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Abstract. Hyperelliptic curves of small genus have the advantage of achieving the
same security in the group while working over a smaller field than with elliptic curves.
Pairing-friendly curves are those whose Jacobian is divisible by a large prime and
whose embedding degree is small enough for computations to be feasible, but large
enough that the curves are not susceptible to sub-exponential attacks. We give a
sequence of Fq-isogeny classes for a family of Jacobians of genus 2 curves over Fq,
for q = 2m, and their corresponding small embedding degrees. We give examples
of the parameters for such curves with embedding degree k < ( log q

log log q
)2, such as

k = 8, 13, 16, 23, 26, 37, 46, and for curves with ( log q
log log q

)2 < k < (log q)2. We also give
a sequence of Fq-isogeny classes for a family of Jacobians of genus 2 curves over Fq

whose embedding field is much smaller than the presumed embedding field indicated
by the embedding degree k. That is, the field exponent differs by a factor of m, thus
illustrating the weakness in the conventional definition of embedding degree.

Keywords: embedding degree, genus 2, hyperelliptic curves, binary curves, pairing-
based cryptosystems.

1 Introduction

The computational intractability of the elliptic curve discrete logarithm problem
is the mathematical basis for security of elliptic curve cryptosystems. Elliptic (and
hyperelliptic) curves are especially attractive for cryptography as there is currently
no sub-exponential algorithm for solving the discrete logarithm problem (DLP) on
properly chosen curves. Thus they provide greater security and more efficient perfor-
mance than first generation public key techniques, such as RSA and Diffie-Hellman.
The result is faster implementations, bandwidth and storage savings, and reduced
energy consumption. The performance of such cryptosystems depends essentially
on efficient arithmetic in the underlying finite field, and applications usually fo-
cus on prime fields or binary fields. Binary finite fields, F2m , have the advantage
of “carry-free” addition and are more interesting for hardware implementation. [7]
gives formulas for fast arithmetic on hyperelliptic curves, garnering more support for



their use in cryptosystems. With hyperelliptic curves of small genus (that is, whose
associated Jacobian abelian variety is of low dimension), it is possible to work over
a smaller field while achieving the same security in the group. Thus hyperelliptic
curves can offer the benefits of having comparable levels of security with smaller key
sizes than other finite abelian groups.

Pairings on groups have been used constructively to design cryptographic pro-
tocols and to solve problems that have been open for many years, such as identity-
based encryption, one-round three-party key agreement, and short signatures. On
the other hand, pairings have been used destructively to attack cryptographic secu-
rity. For example, the Frey-Rück attack (or MOV attack) uses the Tate pairing (or
Weil pairing) to map the discrete logarithm problem on the Jacobian of a curve to
the discrete logarithm in the finite field F∗

qk , where there are more efficient meth-
ods for solving the DLP. So for pairing-based cryptosystems, it is important to find
curves where the embedding degree k is small enough that the pairing is efficiently
computable, but large enough that the DLP in F∗

qk is hard.
This leads to the understanding of a pairing-friendly curve over Fq as one that

satisfies the following two conditions: (1) #JC(Fq) should be divisible by a suffi-
ciently large prime N so that the DLP in the order-N subgroup of JC(Fq) is resistant
to Pollard’s rho attack (and other known attacks), and (2) The embedding degree
k should be sufficiently large so that the DLP in F∗

qk withstands index-calculus at-
tacks, but small enough that the arithmetic in Fqk can be efficiently implemented.
It is important to note that while k must be small enough to enable pairings in the
group, if it is too small, then the embedding field Fqk is small enough to warrant
the curve insecure for DL systems.

We know that k ≤ 6 for supersingular elliptic curves, as first shown in [9]. [3]
gives an upper bound of 12 on k for supersingular genus 2 curves, which is attained
in characteristic two. It has also been shown in [2] that one can obtain k = 12 for
ordinary genus 2 curves in characteristic two. However, for most non-supersingular
curves, the embedding degree is enormous.

In this paper, we consider genus 2 curves over Fq, where q = 2m, whose associated
Jacobian is neither supersingular (2-rank 0), nor ordinary (2-rank 2), but rather has
2-rank 1. [1] gives formulas for fast arithmetic on 2-rank 1 curves, so such curves
are interesting to consider. We let C be a genus 2 curve over Fq of the form

y2 + xy = x5 + bx3 + cx2 + dx

where b, c, d ∈ F∗
q . In section 3, we give a parametrization of a family of large primes,

Nr = 22r(L+2)+1
22r+1

for r ≥ 0 and odd L > 7, and we determine the embedding degrees
for subgroups having these prime orders. In section 4, we associate with each of these
primes a sequence of genus 2 curves over F2m , whose Jacobian order is divisible by the
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prime Nr. For example, for each m in the interval d2r+1(L+2)
3 e ≤ m ≤ 2r(L + 1)− 1,

we get #JC(F2m) = 2x(22r
+ 1)Nr, where x = 2m − 2r(L + 2). We describe the

curves by the Fq-isogeny class of their Jacobians, for example, having a1 = −1, and
a2 = 2m + 2x in the case mentioned above. We give examples of the parameters
for such curves with embedding degree k = 8, 13, 16, 23, 26, 37, 46. In section 5,
we show that the embedding degree k is always small, that is, k < (log q)2, so that
computations in Fqk are feasible. Then we examine which curves have k > ( log q

log log q )2,
so that the DLP in F∗

qk is considered hard and the curves are not susceptible to
sub-exponential attacks. Finally, in section 6, we note the difference between the
embedding field presumed by the conventional definition of embedding degree k and
the actual embedding field. We give an example of another family of curves for which
this difference is maximal (the field exponent differs by a factor of m), and then we
consider the extent to which this discrepancy applies to our family of curves.

2 Preliminaries

Let Fq be a finite field with q = pm for some prime p and positive integer m,1 and
let C be a curve over Fq. Let JC(Fq) be the Jacobian of C over Fq and assume there
exists a prime N dividing the order of JC(Fq), with q < N < q2. A subgroup of
JC(Fq) with order N is said to have embedding degree k if N divides qk − 1, but
does not divide qi − 1 for all 0 < i < k.

The Tate pairing is a (bilinear, non-degenerate) function

JC(Fqk)[N ]× JC(Fqk)/NJC(Fqk) −→ F∗
qk/F∗N

qk .

F∗
qk/F∗N

qk can then be mapped isomorphically into the set of Nth roots of unity, µN ,

by raising the image to the power q−1
N .

Pairing-based attacks can transport the discrete logarithm problem in JC(Fq)
to the discrete logarithm in the finite field F∗

qk , where there are sub-exponential
methods for solving the DLP. So for pairing-based cryptosystems, one would like to
find curves where the embedding degree k is small enough for computations to be
feasible, but large enough for the DLP in the embedding field to be difficult. For
most non-supersingular curves, the embedding degree is enormous. We will give a
sequence of 2-rank 1 curves with small embedding degree.

The fact that there exist simple abelian surfaces with characteristic polynomial
f(t) = t4 + a1t

3 + a2t
2 + qa1t + q2 ∈ Z[t] is shown in [10], but that there exists a

Jacobian of a genus 2 curve with such a characteristic polynomial is due to [8]. So

1 We view Fq as a general field extension, though for practical cryptographic applications, one
usually restricts to prime degree field extensions in order to avoid Weil descent attacks.
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we have that (a1, a2) determines the Fq-isogeny class of the Jacobian of a smooth
projective curve C defined over Fq, with #JC(Fq) = q2 + a1q + a2 + a1 + 1.

We let C be a genus 2 curve over Fq of the form y2 + xy = x5 + bx3 + cx2 + dx,
where b, c, d ∈ F∗

q . We consider when Nr = 22r(L+2)+1
22r+1

is a prime2 for some r ≥ 0
and odd L > 1. We have seen experimentally that for r ≤ 3, Nr is very often prime,
though it appears that primality does not occur for r ≥ 4. Our families of curves
will be those whose Jacobian order is divisible by Nr, and whose (a1, a2) have a
specific description to be explicitly given later.

3 Family of Primes and Their Embedding Degrees

We must first prove several lemmas that will enable us to achieve our main result.
We begin by noting that r = 1 never yields a prime.

Lemma 1. Let L > 1 be odd. N1 = 22(L+2)+1
22+1

is not a prime.

Proof. We first note that N1 = 22(L+1) − 22(L) + 22(L−1) − 22(L−2) + · · · − 2 + 1,
so N1 ∈ Z. Let P = 2L+2+1

2+1 = N0. We see that 9P 2 = 22(L+2) + 2L+3 + 1. So

N1 = 9P 2−2L+3

22+1
. Now L is odd, so L + 3 is even. So N1 = (3P−2

L+3
2 )(3P+2

L+3
2 )

22+1
. Now

N1 ∈ Z and 22 + 1 is prime, so either (3P−2
L+3

2

22+1
) ∈ Z and (3P + 2

L+3
2 ) ∈ Z, or

(3P − 2
L+3

2 ) ∈ Z and (3P+2
L+3

2

22+1
) ∈ Z. Either way, N1 is not prime.

ut

We now determine the embedding degree for a general prime N over Fq. We let
ordNp be the smallest x such that px ≡ 1 mod N .

Lemma 2. Let q = pm for some prime p and positive integer m, N be prime, and
k be the smallest integer such that qk ≡ 1 mod N . Then

k =
ordNp

gcd(ordNp, m)
.

Proof. Clearly k | ordNp
gcd(ordNp,m) , since

1 ≡ pordNp ≡ (pordNp)m/ gcd(ordNp,m) ≡ (pm)ordNp/ gcd(ordNp,m) mod N.

Now let D = gcd(ordNp, m). So we have k | ordNp
D .

2 Nr = 22r(L+1)− 22r(L) +22r(L−1)− 22r(L−2) + · · ·− 2+1, so clearly Nr ∈ Z for r ≥ 0 and L > 1.
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We also know that ordNp | mk, and this implies ordNp
D | m

D k. But gcd(ordNp
D , m

D ) =
1, therefore it must be that ordNp

D | k. Thus we have k = ordNp
D and the proof is

complete.
ut

Motivated by this understanding of k, we determine ordNr2 via the following
lemmas.

Lemma 3. Let L be odd. If Nr = 22r(L+2)+1
22r+1

is prime for some r ≥ 0, then L + 2 is
prime.

Proof. L + 2 is odd, so if L + 2 is not prime, then L + 2 = ab, where a, b are odd. If
a ≥ 3 and a | L+2, then 2a +1 | 22r(L+2) +1. This implies that 2a +1 | (22r

+1)Nr.
But gcd(22r

+ 1, Nr) = 1. Now 2a + 1 - 22r
+ 1 for a odd and 2a + 1 - Nr, since Nr

is prime. Therefore a = 1, and hence L + 2 is prime.
ut

Lemma 4. Let L be odd. If Nr = 22r(L+2)+1
22r+1

is prime for some r ≥ 0, then ordNr2 =
2r+1(L + 2).

Proof. We have (22r
+ 1)Nr = 22r(L+2) + 1. So 22r(L+2) ≡ −1 mod Nr. This implies

22r+1(L+2) ≡ 1 mod Nr. So ordNr2 | 2r+1(L+2). But by Lemma 3 we know that L+2
is prime, so it must be that either ordNr2 | 2r+1 or ordNr2 | 2r+1(L+2). The former
cannot happen since Nr = 22r(L+2)+1

22r+1
> 22r+1

. It follows that ordNr2 = 2r+1(L + 2).
ut

We are now able to state the embedding degree k of a group of order Nr over
Fq, where q = 2m for a specific range of m. (The upper bound is required so that
q < Nr, and the choice for lower bound will be evident in Proposition 1).

Lemma 5. Let L be odd, and let Nr = 22r(L+2)+1
22r+1

be prime for some r ≥ 0, and let

k be the embedding degree of curve C with respect to Nr. Let d2r+1(L+2)
3 e ≤ m ≤

2r(L + 1)− 1, and also allow m = L+1
2 + 1 in the case that r = 0. Then k = 2r+1−i

when gcd(ordN2,m) = 2i(L + 2) for i ∈ {0, . . . , r− 2}, and k = 2r+1−i(L + 2) when
gcd(ordN2,m) = 2i for i ∈ {0, . . . , r + 1}.

Proof. By Lemma 2, we know k = ordN2
gcd(ordN2,m) . By Lemma 4, we know that ordNr2 =

2r+1(L+2). The results follow immediately, with the possible i’s determined by the
size restriction on m.

ut

We note that the embedding degree k is unbounded as L is unbounded. We now
seek to find curves over Fq associated with Jacobians whose order is divisible by Nr.
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4 Genus 2 Curves for a Given Fq-Isogeny Class of Jacobians

We know that the (a1, a2) determines the Fq-isogeny class of the Jacobian of a
curve, and the following theorem found in [8] gives the conditions for a genus 2
curve associated with such a Jacobian to exist.

Theorem 1. There exists a curve of the form y2 + xy = x5 + bx3 + cx2 + dx,
b, c, d ∈ F∗

q, with N = q + 1 + a1 points over Fq = F2m and having simple Jacobian
if and only if

1. a1 is odd
2. |a1| ≤ 4

√
q

3. there exists an integer a2 such that
(a) 2|a1|

√
q − 2q ≤ a2 ≤ a2

1/4 + 2q

(b) a2 is divisible by 2dm/2e

(c) ∆ = a2
1 − 4a2 + 8q is not a square in Z

(d) δ = (a2 + 2q)2 − 4qa2
1 is not a square in Z2 (the 2-adic integers).

We use this theorem to establish the existence of genus 2 curves with specific
conditions on (a1, a2). We then show these are the conditions needed so that #JC(Fq)
is divisible by Nr.

Proposition 1. Let q = 2m, L > 1 be odd, and r ≥ 0. When m = L+1
2 + 1 ≥ 5,

let a1 = 1 and a2 = −2m, and when d2r+1(L+2)
3 e ≤ m ≤ 2r(L + 1) − 1, let a1 = −1

and a2 = 2m + 22m−2r(L+2). For L ≥ 7, these a1 and a2 satisfy the conditions for
the existence of the genus 2 curves in Theorem 1.

We give the proof in the appendix.
We are now able to state our main result in the following theorem.

Theorem 2. Let L ≥ 7 be odd, and Nr = 22r(L+2)+1
22r+1

be a prime for some r ≥ 0. If
r = 0, then for m = L+1

2 +1 there exists a genus 2 curve over F2m with the property
that #JC(F2m) = 2 · 3 ·N0, and a1 = 1, a2 = −2m. If r ≥ 0, then for each integer m

in the interval d2r+1(L+2)
3 e ≤ m ≤ 2r(L + 1) − 1, there exists a genus 2 curve over

F2m with the property that #JC(F2m) = 2x(22r
+ 1)Nr, where x = 2m− 2r(L + 2),

and a1 = −1, a2 = 2m + 2x.

Proof. Let L ≥ 7 be odd. Let Nr = 22r(L+2)+1
22r+1

be a prime for some r ≥ 0.
Let us first consider when m = L+1

2 + 1 and r = 0. We will find a1, a2 so that
#JC(F2m) = 2 · 3 ·N0. Suppose a1 = 1. Then we need an a2 such that #JC(F2m) =
22m +2m +a2 +2 = 2 · 3 ·N0. That is, such that 22m +2m +a2 +2 = 2L+3 +2. Since
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m = L+1
2 + 1, then L = 2m− 3, so we have 22m + 2m + a2 = 22m. Thus a2 = −2m.

So we see that a1 = 1 and a2 = −2m satisfy #JC(F2m) = 2 · 3 ·N0.
Now let r ≥ 0 be any integer not equal to 1, and let us consider when d2r+1(L+2)

3 e ≤
m ≤ 2r(L+1)−1. We will find a1, a2 so that #JC(F2m) = 22m+a12m+a1+a2+1 =
2x(22r

+ 1)Nr for some integer x. Suppose a1 = −1. Then we need an a2 such that
22m− 2m + a2 = 22r(L+2)+x + 2x. Suppose 22m = 22r(L+2)+x, and so −2m + a2 = 2x.
Then x = 2m − 2r(L + 2), and a2 = 2m + 2x. Thus we have found an (a1, a2) that
satisfy #JC(F2m) = 2x(22r

+1)Nr. Now, by Proposition 1, these (a1, a2) above, with
m in the specified range, satisfy the conditions for the existence of a genus 2 curve
over F2m . Thus the theorem is complete.

ut

In [6], an algorithm for point compression is proposed when the order of an
elliptic curve over F2m is divisible by a power of two. In our case, since #JC(F2m)
is divisible by a high power of two, these curves may lend themselves to point
compression using methods similar to those in [6].

A systematic way of determining the explicit coefficients of a curve when given
the (a1, a2) parameters that distinguish the isogeny class of its Jacobian is not yet
established. As such, we have used brute force with MAGMA code to generate some
examples of these curves over small Fq in the families described above.

Example 1. We give examples over small Fq for r = 0. We let g be a primitive ele-
ment of Fq.

L = 9, m = L+1
2 + 1 = 6, C : y2 + xy = x5 + g8x3 + g3x2 + gx

L = 9, m = d2r+1(L+2)
3 e = 8, C : y2 + xy = x5 + g7x3 + g7x

L = 9, m = 2r(L + 1)− 1 = 9, C : y2 + xy = x5 + g8x3 + g3x

L = 11, m = L+1
2 + 1 = 7, C : y2 + xy = x5 + g92x3 + g7x2 + gx

L = 15, m = L+1
2 + 1 = 9, C : y2 + xy = x5 + g103x3 + g5x2 + gx

5 Size of the Embedding Degrees

The latest results, in [5], give an algorithm for computing discrete logarithms in finite
fields Fqk with heuristic complexity Lqk(1/3) = exp(o(log qk)1/3(log log qk)2/3). So
in order for an attack to be sub-exponential in q, one needs k ∈ o(( log q

log log q )2).
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We examine the size of the embedding degrees of the family of curves in Theorem
2. We find that these curves always yield embedding degrees such that k < (log q)2,
but only sometimes yield embedding degrees such that k < ( log q

log log q )2. This means
the embedding degree is always “small,” so computations are feasible, and for some
curves it is still large enough for the discrete log problem to be hard. The following
theorems establish these results.

Proposition 2. Let q = 2m, L > 1 be odd, Nr = 22r(L+2)+1
22r+1

be prime for some
r ≥ 0, and k be the embedding degree of curve C with respect to Nr. If L ≥ 9, then
for each integer m in the interval d2r+1(L+2)

3 e ≤ m ≤ 2r(L + 1)− 1, k < (log q)2. If
L ≥ 13, then when r = 0 and m = L+1

2 + 1, k < (log q)2.

Proof. Let d2r+1(L+2)
3 e ≤ m ≤ 2r(L+1)− 1. By Lemma 5, the largest that k can be

is k = 2r+1(L + 2), so it suffices to consider this case. Given the acceptable range
for m, it is enough to show k < (log q)2 for m = d2r+1(L+2)

3 e.

k < (log q)2 ⇔ 2r+1(L + 2) < (log 2
2r+1(L+2)

3 )2

⇔ 2r+1(L + 2) < (
2r+1(L + 2)

3
)2(log 2)2

⇔ 9 · 2r+1(L + 2) < 22r+2(log2 2)(L + 2)2

⇔ 0 < 2r+1(log2 2)(L + 2)− 9.

This holds if L > 9
2r+1(log2 2)

− 2, that is, if L ≥ 8 for r = 0, and L ≥ 1 for r ≥ 2.

Since we require L to be odd, we can say that L ≥ 9 for any r ≥ 0 gives the result.
Now let m = L+1

2 + 1 and r = 0. By Lemma 5, it suffices to consider k = 2(L + 2).

k < (log q)2 ⇔ 2(L + 2) < (log 2(L+1)/2+1)2 = ((L + 1)/2 + 1)2(log2 2)

⇔ 2(L + 1) + 2 <
log2 2

4
(L + 1)2 + (log2 2)(L + 1) + log2 2

⇔ 0 <
log2 2

4
(L + 1)2 + ((log2 2− 2))(L + 1) + (log2 2− 2).

This holds if L + 1 >
−(log2 2−2)+

√
(log2 2−2)2−(log2 2)(log2 2−2)

log2 2
2

, that is, if L ≥ 13.

ut

Now we determine when the embedding degree is small enough that the curve
may be susceptible to attacks that are sub-exponential in q.
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Proposition 3. Let q = 2m, L > 1 be odd, Nr = 22r(L+2)+1
22r+1

be prime for some
r ≥ 0, and k be the embedding degree of curve C with respect to Nr. Then in the
following cases we have k < ( log q

log log q )2:
(i) for r = 0 and m = L+3

2 , if m is odd and m ≥ 205 (that is, L ≥ 405), or if m is
even and m ≥ 56 (that is, L ≥ 107).
(ii) for r = 2, 3 and m in the interval d2r+1(L+2)

3 e ≤ m ≤ 2r(L+1)−1, if (L+2) | m
and L ≥ 11.

We give the proof in the appendix.

k L r m a1 a2 log2 Nr

8 11 3 78 -1 278 + 252 95
8 21 2 69 -1 269 + 246 87
8 35 2 111 -1 2111 + 274 143
8 87 2 267 -1 2267 + 2178 351
8 147 2 447 -1 2447 + 2298 591

13 11 3 80 -1 280 + 256 95

16 11 3 91 -1 291 + 278 95

23 21 2 64 -1 264 + 236 87
23 21 2 72 -1 272 + 252 87
23 21 2 80 -1 280 + 268 87

26 11 3 72 -1 272 + 240 95
26 11 3 88 -1 288 + 272 95

37 35 2 104 -1 2104 + 260 143
37 35 2 112 -1 2112 + 276 143
37 35 2 120 -1 2120 + 292 143
37 35 2 128 -1 2128 + 2108 143
37 35 2 136 -1 2136 + 2124 143

46 21 2 68 -1 268 + 244 87
46 21 2 76 -1 276 + 260 87
46 21 2 84 -1 284 + 276 87

Table 1. Examples of parameters for families of curves over F2m with embedding degree k <
( log q
log log q

)2.

For the cases not addressed in Proposition 3, that is, when (L + 2) - m, then
whether or not k < ( log q

log log q )2 depends on precisely which m in the interval d2r+1(L+2)
3 e ≤

m ≤ 2r(L+1)−1 is chosen and on gcd(2r+1(L+2),m). More precisely, if gcd(2r+1(L+
2),m) = 2i, then k < ( log q

log log q )2 holds if and only if

2r+1−i <
m2(log 2)2

(log m + log(log 2))2
.
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k L r m a1 a2 log2 Nr

184 21 2 73 -1 273 + 254 87
184 21 2 75 -1 275 + 258 87
184 21 2 77 -1 277 + 262 87

202 99 0 75 -1 275 + 249 99
202 99 0 77 -1 27 + 253 99
202 99 0 79 -1 279 + 257 99
202 99 0 81 -1 281 + 261 99
202 99 0 83 -1 283 + 265 99

208 11 3 77 -1 277 + 250 95
208 11 3 79 -1 279 + 254 95
208 11 3 81 -1 281 + 258 95
208 11 3 83 -1 283 + 262 95

254 125 0 85 -1 285 + 243 125
254 125 0 87 -1 287 + 247 125
254 125 0 89 -1 289 + 251 125
254 125 0 91 -1 291 + 255 125
254 125 0 93 -1 293 + 259 125
254 125 0 95 -1 295 + 263 125

296 35 2 99 -1 299 + 250 143
296 35 2 101 -1 2101 + 254 143
296 35 2 103 -1 2103 + 258 143
296 35 2 105 -1 2105 + 262 143

Table 2. Examples of parameters for families of curves over F2m with embedding degree
( log q
log log q

)2 < k < (log q)2.

The curves whose embedding degree is k < ( log q
log log q )2 are susceptible to sub-

exponential attacks should not be used in strict cryptographic applications such
as Diffie-Hellman key exchange or El-Gamal encryption. However, they may still
be considered for a pairing-based cryptographic protocols such as identity-based
encryption, if we allow for less efficiency by increasing the size of q. Table 1 gives some
examples of the parameters for various such curves over Fq yielding small embedding
degrees k = 8, 13, 16, 23, 26, 37, 46. The family of curves presented in this paper also
contains curves whose embedding degree is small enough for computations to be
feasible, but large enough that the curves are not susceptible to sub-exponential
attacks. Table 2 gives examples of such pairing-friendly curves.

6 New Embedding Degree

In [4], the author noted that the conventional embedding degree k is not the appro-
priate indicator of the embedding field size, as the actual size can be much smaller
than presumed. In particular, if q = pm, then the pairings embed into µN which

10



lies in F∗
pordN p , not merely in F∗

qk . This difference in the size of the groups can be
quite large, by as much as a factor of m. If ∆ = m

gcd(ordNp,m) , then ∆ = 1 corre-
sponds to k being an accurate indicator of group size, and ∆ = m corresponds to
k being the least accurate indicator of the group size. Since the actual embedding
field is F∗

pordN p = Fpkd , where d = gcd(ordNp, m), then an attack will now be sub-

exponential in q if k < m(log q)2

d(log log pordN p)2
, that is, if k < ∆ (log q)2

(log log pordN p)2
. So clearly more

curves will be susceptible to sub-exponential attacks than previously anticipated.
Let us give a family of curves whose parameter ∆ = m. This family of curves is

such that #JC(Fq) is divisible by a Mersenne prime N .

Proposition 4. Let q = 2m, and p ≥ 5 be a prime. If N = 2p−1 is prime, then for
each integer m such that d2p

3 e ≤ m ≤ p−1, there exists a genus 2 curve C over F2m

with the property that #JC(F2m) = 22m−pN , where a1 = −1 and a2 = 2m − 22m−p.
The embedding degree k is k = p and the additional parameter is ∆ = m.

We give the proof in the appendix. This family of curves demonstrates a case
when the conventional embedding degree k is an inaccurate assessment of security,
in fact, the most inaccurate possible. That is, pairings on this group embed into F∗

2p ,
not merely into F∗

qk = F∗
2mp .

So now we examine the additional security parameter ∆ for the families of genus
2 curves corresponding to the prime Nr’s given in Theorem 2. As we mentioned, it
is desirable for ∆ to be near 1, and far from m. We find ∆ is often close to 1, and
is at most m/4 for the curves with k < ( log q

log log q )2 in Table 1, so there is minimal
discrepancy. However, for the curves in Table 2, we find that ∆ = m, so there is a
difference in field exponent by a factor of m.

7 Concluding Remarks

Hyperelliptic curves are receiving increased attention for use in cryptosystems, which
involves searching for pairing-friendly curves. We have given a sequence of Fq-isogeny
classes for a family of Jacobians of genus 2, 2-rank 1 curves over Fq, for q = 2m, and
their corresponding small embedding degrees. In particular we gave examples of the
parameters for such curves with (conventional) embedding degree k < ( log q

log log q )2,

such as k = 8, 13, 16, 23, 26, 37, 46, and for curves with ( log q
log log q )2 < k < (log q)2.

A systematic way of determining the explicit coefficients of a curve when given
the (a1, a2) parameters that distinguish the isogeny class of its Jacobian is not yet
established.

The curves whose embedding degree is k < ( log q
log log q )2 are susceptible to sub-

exponential attacks should not be used in strict cryptographic applications such

11



as Diffie-Hellman key exchange or El-Gamal encryption. However, they may still
be considered for a pairing-based cryptographic protocols such as identity-based
encryption, if we allow for less efficiency by increasing the size of q. The family of
curves presented in this paper also contains curves whose embedding degree is small
enough for computations to be feasible, but large enough that the curves are not
susceptible to known sub-exponential attacks.

We noted the occurrences when the actual embedding field is smaller than the
embedding field presumed by the conventional definition of embedding degree k. We
gave an example of a family of curves for which this difference is maximal, that is,
when the field exponent differs by a factor of m, demonstrating the weakness in the
current definition of embedding degree.
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A Proof of Proposition 1

We give the proof of Proposition 1, which establishes the existence of genus 2 curves
with specific conditions on (a1, a2). Theorem 2 showed that the Jacobian of each of
these curves is divisible by the prime Nr = 22r(L+2)+1

22r+1
, for odd L > 1 and r ≥ 0.

Proof. Clearly a1 is odd and |a1| ≤ 4
√

q.
Let us show 2|a1|

√
q − 2q ≤ a2 ≤ a2

1/4 + 2q. Clearly the first case (when a1 = 1
and a2 = −q for m = L+1

2 + 1 ≥ 5) giving 2
√

q − 2q ≤ −q ≤ 1/4 + 2q is true. Now
consider the second case (when a1 = −1, and a2 = 2m + 22m−2r(L+2)):

2
√

q − 2q ≤ a2 ≤ 1/4 + 2q

⇐⇒ 2m/2+1 − 2m+1 ≤ 2m + 22m−2r(L+2) ≤ 1/4 + 2m+1.

Clearly the first inequality holds. The second inequality holds if and only if 22m−2r(L+2) ≤
2m, which holds if and only if m ≤ 2r(L + 2). This is true since m ≤ 2r(L + 1)− 1.

Let us show 2dm/2e | a2. Clearly the first case is true: 2dm/2e | −2m. Now consider
the second case:

2dm/2e | 2m + 22m−2r(L+2)

⇐⇒ 2m− 2r(L + 2) ≥ dm/2e

⇐⇒ b3m/2c ≥ 2r(L + 2)

⇐⇒ m ≥ d2
r+1(L + 2)

3
e

Thus the condition holds.
Now we show ∆ = a2

1 − 4a2 + 8q is not a square in Z. The first case yields
∆ = 1+3 ·2m+2. Suppose ∆ = 1+3 ·2m+2 = x2 for some integer x. Since 1+3 ·2m+2

is odd, then x is odd, so let x = 2k +1 for some integer k. Then ∆ is a square if and
only if 3 ·2m = k(k+1). Now, either k or k+1 is odd. If k = 3, then k+1 = 4 = 2m,
so m = 2. If k + 1 = 3, then k = 2 = 2m, so m = 1. Thus ∆ is not a square in Z
for m ≥ 3. The second case yields ∆ = 22(m+1−2r−1(L+2))(22r(L+2)−m − 1) + 1. For
contradiction, suppose ∆ = 22(m+1−2r−1(L+2))(22r(L+2)−m − 1) + 1 = x2 for some
integer x. Since ∆ is odd, then x is odd, so let x = 2k + 1 for some integer k. Then
∆ is a square if and only if 22m−2r(L+2)(22r(L+2)−m − 1) = k(k + 1). That is, if and
only if 22m−2r(L+2) and (22r(L+2)−m − 1) differ by one. But such powers of two can
never be this close, so ∆ is not a square.

13



Now we show δ = (a2 + 2q)2 − 4qa2
1 is not a square in the 2-adic integers, Z2.

That is, for δ = 2xb, we must show that either b 6≡ 1 mod 8 or x ≡ 1 mod 2.
The first case yields δ = q2 − 4q = 2m+2(2m−2 − 1). So b = 2m−2 − 1 ≡ −1 mod 8
for m ≥ 5. Therefore δ is not a square in Z2 for m ≥ 5.
Now consider the second case:

δ = (2m + 22m−2r(L+2) + 2m+1)2 − 2m+2

= (2m + 22m−2r(L+2))2 + 2m+2(2m + 22m−2r(L+2)) + 22m+2 − 2m+2

= 22m+3 + 22m + 23m−2r(L+2)+2 + 23m−2r(L+2)+1 + 24m−2r+1(L+2) − 2m+2

= 2m+2(2m+1 + 2m−2 + 22m−2r(L+2) + 22m−2r(L+2)−1 + 23m−2r(L+2)−2 − 1)

⇒ b = 2m−2(23 + 1) + 22m−2r(L+2)−1(2 + 1) + 23m−2r+1(L+2)−2 − 1

For m ≥ 5, we have

b ≡ 22m−2r(L+2)−1(3)+23m−2r+1(L+2)−2−1 ≡ 23m−2r+1(L+2)−2(22r(L+2)−m−13+1)−1

Now, suppose b ≡ 1 mod 8. Then

b ≡ 23m−2r+1(L+2)−2(22r(L+2)−m−13 + 1) ≡ 2 mod 8

⇒ 3m− 2r+1(L + 2)− 2 = 1

⇒ m =
3 + 2r+1(L + 2)

3

But L+2 is prime, so m = 3+2r+1(L+2)
3 6∈ Z. This is a contradiction, so b 6≡ 1 mod 8.

Thus δ is not a square in Z2.
Therefore the all the conditions for the existence of genus 2 curves C over Fq are

satisfied for the given (a1, a2) described in the proposition.
ut

B Proof of Proposition 3

We give the proof of Proposition 3, which determines which curves have embedding
degree small enough that the curve may be susceptible to attacks that are sub-
exponential in q.
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Proof. First let r = 0 and m = L+3
2 . Then by Lemma 5, k = 21−i(L + 2), where

gcd(2(L + 2),m) = 2i, i = 0, 1. Suppose i = 0, that is, m is odd. Then

k < (
log q

log log q
)2 ⇔ 2(L + 2) <

m2(log 2)2

(log m + log(log 2))2

⇔ (L + 2) <
(L + 3)2(log 2)2

8(log(L + 3)− log 2 + log(log 2))2
.

This holds true for L ≥ 405, that is, for m ≥ 205.
Now suppose i = 1, that is, m is even. Then

k < (
log q

log log q
)2 ⇔ 2(L + 2) <

m2(log 2)2

(log m + log(log 2))2

⇔ (L + 2) <
(L + 3)2(log 2)2

4(log(L + 3)− log 2 + log(log 2))2
.

This holds true for L ≥ 107, that is, for m ≥ 56.
Now let r ≥ 0 and d2r+1(L+2)

3 e ≤ m ≤ 2r(L + 1) − 1 and suppose (L + 2)|m. We
see that if (L + 2)|m then r 6= 0 for m in this interval. Suppose r ≥ 2. By Lemma
5, k = 2r+1−i, where gcd(2r+1(L + 2),m) = 2i(L + 2) for i ∈ {0, 1, . . . , r − 2}. It
suffices to show k < ( log q

log log q )2 for the smallest m in this interval, so we suppose
m = (L + 2).

k < (
log q

log log q
)2 ⇔ 2r+1 <

(L + 2)2(log 2)2

(log(L + 2) + log(log 2))2
.

For r = 2, this holds for L ≥ 5, for r = 3, this holds for L ≥ 11.
ut

C Proof of Proposition 4

We give a proof of Proposition 4, which establishes the existence of a family of curves
whose Jacobian is divisible by a Mersenne prime. The proposition also determines
the embedding degree and measures the discrepancy between the size of the actual
and presumed embedding fields.

Proof. First let us show that the conditions of Theorem 1 are met for the existence
of genus 2 curves C when a1 = −1 and a2 = 2m − 22m−p. Clearly a1 is odd, and
|a1| ≤ 4

√
q. Let us show 2

√
q − 2q ≤ a2 ≤ 1/4 + 2q, that is,

2m/2+1 − 2m+1 ≤ 2m − 22m−p ≤ 1/4 + 2m+1.
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Clearly the second inequality holds. The first inequality holds if

2m/2+1 + 22m−p = 2m(21−m/2 + 2m−p) ≤ 2m3.

This holds if m−p ≤ 1. But our restriction that d2p
3 e ≤ m ≤ p−1 implies m−p ≤ −1,

so we see this condition holds true.
Now let us show that 2dm/2e divides a2.

2dm/2e | 2m − 22m−p ⇐⇒ 2m− p ≥ dm/2e

⇐⇒ b3m/2c ≥ p

⇐⇒ m ≥ d2p

3
e

Thus the condition holds.
Now let us show ∆ = a2

1 − 4a2 + 8q is not a square in Z.
For contradiction, suppose ∆ = 1−2m+2+22m−p+2+2m+3 = 1+22m−p+2+2m+2 = x2

for some integer x. Since ∆ is odd, then x is odd, so let x = 2n + 1 for some integer
n. Then ∆ is a square if and only if 22m−p(2p−m + 1) = n(n + 1), if and only if
2m− p = p−m, that is, m = 2p/3. But p ≥ 5 is prime, so m is not an integer, thus
this cannot happen. Therefore ∆ is not a square in Z.

Now let us show δ = (a2 +2q)2−4qa2
1 is not a square in Z2. That is, for δ = 2xb,

we must show that either b 6≡ 1 mod 8 or x ≡ 1 mod 2. Now

δ = (2m − 22m−p + 2m+1)2 − 2m+2

= (2m − 2P 2m− p)2 + 2m+2(2m − 22m−p) + 22m+2 − 2m+2

= 22m+3 + 2m − 23m−p+2 − 23m−p+1 + 24m−2p − 2m+2

2m+2(2m+1 + 2m−2 − 22m−p − 22m−p−1 + 23m−2p−2 − 1)

⇒ b = 2m−2(23 + 1)− 22m−p−1(2 + 1) + 23m−2p−2 − 1

For m ≥ 5, we have

b ≡ −22m−p−13 + 23m−2p−2 − 1 ≡ 23m−2p−2(1− 2p−m+13)− 1

Now, suppose b ≡ 1 mod 8. Then

b ≡ 23m−2p−2(1− 2p−m+13) ≡ 2 mod 8

⇒ 3m− 2p− 2 = 1

⇒ m =
3 + 2p

3
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But p is prime, so m = 3+2p
3 6∈ Z. This is a contradiction, so b 6≡ 1 mod 8. Thus

δ is not a square in Z2. Therefore the conditions of Theorem 1 are satisfied for the
existence of a curve C over Fq.

Now let us show that #JC(F2m) = 22m−pN whenever a1 = −1 and a2 = 2m −
22m−p.

#JC(F2m) = q2 + a1q + a2 + a1 + 1 = 22m − 22m−p

⇒ #JC(F2m) = 22m−p(2p − 1) = 22m−pN

Now we find the embedding degree k with respect to N = 2p − 1. We see that
ordN2 = p, so gcd(ordN2,m) = 1 since m ≤ p − 1. Therefore by Lemma 2, k = p,
and the additional security parameter is d = m

gcd(ordN2,m) = m. Thus the proof of
the proposition is complete.

ut
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