Shrimpton [2] have investigated the provable security of the 64 possible SBL-1
compression functions. They concluded that the 12 compression functions of Preneel et al. is optimally
collision resistant.1 Black, Cochran, and Shrimpton [1] have shown that no rate-1 compression function
can produce a provable collision-resistant hash function if the key space is a small fixed set. Their result
is practically significant because the practical hash speed would be improved by the precomputation
of the key schedule algorithm of the block cipher if the key space were small. Accordingly, SBL-1
compression functions must be designed in such a way that the key space is fully used.

The notion of indifferentiability has been introduced by Maurer, Renner, and Holenstein [8] to
discuss the extended indistinguishability of systems. Coron, Dodis, Malinaud, and Puniya [3] have
applied the notion of indifferentiability to the construction of hash functions from underlying com-
pression functions. They showed that the Merkle-Damg̊ard construction is insecure in the sense of
indifferentiability, and they also proposed some methods for enhancing the security of the Merkle-
Damg̊ard construction. In this paper, we discuss the security of SBL-1 compression functions in terms
of indifferentiability, not hash functions. Indeed, Coron et al. [3] briefly discussed the indifferentia-
bility only of the Davies-Meyer compression function. Hirose [6] discussed the indifferentiability of
double-block-length compression functions with the special-form input. This paper formally discusses
the indifferentiability of the 12 SBL-1 compression functions, which are secure in the sense of collision
resistance [2][13]. Furthermore, this paper proposes a new SBL-1 compression function that is secure
in the sense of indifferentiability.

The organization and the contribution of this paper are as follows. In Sect. 2, we describe notations
and definitions about indifferentiability. The definition of indifferentiability is the same as that of
previous papers [3][8], but we introduce an experiment to evaluate the advantage of a distinguisher.

In Sect. 3, we discuss the indifferentiability of the Davies-Meyer compression function. When the
distinguisher can have access only to the encryption oracle, the Davies-Meyer compression function
is not so insecure. However, when the distinguisher can have access to the encryption oracle and
the decryption oracle, the Davies-Meyer compression function is insecure. This drawback was briefly
pointed out by Coron et al. [3], but they did not analyze the security formally. We give the formal
analysis of the Davies-Meyer compression function in terms of indifferentiability.

In Sect. 4, we show that the negative result of the Davies-Meyer compression function is applicable
to other SBL-1 compression functions. As a result, all the 64 SBL-1 compression functions have the
security drawback in terms of preimage resistance, second-preimage resistance, collision resistance, or
indifferentiability.

In Sect. 5, we propose a new SBL-1 compression function, which is called a block-cipher-selection
compression function (a BCS compression function). The feature of the BCS compression function is
that one block cipher is selectively used among many block ciphers to produce an output for a given

1They also showed that 8 compression functions are not collision resistant, but hash functions based on the 8 com-
pression functions are collision resistant. This is not the Merkle-Damg̊ard paradigm. The other 44 compression functions
are not suitable for hash functions.
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Figure 1: The indifferentiability between H f̂ and Ĥ.

input. We prove that the BCS compression function is secure in the sense of indifferentiability. We
explain why this result does not contradict the result of Sect. 4. In Sect. 6, we summarize results of
this paper and problems in the future.

2 Notations and Definitions

We will write a ← b to mean that a is to be set to the result of evaluating expression b, and write
a

$← A to mean that a is uniformly chosen at random from a finite set A. Let κ, n be positive integers.
A block cipher is a function e: {0, 1}κ × {0, 1}n → {0, 1}n where, for each w ∈ {0, 1}κ, e(w, ·) is
a permutation on {0, 1}n. For the block cipher e, the inverse (the decryption function) is denoted
by d, i.e., d(w, z) is the string x such that z = e(w, x). Let Eκ,n be the set of all block ciphers e:
{0, 1}κ × {0, 1}n → {0, 1}n. A block cipher ê is said to be an ideal block cipher if ê is uniformly

selected at random from Eκ,n, i.e., if ê
$← Eκ,n. Let Hm,n be the set of all functions from {0, 1}m to

{0, 1}n. A function Ĥ is said to be a random function if Ĥ is randomly selected from Hm,n, i.e., if

Ĥ
$← Hm,n. By definitions, it holds that Eκ,n ⊂ Hκ+n,n.
In this paper, we discuss the construction of a single-block-length and rate-1 compression function

H based on the block cipher e ∈ En,n. That is, H is a function in H2n,n and requires one invocation
of e to produce an output for a given input. Our goal is to construct the compression function H
that is indistinguishable from the random function Ĥ ∈ H2n,n. In previous works, the security of
the compression function based on the block cipher has been studied in terms of preimage resistance,
second-preimage resistance, and collision resistance. Since the random function Ĥ naturally satisfies
these security requirements with desirable level, our goal is reasonable. Our idea is similar to that of
Coron et al. [3] They considered that the random function was ideal of the hash function. Accordingly,
they studied how to construct a hash function {0, 1}∗ → {0, 1}n that is indistinguishable from a random
function {0, 1}∗ → {0, 1}n.

To measure the indifferentiability between two functions, the following definition has been intro-
duced in [3][8] (Fig. 1).

Definition 1 A function H f̂ with oracle access to an ideal primitive f̂ is said to be (tD, tf , q, ε)
indifferentiable from an ideal primitive Ĥ if there exists a simulator f Ĥ such that the following equation
holds for any distinguisher D.

∣∣∣∣Pr
[
DH f̂ ,f̂ = 1

]
− Pr

[
DĤ,fĤ

= 1
]∣∣∣∣ < ε

The distinguisher has access to not only H f̂ but also f̂ (similarly, not only Ĥ but also f Ĥ). The
simulator f Ĥ has oracle access to Ĥ and runs in time at most tf . The distinguisher runs in time at
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Figure 2: The indifferentiability of the Davies-Meyer compression function.

most tD and makes at most q queries. If ε is a negligible function of the security parameter k, then
H f̂ is said to be indifferentiable from Ĥ.

When we focus on the probability ε, let us consider the following experiment to evaluate it.

step 1: Choose a bit ξ ∈ {0, 1} at random, then determine (H, f) as follows:

(H, f) =





(H f̂ , f̂) if ξ = 0,

(Ĥ, f) otherwise.

The distinguisher does not know the value of ξ.

step 2: After the distinguisher has access to (H, f), the distinguisher guesses the value of ξ, denoted
by ξD.

Using the above experiment, we define the advantage of the distinguisher D with at most q queries as
follows:

AdvH(D, q) = Pr [ξ = ξD] − 1
2
,

where Pr [ξ = ξD] is the probability that D can correctly guess the value of ξ with at most q queries. We
note that if D determines ξD at random, then Pr [ξ = ξD] is equal to 1/2. Thus, it can be assumed that
Pr [ξ = ξD] is not smaller than 1/2. We use the value of AdvH(D, q) as the value of ε of Definition 1.
We define the achievable advantage with q queries as

AdvH(q) = max
D

{AdvH(D, q)} .

In this paper, we denote by a symbol without ‘ˆ’ an actual algorithm, and denote by a symbol
with ‘ˆ’ an ideal function. In addition, we denote by a symbol with ‘ ’ either the actual algorithm
or the ideal function. For example, when we argue a block cipher, g is an actual block cipher, ĝ is an
ideal block cipher, and g is either the actual block cipher g or the ideal block cipher ĝ.

3 Davies-Meyer Compression Function

There are 12 compression functions that are secure in the sense of collision resistance [2]. The Davies-
Meyer compression function, which is widely used in actual hash algorithms such as SHA-2 [12], is one
of the 12 compression functions. In this section we discuss the indifferentiability of the Davies-Meyer
compression function (Fig. 2). The Davies-Meyer compression function H is defined as

H(w, x) = ê(w, x) ⊕ x, (1)

where ê(w, x) is the ideal block cipher in En,n.
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3.1 Only Encryption Oracle

We discuss the indifferentiability between the Davies-Meyer compression function and the random
function when the distinguisher is allowed to have access to only e. One must construct a simulator
eĤ such that interacting (H ê, ê) is indistinguishable from interacting (Ĥ, eĤ). We assume that the
distinguisher does not make the same query. Our simulator eĤ is defined as follows:

step 1: Initially, i ← 0 and eĤ(w, x) is undefined for any (w, x) ∈ {0, 1}n × {0, 1}n.

step 2: eĤ receives a query (w, x) from the distinguisher. i ← i+1, wi ← w, xi ← x, yi ← Ĥ(wi, xi),
zi ← yi ⊕ xi.

step 3: eĤ(wi, xi) ← zi and eĤ returns eĤ(wi, xi).

The above simulator eĤ may fail to emulate the ideal block cipher ê. Specifically, if eĤ(wi, xi) =
eĤ(wι, xι) ∧ wi = wι for ∃ι ∈ {1, 2, . . . , i − 1}, then eĤ fails to emulate ê because eĤ

wi
is no longer a

permutation on {0, 1}n. Let Ci be the event that there exists such an ι ∈ {1, 2, . . . , i− 1} at the i-the
query and there does not exist such an ι at previous queries. As long as Ci does not occur, eĤ can
perfectly emulate ê. Since the probability Pr [Ci] is not larger than (i− 1)/2n, the probability Pr [fail]
that eĤ fails to emulate ê is given as follows:

Pr [fail] = Pr [C1 ∨ C2 ∨ . . . ∨ Cq]

≤
q∑

i=1

Pr [Ci]

≤
q∑

i=1

i − 1
2n

=
q(q − 1)

2n+1

Since the following equation holds for any distinguisher D,

Pr [ξ = ξD] = Pr [ξ = ξD|¬fail] Pr [¬fail] + Pr [ξ = ξD|fail] Pr [fail]

≤ 1
2

+
1
2
Pr [fail]

we have

AdvH(q) ≤ 1
2
Pr [fail]

≤ q(q − 1)
2n+2

. (2)

By demonstrating a distinguisher that achieves advantage close to the above upper bound, we
show that the bound is tight. Our distinguisher D is defined as follows:

step 1: D randomly chooses w0 from {0, 1}n.

step 2: For i = 1, 2, . . . , q, D performs the following. D sends (w0, i) to H, and receives yi = H(w0, i).
D computes zi = yi ⊕ i

step 3: If there exists a pair of (ι, λ) such that zι = zλ in {z1, z2, . . . , zq}, then D outputs ξD = 1,
otherwise D outputs ξD = 0.

We note that if H = H ê, i.e., ξ = 0, then there is no such a pair. We evaluate the probability Pr [col]
that there is such a pair as follows:

Pr [col] = 1 −
q−1∏

i=1

(
1 − i

2n

)

≥ 1 −
q−1∏

i=1

exp
(
− i

2n

)

≥ 1 − exp
(
−q(q − 1)

2n+1

)
,
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where we used the fact that 1 − x ≤ exp(−x) for 0 ≤ x ≤ 1. Since the following equation holds,

Pr [ξ = ξD] = Pr [ξ = ξD|¬col] Pr [¬col] + Pr [ξ = ξD|col] Pr [col]

=
1
2

+
1
2
Pr [col] ,

we have

AdvH(D, q) = Pr [ξ = ξD] − 1
2

=
1
2
Pr [col]

≥ 1
2
− 1

2
exp

(
−q(q − 1)

2n+1

)
. (3)

Using the fact that exp(−x) gives a close approximation to 1−x when x is close to 0, we observe that
the lower bound of Eq. (3) is approximately equal to the upper bound of Eq. (2) if q is sufficiently
smaller than 2n. We notice that the above distinguisher does not have access to e. The availability of
e is not effective for this distinguisher.

3.2 Encryption and Decryption Oracles

We discuss the indifferentiability between the Davies-Meyer compression function and the random
function when the distinguisher is allowed to have access to both of the encryption oracle e and
the decryption oracle d. Although one should construct a simulator (eĤ , dĤ) such that interacting
(H ê, (ê, d̂)) is indistinguishable from interacting (Ĥ, (eĤ , dĤ)), it is impossible to construct such a
simulator. This drawback was briefly pointed out by Coron at el. [3], but they did not discuss the
differentiability quantitatively. In this section, we analyze the differentiability by demonstrating a
distinguisher.

Let us consider the distinguisher D defined below.

step 1: For i = 1, 2, . . . , q, D performs the following. D sends a query (i, 0) to d, and receives
xi = d(i, 0). D sends a query (i, xi) to H, and receives yi = H(i, xi).

step 2: If xj = yj for ∀j ∈ {1, 2, . . . , q}, then D outputs ξD = 0, otherwise D outputs ξD = 1.

If H = H ê, i.e., ξ = 0, then it holds that xj = yj for ∀j ∈ {1, 2, . . . , q} from Eq. (1). If H = Ĥ, i.e.,
ξ = 1, then there may exist ι such that xι 6= yι for ∃ι ∈ {1, 2, . . . , q}. When H = Ĥ, the probability
Pr [neq] that there exists such an ι is given by

Pr [neq] = 1 −
(

1 −
(

1 − 1
2n

)2n)q

≥ 1 − (1 − exp(−1))q

≥ 1 −
(

64
100

)q

.

Hence, if H = Ĥ, then the probability that ξD = 1 exponentially tends to 1 as q increases. For
example, when q = 10, we have Pr [neq] ≥ 0.98. Using the following equation,

Pr [ξ = ξD] = Pr [ξ = ξD|¬neq] Pr [¬neq] + Pr [ξ = ξD|neq] Pr [neq]

=
1
2

+
1
2
Pr [neq]

we obtain the advantage of the distinguisher D as follows:

AdvH(D, q) =
1
2
Pr [neq]

≥ 1
2

(
1 −

(
64
100

)q)
(4)
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In the above discussion, we did not say anything about the algorithm of the simulator dĤ . Because,
even if dĤ is intelligently constructed, the advantage cannot be decreased. To decrease the advantage,
dĤ must find x such that x = Ĥ(w, x) for a given w. Since Ĥ is the random function, the probability
that there exists such an x is given by

Pr
[
x s.t. x = Ĥ(w, x)

]
= 1 −

(
1 − 1

2n

)2n

= 1 − 1
exp(1)

(as 2n → ∞)

≈ 64
100

.

Conversely, there does not exist such an x with a probability of approximately 36/100. Since this
probability is based only on the randomness of Ĥ, dĤ cannot change it even if dĤ has the unlimited
computational resources. In the case that there is no such an x, whatever dĤ may return as xj , the
distinguisher can obtain (xj , yj) such that xj 6= yj .

4 Other Collision-Resistant Compression Functions

In Sect. 3, we discussed the (in)differentiability of the Davies-Meyer compression function. In this
section, we discuss the indifferentiability of other 11 SBL-1 compression functions that are secure in
the sense of collision resistance [2]. As described below, we will find that the 11 compression functions
are not better than the Davies-Meyer compression function in terms of the indifferentiability.

We classify the 12 SBL-1 compression functions including the Davies-Meyer compression function
as the feedforward. Denoting by ê the ideal block cipher in En,n, we have the following six sets.

Type-1: H ê
1(w, x) = ê(w, x) ⊕ x

Type-2: H ê
2(w, x) = ê(w, x) ⊕ x ⊕ w

Type-3: H ê
3(w, x) = ê(w,w ⊕ x) ⊕ x

Type-4: H ê
4(w, x) = ê(w,w ⊕ x) ⊕ x ⊕ w

Type-5: H ê
5(w, x) = ê(w ⊕ x, x) ⊕ x

Type-6: H ê
6(w, x) = ê(w ⊕ x, x) ⊕ w

For example, the type-1 set includes the Davies-Meyer compression function and the Matyas-Meyer-
Oseas compression function. In the case of the Davies-Meyer compression function, w is a message
block and x is an output of the previous compression function. In the case of the Matyas-Meyer-Oseas
compression function, w is an output of the previous compression function and x is a message block.
The type-2 set includes the Miyaguchi-Preneel compression function, which takes w as an output of
the previous compression function and x as a message block.

The discussion in Sect. 3 does not depend on the use of parameters, i.e., which a parameter is a
message block. Hence, all type-1 functions have the same security as the Davies-Meyer compression
function in the sense of indifferentiability.

4.1 Only Encryption Oracle

Suppose that the distinguisher is allowed to have access to only e. We consider the construction of a
simulator eĤi where i ∈ {2, 3, . . . , 6} that is similar to the simulator of Sect. 3.1. For a given query
(ω, χ) to eĤi , the query (w, x) to Ĥi is uniquely determined. Like the simulator of Sect. 3.1, the output
zi is computed from Ĥi(w, x) and (ω, χ). Although the computation of zi depends on Ĥi, it can be
done by the bitwise exclusive OR. When eĤi(ω, ·) is no longer the permutation for ∃ω, eĤi(ω, ·) fails
to emulate ê(ω, ·). Hence, the advantage of the distinguisher is given by Eq. (2).
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4.2 Encryption and Decryption Oracles

Suppose that the distinguisher is allowed to have access to e and d. We consider a distinguisher that
is a similar to that of Sect. 3.2. Namely, the distinguisher first asks (ω, 0) to d, and then asks the
query (w, x), which is based on the response of d, to H i. When the output of ê is 0, the output of
H ê

i is computed by a bitwise function of (w, x). On the other hand, the output of Ĥ is not probably
given by the bitwise function of (w, x). Therefore, there exists the distinguisher that can achieve the
advantage of Eq. (4).

5 Block-Cipher-Selection Compression Function

From results of [2][13] and results of previous sections, we conclude that all the 64 SBL-1 compression
functions have the security drawback in terms of preimage resistance, second-preimage resistance,
collision resistance, or indifferentiability. However, we propose a new SBL-1 compression function
that is secure in the sense of indifferentiability.

5.1 Construction

Let u = 2n − 1. Let êi (i = 0, 1, . . . , u) be ideal block ciphers in En,n where each êi is selected

independently of each other, i.e., êi
$← En,n for ∀i ∈ {0, 1, . . . , u}. We define a compression function

H ê0,ê1,...,eu as follows:

H ê0,ê1,...,eu(w, x) =





ê0(w, x) if x = 0,
ê1(w, x) if x = 1,
. . .
êu(w, x) if x = u,

(5)

where x ∈ {0, 1}n is considered as the binary representation of an integer in {0, 1, . . . , u}. For sim-
plification, we denote by {ê}u the set of ê0, ê1, . . . , and êu. Using this notation, we rewrite Eq. (5)
as

H{ê}u(w, x) = êx(w, x).

Since H{ê}u is a function in H2n,n and requires one invocation of êi to produce an output for a given
input, H{ê}u is an SBL-1 compression function. We call this compression function a block-cipher-
selection compression function (a BCS compression function).

5.2 Security Analysis

We now discuss the indifferentiability between the BCS compression function H{ê}u and the random
function Ĥ. As described below, unlike the 64 SBL-1 compression functions, the BCS compression
function is completely indifferentiable from the random function. That is, even if the distinguisher
has infinitely computational resources, the probability that the distinguisher can distinguish the BCS
compression function from the random function is equal to 0. Hence, the BCS compression is optimal
in the sense of indifferentiability. This fact is due to two properties of the BCS compression function.

• For a fixed i, êi(·, i) is the random function in Hn,n, not a permutation on {0, 1}n.

• For a fixed i, almost all mappings êi(w, x) are not used for the computation of H êi , i.e., only
mappings êi(w, i) are used.

We assume that the distinguisher does not make the same query. Let (e, i, w, x) be a query to ei for
requiring the computation of ei(w, x) where e is a special symbol to denote a used oracle. Similarly,
let (d, i, w, y) be a query to di for requiring di(w, y).
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Figure 3: The plaintext-ciphertext table ei(w).

5.2.1 Only Encryption Oracle

Suppose that only {e}u is available to the distinguisher. We discuss the indifferentiability between
H{ê}u and Ĥ.

Theorem 1 Suppose that only {e}u is available to the distinguisher. The BCS compression function
of Eq. (5) is (∞, t, q, 0) indifferentiable from the random function, where t ≤ min(22n, q) and q ≤
22n(2n + 1). The space complexity of the simulator is O(q).

One must construct a simulator {eĤ}u such that interacting (H{ê}u , {ê}u) is indifferentiable from
interacting (Ĥ, {eĤ}u). Our simulator {eĤ}u is defined as follows. Our simulator has plaintext-
ciphertext tables of eĤ

i (w, ·) for ∀i ∈ {0, 1, . . . , u} and ∀w ∈ {0, 1}n as shown in Fig. 3. Each table
is denoted by ei(w). Let Xi,w be the set of plaintexts x appeared in ei(w), and let Yi,w be the set of
ciphertexts y appeared in ei(w).

step 1: Initially, ji,w ← 0 for ∀i ∈ {0, 1, . . . , u} and ∀w ∈ {0, 1}n. All tables are initialized with a
special symbol blank, which means that the entry is not yet used.

step 2: The simulator receives a query (e, i, w, x) from the distinguisher. ji,w ← ji,w+1 and xji,w ← x.
After v ← Ĥ(w, i), the simulator determines yji,w as follows:

{
yji,w ← v if i = x,

yji,w

$← {0, 1}n − Yi,w − {v} otherwise.

The simulator replaces (blank, blank) in the table ei(w) with (xji,w , yji,w) and returns yji,w .

Unlike the simulator of Sect. 3.1, {eĤ}u can perfectly emulate {ê}u. In step 2, the simulator updates
the table ei(w), keeping a one-to-one and random mapping. When x takes a string in {0, 1}n for a
fixed i and a fixed w, the distribution of eĤ

i (w, x) is identical to that of êi(w, x). Hence, we have
AdvH(q) = 0, which is better than that of the Davies-Meyer compression function.

The time complexity of the simulator depends on the number of queries to Ĥ. Keeping Ĥ(w, i),
the simulator makes at most min(q, 22n) queries to Ĥ. The size of tables is O(q). The distinguisher
can make at most 23n queries to {e}u and at most 22n queries to H. Hence, the number q of queries
is not larger than 22n(2n + 1).

5.2.2 Encryption and Decryption Oracles

Suppose that both of {e}u and {d}u are available to the distinguisher. We now discuss the indifferen-
tiability between H{ê}u and Ĥ.
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Theorem 2 Suppose that both of {e}u and {d}u are available to the distinguisher. The BCS com-
pression function of Eq. (5) is (∞, t, q, 0) indifferentiable from Ĥ where t ≤ min(22n, q) and q ≤
22n(2n+1 + 1). The space complexity of the simulator is O(q).

One must construct a simulator ({eĤ}u, {dĤ}u) such that interacting (H{ê}u , ({ê}u, {d̂}u)) is indif-
ferentiable from interacting (Ĥ, ({eĤ}u, {dĤ}u)). Our simulator ({eĤ}u, {dĤ}u) is defined as follows.
Our simulator has plaintext-ciphertext tables of eĤ

i (w, ·) for ∀i ∈ {0, 1, . . . , u} and ∀w ∈ {0, 1}n, as
well as the simulator of Sect. 5.2.1 (Fig. 3). Suppose that the table ei(w) is shared by eĤ

i and dĤ
i .

step 1: Initially, ji,w ← 0 for ∀i ∈ {0, 1, . . . , u} and ∀w ∈ {0, 1}n. All tables are initialized with
blank.

step 2: When the simulator received a query (e, i, w, x), the simulator checks whether x ∈ Xi,w or
not.

step 2.1: If x is equal to xι ∈ Xi,w, then the simulator returns yι.

step 2.2: If x does not exist in Xi,w, then ji,w ← ji,w + 1 and xji,w ← x. After v ← Ĥ(w, i),
the simulator determines yji as follows:

{
yji,w ← v if i = x,

yji,w

$← {0, 1}n − Yi,w − {v} otherwise.

The simulator replaces (blank, blank) in the table ei(w) with (xji,w , yji,w) and returns yji,w .

step 3: When the simulator received a query (d, i, w, y), the simulator checks whether y ∈ Yi,w or
not.

step 3.1: If y is equal to yι ∈ Yi,w, then the simulator returns xι.

step 3.2: If y does not exist in Yi,w, then ji,w ← ji,w + 1 and yji,w ← y. After v ← Ĥ(w, i), the
simulator determines xji as follows:

{
xji,w ← i if y = v,

xji,w

$← {0, 1}n −Xi,w − {i} otherwise.

The simulator replaces (blank, blank) in the table ei(w) with (xji,w , yji,w) and returns xji,w .

This simulator can perfectly emulate ({ê}u, {d̂}u). For ∀ei(w), x ∈ Xi,w corresponds to unique y ∈ Yi,w,
i.e., there is no xι, xλ ∈ Xi,w such that eĤ

i (w, xι) = eĤ
i (w, xλ) and there is no yι, yλ ∈ Yi,w such that

dĤ
i (w, yι) = dĤ

i (w, yλ). Furthermore, yji in step 2.2 (or xji in step 3.2) is randomly selected from {0, 1}n

avoiding the collision. This behavior is identical to that of the ideal block cipher êi(w, ·). Hence, we
have AdvH(q) = 0, which is substantially better than that of the Davies-Meyer compression function.

The time complexity of the simulator depends on the number of queries to Ĥ. Keeping Ĥ(w, i),
the simulator makes at most min(q, 22n) queries to Ĥ. The size of tables is O(q). The distinguisher
can make at most 23n+1 queries to ({e}u, {d}u) and at most 22n queries to H. Hence, the number q
of queries is not larger than 22n(2n+1 + 1).

5.3 Implementation

When the compression function based on the block cipher is implemented, the ideal block cipher is
probably replaced with an actual block cipher such as AES [11]. Since usual SBL-1 compression
functions require only one block cipher, its implementation is easy. In contrast, it seems impractical
to implement the BCS compression function because it requires 2n actual block ciphers.
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However, we have a possible way to implement the BCS compression. For example, the 256-bit
key is available to AES, i.e., AES256 : {0, 1}256 ×{0, 1}128 → {0, 1}128. For w, x ∈ {0, 1}128, ei(w, x) is
implemented as AES256(i ‖ w, x) where ‖ denotes the concatenation operator on strings. Using this
way, we can obtain 2128 block ciphers in E128,128. Since a long-length key is usually available to actual
block ciphers, this way is applicable to many actual block ciphers. We notice that the discussion is
separately needed to make a formal determination whether the set of block ciphers obtained by this
way can be considered as the set of ideal block ciphers.

6 Concluding Remarks

In this paper, we have shown that the 12 single-block-length and rate-1 (SBL-1) compression functions,
which are secure in the sense of collision resistance, are not secure in the sense of indifferentiability.
Notice that the Davies-Meyer compression function is one of the 12 SBL-1 compression functions.
From results of [2][13] and those of this paper, we concluded that all the 64 SBL-1 compression
functions have the security drawback in terms of preimage resistance, second-preimage resistance,
collision resistance, or indifferentiability.

We have proposed the block-cipher-selection (BCS) compression function, which is secure in terms
of indifferentiability. Although the BCS compression function is formally the SBL-1 compression
function, the negative result above is inapplicable to the BCS compression function. Unlike the 64
SBL-1 compression functions, the BCS compression function selectively uses one block cipher among
many block ciphers. We have proved that if the simulator has reasonable computational resources, then
the BCS compression function can perfectly emulate the random function, that is, the BCS compression
function is optimal in the sense of indifferentiability. We have also proposed the implementation of the
BCS compression function using actual block ciphers. However, the security of the implementation
must be analyzed in future.
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