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Abstract. Hyperelliptic curves of small genus have the advantage of achieving the
same security in the group while working over a smaller field than with elliptic curves.
Pairing-friendly curves are those whose Jacobian is divisible by a large prime and
whose embedding degree is small enough for computations to be feasible, but large
enough for the discrete logarithm problem in the embedding field to be difficult.
We give a sequence of Fq-isogeny classes for a family of Jacobians of genus 2 curves
over Fq, for q = 2m, and their corresponding small embedding degrees. We give
examples of the parameters for such curves with embedding degree k < (log q)2, such
as k = 8, 13, 16, 23, 26, 37, 46.

For efficient implementation of pairing-based cryptography on genus g curves over Fq,
it is desirable that the ratio ρ = g log2 q

log2 N
be approximately unity, where N is the order

of the subgroup with embedding degree k. We show that for our family of curves, ρ
is often near 1 and never more than 2.

We also give a sequence of Fq-isogeny classes for a family of Jacobians of genus 2 curves
over Fq whose minimal embedding field is much smaller than the field indicated by the
embedding degree k. That is, the field exponents differ by a factor of m, demonstrating
that the embedding degree is an inaccurate indicator of security. As a result, we use
a security parameter k′ = ordN 2

g
to examine the cryptographic security of our family

of curves.

Keywords: embedding degree, genus 2, hyperelliptic curves, binary curves, pairing-
based cryptosystems.

1 Introduction

The computational intractability of the elliptic curve discrete logarithm problem
is the mathematical basis for security of elliptic curve cryptosystems. Elliptic (and
hyperelliptic) curves are especially attractive for cryptography as there is currently
no sub-exponential algorithm for solving the discrete logarithm problem (DLP) on
properly chosen curves. Thus they provide greater security and more efficient perfor-
mance than first generation public key techniques, such as RSA and Diffie-Hellman.
The result is faster implementations, bandwidth and storage savings, and reduced
energy consumption. The performance of such cryptosystems depends essentially



on efficient arithmetic in the underlying finite field, and applications usually fo-
cus on prime fields or binary fields. Binary finite fields, F2m , have the advantage
of “carry-free” addition and are more interesting for hardware implementation. [7]
gives formulas for fast arithmetic on hyperelliptic curves, garnering more support for
their use in cryptosystems. With hyperelliptic curves of small genus (that is, whose
associated Jacobian abelian variety is of low dimension), it is possible to work over
a smaller field while achieving the same security in the group. Thus hyperelliptic
curves can offer the benefits of having comparable levels of security with smaller key
sizes than other finite abelian groups.

Pairings on groups have been used constructively to design cryptographic pro-
tocols and to solve problems that have been open for many years, such as identity-
based encryption, one-round three-party key agreement, and short signatures. On
the other hand, pairings have been used destructively to attack cryptographic secu-
rity. For example, the Frey-Rück attack (or MOV attack) uses the Tate pairing (or
Weil pairing) to map the discrete logarithm problem on the Jacobian of a curve to
the discrete logarithm in the finite field F∗

qk , where there are more efficient meth-
ods for solving the DLP. So for pairing-based cryptosystems, it is important to find
curves where the embedding degree k is small enough that the pairing is efficiently
computable, but large enough that the DLP in F∗

qk is hard.
This leads to the understanding of a pairing-friendly curve over Fq as one that

satisfies the following two conditions: (1) #JC(Fq) should be divisible by a suffi-
ciently large prime N so that the DLP in the order-N subgroup of JC(Fq) is resistant
to Pollard’s rho attack (and other known attacks), and (2) The embedding degree k
should be sufficiently large so that the DLP in F∗

qk withstands index-calculus attacks,
but small enough that the arithmetic in Fqk can be efficiently implemented.

We know that k ≤ 6 for supersingular elliptic curves, as first shown in [9]. [3]
gives an upper bound of 12 on k for supersingular genus 2 curves, which is attained
in characteristic two. It has also been shown in [2] that one can obtain k = 12 for
ordinary genus 2 curves in characteristic two. However in general, for a “random”
curve, one expects k ∼ N , and for cryptographic applications, N ∼ 2160, so k would
be much too large for the computation of pairings to be feasible.

In this paper, we consider genus 2 curves over Fq, where q = 2m, whose associated
Jacobian is neither supersingular (2-rank 0), nor ordinary (2-rank 2), but rather has
2-rank 1. [1] gives formulas for fast arithmetic on 2-rank 1 curves, so such curves
are interesting to consider. We let C be a genus 2 curve over Fq of the form

y2 + xy = x5 + bx3 + cx2 + dx

where b, c, d ∈ F∗
q , and with characteristic polynomial f(t) = t4 + a1t

3 + a2t
2 +

qa1t + q2 ∈ Z[t]. In Section 3, we give a parametrization of a family of large primes,
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Nr = 22r(L+2)+1
22r+1

for r ≥ 0 and odd L > 7, and we determine the embedding degrees
for subgroups having these prime orders. In Section 4, we associate with each of these
primes a sequence of genus 2 curves over F2m , whose Jacobian order is divisible by the
prime Nr. For example, for each m in the interval d2r+1(L+2)

3 e ≤ m ≤ 2r(L + 1)− 1,
we get #JC(F2m) = 2x(22r

+ 1)Nr, where x = 2m − 2r(L + 2). We describe the
curves by the Fq-isogeny class of their Jacobians, such as having a1 = −1, and
a2 = 2m + 2x in the case mentioned above (where a1 and a2 are the coefficients
of the zeta function). We give examples of the parameters for such curves with
embedding degree k = 8, 13, 16, 23, 26, 37, 46.

For efficient implementation of pairing-based cryptography it is important to
consider the ratio between the size of the curve group and the order of the subgroup
with embedding degree k. For genus g curves, it is ideal for the ratio of bit lengths,
ρ = g log2 q

log2 Nr
, to be approximately 1. We show that for our family of curves the

ratio is such that ρ is often near 1 and is never more than 2. In Section 5, we
show that the embedding degree k is always “small,” that is, k < (log q)2, so that
computations in Fqk may be feasible. In Section 6, we give an example of another
family of curves, whose minimal embedding field exponent is smaller by a factor
of m than the exponent of the field indicated by the embedding degree k. This
demonstrates that the embedding degree may be an inaccurate indicator of security,
and so we use a security parameter k′ = ordN2

g to examine the cryptographic security
of our family of 2-rank 1 curves.

2 Preliminaries

Let Fq be a finite field with q = pm for some prime p and positive integer m,1 and let
C be a smooth projective curve over Fq. The Jacobian of C over Fq, denoted JC(Fq),
is an abelian variety whose points are degree zero divisors on C modulo principal
divisors. For a curve of genus g, its Jacobian has dimension g. Assume there exists
a prime N dividing the order of JC(Fq), with q < N < q2. A pairing can embed the
subgroup of order N into the multiplicative group of a degree k extension of Fq. So
a subgroup of JC(Fq) with order N is said to have embedding degree k if N divides
qk − 1, but does not divide qi − 1 for all 0 < i < k.

The Tate pairing is a (bilinear, non-degenerate) function

JC(Fqk)[N ]× JC(Fqk)/NJC(Fqk) −→ F∗
qk/F∗N

qk .

F∗
qk/F∗N

qk can then be mapped isomorphically into the set of Nth roots of unity, µN ,

by raising the image to the power q−1
N .

1 We view Fq as a general field extension, though for practical cryptographic applications, one
usually restricts to prime degree field extensions in order to avoid Weil descent attacks.
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Pairing-based attacks can transport the discrete logarithm problem in JC(Fq)
to the discrete logarithm in the finite field F∗

qk , where there are sub-exponential
methods for solving the DLP. So for pairing-based cryptosystems, one would like to
find curves where the embedding degree k is small enough for computations to be
feasible, but large enough for the DLP in the embedding field to be difficult. For
most non-supersingular curves, the embedding degree is enormous. We will give a
sequence of (non-supersingular, non-ordinary) 2-rank 1 curves with small embedding
degree.

The fact that there exist simple abelian surfaces with characteristic polynomial
f(t) = t4 + a1t

3 + a2t
2 + qa1t + q2 ∈ Z[t] is shown in [10], but that there exists a

Jacobian of a curve defined over Fq with such a characteristic polynomial is due to [8].
So we have that (a1, a2) determines the Fq-isogeny class of the Jacobian of a smooth
projective curve C of genus 2 defined over Fq, with #JC(Fq) = q2 +a1q+a2 +a1 +1.

We let C be a curve of genus 2 over Fq of the form y2 +xy = x5 + bx3 +cx2 +dx,
where b, c, d ∈ F∗

q . We consider when Nr = 22r(L+2)+1
22r+1

is a prime2 for some r ≥ 0
and odd L > 1. We have seen experimentally that for r ≤ 3, Nr is very often prime,
though it appears that primality does not occur for r ≥ 4. Our families of curves will
be those whose (absolutely simple) Jacobian has order divisible by Nr, and whose
(a1, a2) have a specific description to be explicitly given later.

3 Family of primes and their embedding degrees

We must first prove several lemmas that will enable us to achieve our main result.
We begin by noting that r = 1 never yields a prime.

Lemma 1. Let L > 1 be odd. N1 = 22(L+2)+1
22+1

is not a prime.

Proof. We first note that N1 = 22(L+1) − 22(L) + 22(L−1) − 22(L−2) + · · · − 2 + 1,
so N1 ∈ Z. Let P = 2L+2+1

2+1 = N0. We see that 9P 2 = 22(L+2) + 2L+3 + 1. So

N1 = 9P 2−2L+3

22+1
. Now L is odd, so L + 3 is even. So N1 = (3P−2

L+3
2 )(3P+2

L+3
2 )

22+1
. Now

N1 ∈ Z and 22 + 1 is prime, so either (3P−2
L+3

2

22+1
) ∈ Z and (3P + 2

L+3
2 ) ∈ Z, or

(3P − 2
L+3

2 ) ∈ Z and (3P+2
L+3

2

22+1
) ∈ Z. Either way, N1 is not prime.

ut

We now determine the embedding degree for a general prime N over Fq. We let
ordNp be the smallest x such that px ≡ 1 mod N .

2 Nr = 22r(L+1)− 22r(L) +22r(L−1)− 22r(L−2) + · · ·− 2+1, so clearly Nr ∈ Z for r ≥ 0 and L > 1.
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Lemma 2. Let q = pm for some prime p and positive integer m, N be prime, and
k be the smallest integer such that qk ≡ 1 mod N . Then

k =
ordNp

gcd(ordNp, m)
.

Proof. Clearly k | ordNp
gcd(ordNp,m) , since

1 ≡ pordNp ≡ (pordNp)m/ gcd(ordNp,m) ≡ (pm)ordNp/ gcd(ordNp,m) mod N.

Now let D = gcd(ordNp, m). So we have k | ordNp
D .

We also know that ordNp | mk, and this implies ordNp
D | m

D k. But gcd(ordNp
D , m

D ) =
1, therefore it must be that ordNp

D | k. Thus we have k = ordNp
D and the proof is

complete.
ut

Motivated by this understanding of k, we determine ordNr2 via the following
lemmas.

Lemma 3. Let L be odd. If Nr = 22r(L+2)+1
22r+1

is prime for some r ≥ 0, then L + 2 is
prime.

Proof. L + 2 is odd, so if L + 2 is not prime, then L + 2 = ab, where a, b are odd. If
a ≥ 3 and a | L+2, then 2a +1 | 22r(L+2) +1. This implies that 2a +1 | (22r

+1)Nr.
But gcd(22r

+ 1, Nr) = 1. Now 2a + 1 - 22r
+ 1 for a odd and 2a + 1 - Nr, since Nr

is prime. Therefore a = 1, and hence L + 2 is prime.
ut

Lemma 4. Let L be odd. If Nr = 22r(L+2)+1
22r+1

is prime for some r ≥ 0, then ordNr2 =
2r+1(L + 2).

Proof. We have (22r
+ 1)Nr = 22r(L+2) + 1. So 22r(L+2) ≡ −1 mod Nr. This implies

22r+1(L+2) ≡ 1 mod Nr. So ordNr2 | 2r+1(L+2). But by Lemma 3 we know that L+2
is prime, so it must be that either ordNr2 | 2r+1 or ordNr2 | 2r+1(L+2). The former
cannot happen since Nr = 22r(L+2)+1

22r+1
> 22r+1

. It follows that ordNr2 = 2r+1(L + 2).
ut

We are now able to state the embedding degree k of a group of order Nr over
Fq, where q = 2m for a specific range of m. (The upper bound is required so that
q < Nr, and the choice for lower bound will be evident in Proposition 1).
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Lemma 5. Let L be odd, and let Nr = 22r(L+2)+1
22r+1

be prime for some r ≥ 0, and let

k be the embedding degree of curve C with respect to Nr. Let d2r+1(L+2)
3 e ≤ m ≤

2r(L + 1)− 1, and also allow m = L+1
2 + 1 in the case that r = 0. Then k = 2r+1−i

when gcd(ordN2,m) = 2i(L + 2) for i ∈ {0, . . . , r− 2}, and k = 2r+1−i(L + 2) when
gcd(ordN2,m) = 2i for i ∈ {0, . . . , r + 1}.

Proof. By Lemma 2, we know k = ordN2
gcd(ordN2,m) . By Lemma 4, we know that ordNr2 =

2r+1(L+2). The results follow immediately, with the possible i’s determined by the
size restriction on m.

ut

We note that the embedding degree k is unbounded as L is unbounded. We now
seek to find curves over Fq associated with Jacobians whose order is divisible by Nr.

4 Genus 2 curves for a given Fq-isogeny class of Jacobians

We know that the (a1, a2) determines the Fq-isogeny class of the Jacobian of a curve
of genus 2, and the following theorem found in [8] gives the conditions for a curve
associated with such a Jacobian to exist.

Theorem 1. There exists a curve of the form y2 + xy = x5 + bx3 + cx2 + dx,
b, c, d ∈ F∗

q, with characteristic polynomial f(t) = t4 + a1t
3 + a2t

2 + qa1t + q2 and
having simple Jacobian if and only if

1. a1 is odd
2. |a1| ≤ 4

√
q

3. there exists an integer a2 such that
(a) 2|a1|

√
q − 2q ≤ a2 ≤ a2

1/4 + 2q

(b) a2 is divisible by 2dm/2e

(c) ∆ = a2
1 − 4a2 + 8q is not a square in Z

(d) δ = (a2 + 2q)2 − 4qa2
1 is not a square in Z2 (the 2-adic integers).

We use this theorem to establish the existence of genus 2 curves with specific
conditions on (a1, a2). We then show these are the conditions needed so that #JC(Fq)
is divisible by Nr.

Proposition 1. Let q = 2m, L > 1 be odd, and r ≥ 0. When m = L+1
2 + 1 ≥ 5,

let a1 = 1 and a2 = −2m, and when d2r+1(L+2)
3 e ≤ m ≤ 2r(L + 1) − 1, let a1 = −1

and a2 = 2m + 22m−2r(L+2). For L ≥ 7, these a1 and a2 satisfy the conditions for
the existence of the genus 2 curves in Theorem 1.
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We give the proof in the appendix.
We are now able to state our main result in the following theorem.

Theorem 2. Let L ≥ 7 be odd, and Nr = 22r(L+2)+1
22r+1

be a prime for some r ≥ 0. If
r = 0, then for m = L+1

2 +1 there exists a genus 2 curve over F2m with the property
that #JC(F2m) = 2 · 3 ·N0, and a1 = 1, a2 = −2m. If r ≥ 0, then for each integer m

in the interval d2r+1(L+2)
3 e ≤ m ≤ 2r(L + 1) − 1, there exists a genus 2 curve over

F2m with the property that #JC(F2m) = 2x(22r
+ 1)Nr, where x = 2m− 2r(L + 2),

and a1 = −1, a2 = 2m + 2x.

Proof. Let L ≥ 7 be odd. Let Nr = 22r(L+2)+1
22r+1

be a prime for some r ≥ 0.

Let us first consider when m = L+1
2 + 1 and r = 0. We will find a1, a2 so that

#JC(F2m) = 2 · 3 ·N0. Suppose a1 = 1. Then we need an a2 such that #JC(F2m) =
22m +2m +a2 +2 = 2 · 3 ·N0. That is, such that 22m +2m +a2 +2 = 2L+3 +2. Since
m = L+1

2 + 1, then L = 2m− 3, so we have 22m + 2m + a2 = 22m. Thus a2 = −2m.
So we see that a1 = 1 and a2 = −2m satisfy #JC(F2m) = 2 · 3 ·N0.

Now let r ≥ 0 be any integer not equal to 1, and let us consider when d2r+1(L+2)
3 e ≤

m ≤ 2r(L+1)−1. We will find a1, a2 so that #JC(F2m) = 22m+a12m+a1+a2+1 =
2x(22r

+ 1)Nr for some integer x. Suppose a1 = −1. Then we need an a2 such that
22m− 2m + a2 = 22r(L+2)+x + 2x. Suppose 22m = 22r(L+2)+x, and so −2m + a2 = 2x.
Then x = 2m − 2r(L + 2), and a2 = 2m + 2x. Thus we have found an (a1, a2) that
satisfy #JC(F2m) = 2x(22r

+1)Nr. Now, by Proposition 1, these (a1, a2) above, with
m in the specified range, satisfy the conditions for the existence of a genus 2 curve
over F2m . Thus the theorem is complete.

ut

Now let #JC(Fq) = hNr. For the most efficient implementation of a pairing-
based cryptosystem, we would like the cofactor h to be small. So we examine the
approximate ratio between the size (in bits) of the curve group and the subgroup
of prime order Nr. Since #JC(Fq) = q2 + a1(q + 1) + a2 + 1, we let the parameter
that measures this ratio be ρ = 2 log2 q

log2 Nr
. The ideal situation is to have ρ ∼ 1. For

our family of curves, we see that ρ ∼ m
2r−1(L+1)

, which is often near 1 and at most

2. In particular, when m = L+1
2 + 1, we get ρ ∼ L+3

L+1 . When d2r+1(L+2)
3 e ≤ m ≤

2r(L + 1)− 1, the ratio can be as small as ρ ∼ 4(L+2)
3(L+1) and at most ρ ∼ 2− 2

2r(L+1) .
In [6], an algorithm for point compression is proposed when the order of an

elliptic curve over F2m is divisible by a power of two. In our case, since #JC(F2m)
is divisible by a high power of two, these curves may lend themselves to point
compression using methods similar to those in [6].
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Table 1 gives some examples of the parameters for curves over Fq yielding small
embedding degrees k = 8, 13, 16, 23, 26, 37, 46. A systematic way of determining the
explicit coefficients of a curve when given the (a1, a2) parameters that distinguish
the isogeny class of its Jacobian is not yet established. As such, in Example 1 we
have used brute force with MAGMA code to generate some examples of these curves
over small Fq.

Example 1. We give examples over small Fq for r = 0. We let g be a primitive
element of Fq.

L = 9, m = L+1
2 + 1 = 6, k = 11, ρ ∼ 6/5,

C : y2 + xy = x5 + g8x3 + g3x2 + gx,

L = 9, m = d2r+1(L+2)
3 e = 8, k = 11, ρ ∼ 8/5

C : y2 + xy = x5 + g7x3 + g7x

L = 9, m = 2r(L + 1)− 1 = 9, k = 22, ρ ∼ 9/5
C : y2 + xy = x5 + g8x3 + g3x

L = 11, m = L+1
2 + 1 = 7, k = 26, ρ ∼ 7/6

C : y2 + xy = x5 + g92x3 + g7x2 + gx

L = 15, m = L+1
2 + 1 = 9, k = 34, ρ ∼ 9/8

C : y2 + xy = x5 + g103x3 + g5x2 + gx

5 Size of the embedding degrees

We examine the size of the embedding degrees of the family of curves from Theorem
2. We find that these curves always yield embedding degrees such that k < (log q)2,
which suggests that the embedding degree may be small enough so that computa-
tions are feasible.

Proposition 2. Let q = 2m, L > 1 be odd, Nr = 22r(L+2)+1
22r+1

be prime for some
r ≥ 0, and k be the embedding degree of curve C with respect to Nr. If L ≥ 9, then
for each integer m in the interval d2r+1(L+2)

3 e ≤ m ≤ 2r(L + 1)− 1, k < (log q)2. If
L ≥ 13, then when r = 0 and m = L+1

2 + 1, k < (log q)2.

Proof. Let d2r+1(L+2)
3 e ≤ m ≤ 2r(L+1)− 1. By Lemma 5, the largest that k can be

is k = 2r+1(L + 2), so it suffices to consider this case. Given the acceptable range

8



k L r m a1 a2 ρ

8 35 2 111 -1 2111 + 274 3/2
8 87 2 267 -1 2267 + 2178 3/2
8 147 2 447 -1 2447 + 2298 3/2

13 11 3 80 -1 280 + 256 5/3

16 11 3 91 -1 291 + 278 2

23 21 2 64 -1 264 + 236 3/2
23 21 2 72 -1 272 + 252 5/3
23 21 2 80 -1 280 + 268 9/5

26 11 3 72 -1 272 + 240 3/2
26 11 3 88 -1 288 + 272 9/5

37 35 2 104 -1 2104 + 260 7/5
37 35 2 112 -1 2112 + 276 3/2
37 35 2 120 -1 2120 + 292 5/3
37 35 2 128 -1 2128 + 2108 9/5
37 35 2 136 -1 2136 + 2124 2

46 21 2 68 -1 268 + 244 3/2
46 21 2 76 -1 276 + 260 7/4
46 21 2 84 -1 284 + 276 2

52 11 3 76 -1 276 + 248 5/3
52 11 3 88 -1 288 + 264 7/4
52 11 3 92 -1 292 + 280 2

Table 1. Examples of parameters for families of curves over F2m with small embedding degree k.

for m, it is enough to show k < (log q)2 for m = d2r+1(L+2)
3 e.

k < (log q)2 ⇔ 2r+1(L + 2) < (log 2
2r+1(L+2)

3 )2

⇔ 2r+1(L + 2) < (
2r+1(L + 2)

3
)2(log 2)2

⇔ 9 · 2r+1(L + 2) < 22r+2(log2 2)(L + 2)2

⇔ 0 < 2r+1(log2 2)(L + 2)− 9.

This holds if L > 9
2r+1(log2 2)

− 2, that is, if L ≥ 8 for r = 0, and L ≥ 1 for r ≥ 2.

Since we require L to be odd, we can say that L ≥ 9 for any r ≥ 0 gives the result.
Now let m = L+1

2 + 1 and r = 0. By Lemma 5, it suffices to consider k = 2(L + 2).

k < (log q)2 ⇔ 2(L + 2) < (log 2(L+1)/2+1)2 = ((L + 1)/2 + 1)2(log2 2)

⇔ 2(L + 1) + 2 <
log2 2

4
(L + 1)2 + (log2 2)(L + 1) + log2 2

⇔ 0 <
log2 2

4
(L + 1)2 + ((log2 2− 2))(L + 1) + (log2 2− 2).
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This holds if L + 1 >
−(log2 2−2)+

√
(log2 2−2)2−(log2 2)(log2 2−2)

log2 2
2

, that is, if L ≥ 13.

ut

We note that the latest results, in [5], give an algorithm for computing discrete
logs in finite fields Fqk with heuristic complexity Lqk(1/3) = exp(o(log qk)1/3(log log qk)2/3).
So in order for an attack to be sub-exponential in q, one needs k ∈ o(( log q

log log q )2).

6 Minimal embedding field

In [4], the author noted that the notion of embedding degree k is not the appropriate
indicator of cryptographic security, as the actual minimal embedding field (where
solving the DLP would take place) can be much smaller than suggested by k. In
particular, if q = pm, then the pairings embed into µN which lies in F∗

pordN p , not
merely in F∗

qk . This difference in the size of the groups can be quite large, by as
much as a factor of m.

Let ∆ = m
gcd(ordNp,m) , so that ∆ = 1 corresponds to k being an accurate indicator

of the minimal embedding field, and ∆ = m corresponds to k being the least accurate
indicator of the minimal embedding field. To illustrate the discrepancy, we now give
a family of curves whose parameter ∆ = m. This family of curves is such that
#JC(Fq) is divisible by a Mersenne prime N .

Proposition 3. Let q = 2m, and p ≥ 5 be a prime. If N = 2p−1 is prime, then for
each integer m such that d2p

3 e ≤ m ≤ p−1, there exists a genus 2 curve C over F2m

with the property that #JC(F2m) = 22m−pN , where a1 = −1 and a2 = 2m − 22m−p.
The embedding degree k is k = p and the additional parameter is ∆ = m.

We give the proof in the appendix. This family of curves demonstrates a case
when the notion of embedding degree k is quite an inaccurate indicator of security,
as pairings on this group embed into F∗

2p , not merely into F∗
qk = F∗

2mp .
So we examine ∆ for the families of genus 2 curves corresponding to the prime

Nr’s given in Theorem 2. As we mentioned, it is desirable for ∆ to be near 1, and
far from m. We find ∆ is often close to 1, and is at most m/4 for the curves in Table
1.

Galbraith in [3] notes that for a genus g curve, k/g is a more accurate indicator of
the security, as it reflects the applicability of sub-exponential algorithms for solving
the DLP in the finite field. So in light of the observation of [4], in order to properly
indicate the minimal embedding field, we let a security parameter be k′ = ordN2

g .
Table 2 gives the examples of our curves with the sizes (in bits) of the field Fqk

and prime order subgroup, along with gk′, thus providing a more accurate security
comparison between the DLP on the curve and in the finite field.
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We recall that the difficulty of solving a DLP in a subgroup of prime 160-bit order
on a curves is roughly equivalent to solving a DLP in a (subgroup of a) finite field
of around 1024-bits. As security increases, one has the respective correspondence of
the DLP as above being approximately 256-bits to 3072-bits and 512-bits to 15360-
bits. We present the numerical data in Table 2, recognizing that for some of these
examples, the DLP on the curve is easy, so the difficulty of the DLP in the finite
field is irrelevant.

k L r m a1 a2 log2 Nr k log2 q gk′

8 35 2 111 -1 2111 + 274 143 888 296
8 87 2 267 -1 2267 + 2178 351 2136 712
8 147 2 447 -1 2447 + 2298 591 3576 1192

13 11 3 80 -1 280 + 256 95 1040 208

16 11 3 91 -1 291 + 278 95 1456 208

23 21 2 64 -1 264 + 236 87 1472 184
23 21 2 72 -1 272 + 252 87 1656 184
23 21 2 80 -1 280 + 268 87 1840 184

26 11 3 72 -1 272 + 240 95 1872 208
26 11 3 88 -1 288 + 272 95 2288 208

37 35 2 104 -1 2104 + 260 143 3848 296
37 35 2 112 -1 2112 + 276 143 4144 296
37 35 2 120 -1 2120 + 292 143 4440 296
37 35 2 128 -1 2128 + 2108 143 4736 296
37 35 2 136 -1 2136 + 2124 143 5032 296

46 21 2 68 -1 268 + 244 87 3128 184
46 21 2 76 -1 276 + 260 87 3496 184
46 21 2 84 -1 284 + 276 87 3864 184

52 11 3 76 -1 276 + 248 95 3952 208
52 11 3 88 -1 288 + 264 95 4368 208
52 11 3 92 -1 292 + 280 95 4784 208

Table 2. Examples of families of curves over F2m with parameters for comparison of security.

7 Concluding remarks

Hyperelliptic curves are receiving increased attention for use in cryptosystems, which
involves the search for pairing-friendly curves. We have given a sequence of Fq-
isogeny classes for a family of Jacobians of genus 2, 2-rank 1 curves over Fq, for
q = 2m, and their corresponding small embedding degrees. In particular, we gave
examples of the parameters for such curves with embedding degree k < (log q)2,
such as k = 8, 13, 16, 23, 26, 37, 46, so that the computations in Fqk may be feasible.
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For efficient implementation of pairing-based cryptography on genus g curves, it
is desirable that the ratio ρ = g log2 q

log2 N be approximately unity, where N is the order
of the subgroup with embedding degree k. Our family of curves yields ρ often near
1 and never more than 2.

We also gave another family of curves over Fq, whose minimal embedding field is
much smaller than the one indicated by the embedding degree k. That is, the field
exponents differ by a factor of m, which demonstrates that the embedding degree
may be an inaccurate indicator of security. As a result, we used a security parameter
k′ = ordN2

g to examine the cryptographic security of our family of curves.
A systematic way of determining the explicit coefficients of a curve when given

the (a1, a2) parameters that distinguish the isogeny class of its Jacobian is not
yet established. This is an area to be explored in future research, so that one can
construct such curves of cryptographic size.
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A Proof of Proposition 1

We give the proof of Proposition 1, which establishes the existence of genus 2 curves
with specific conditions on (a1, a2). Theorem 2 showed that the Jacobian of each of
these curves is divisible by the prime Nr = 22r(L+2)+1

22r+1
, for odd L > 1 and r ≥ 0.

Proof. Clearly a1 is odd and |a1| ≤ 4
√

q.
Let us show 2|a1|

√
q − 2q ≤ a2 ≤ a2

1/4 + 2q. Clearly the first case (when a1 = 1
and a2 = −q for m = L+1

2 + 1 ≥ 5) giving 2
√

q − 2q ≤ −q ≤ 1/4 + 2q is true. Now
consider the second case (when a1 = −1, and a2 = 2m + 22m−2r(L+2)):

2
√

q − 2q ≤ a2 ≤ 1/4 + 2q

⇐⇒ 2m/2+1 − 2m+1 ≤ 2m + 22m−2r(L+2) ≤ 1/4 + 2m+1.

Clearly the first inequality holds. The second inequality holds if and only if 22m−2r(L+2) ≤
2m, which holds if and only if m ≤ 2r(L + 2). This is true since m ≤ 2r(L + 1)− 1.

Let us show 2dm/2e | a2. Clearly the first case is true: 2dm/2e | −2m. Now consider
the second case:

2dm/2e | 2m + 22m−2r(L+2)

⇐⇒ 2m− 2r(L + 2) ≥ dm/2e

⇐⇒ b3m/2c ≥ 2r(L + 2)

⇐⇒ m ≥ d2
r+1(L + 2)

3
e

Thus the condition holds.
Now we show ∆ = a2

1 − 4a2 + 8q is not a square in Z. The first case yields
∆ = 1+3 ·2m+2. Suppose ∆ = 1+3 ·2m+2 = x2 for some integer x. Since 1+3 ·2m+2

is odd, then x is odd, so let x = 2k +1 for some integer k. Then ∆ is a square if and
only if 3 ·2m = k(k+1). Now, either k or k+1 is odd. If k = 3, then k+1 = 4 = 2m,
so m = 2. If k + 1 = 3, then k = 2 = 2m, so m = 1. Thus ∆ is not a square in Z
for m ≥ 3. The second case yields ∆ = 22(m+1−2r−1(L+2))(22r(L+2)−m − 1) + 1. For
contradiction, suppose ∆ = 22(m+1−2r−1(L+2))(22r(L+2)−m − 1) + 1 = x2 for some
integer x. Since ∆ is odd, then x is odd, so let x = 2k + 1 for some integer k. Then
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∆ is a square if and only if 22m−2r(L+2)(22r(L+2)−m − 1) = k(k + 1). That is, if and
only if 22m−2r(L+2) and (22r(L+2)−m − 1) differ by one. But such powers of two can
never be this close, so ∆ is not a square.

Now we show δ = (a2 + 2q)2 − 4qa2
1 is not a square in the 2-adic integers, Z2.

That is, for δ = 2xb, we must show that either b 6≡ 1 mod 8 or x ≡ 1 mod 2.
The first case yields δ = q2 − 4q = 2m+2(2m−2 − 1). So b = 2m−2 − 1 ≡ −1 mod 8
for m ≥ 5. Therefore δ is not a square in Z2 for m ≥ 5.
Now consider the second case:

δ = (2m + 22m−2r(L+2) + 2m+1)2 − 2m+2

= (2m + 22m−2r(L+2))2 + 2m+2(2m + 22m−2r(L+2)) + 22m+2 − 2m+2

= 22m+3 + 22m + 23m−2r(L+2)+2 + 23m−2r(L+2)+1 + 24m−2r+1(L+2) − 2m+2

= 2m+2(2m+1 + 2m−2 + 22m−2r(L+2) + 22m−2r(L+2)−1 + 23m−2r(L+2)−2 − 1)

⇒ b = 2m−2(23 + 1) + 22m−2r(L+2)−1(2 + 1) + 23m−2r+1(L+2)−2 − 1

For m ≥ 5, we have

b ≡ 22m−2r(L+2)−1(3)+23m−2r+1(L+2)−2−1 ≡ 23m−2r+1(L+2)−2(22r(L+2)−m−13+1)−1

Now, suppose b ≡ 1 mod 8. Then

b ≡ 23m−2r+1(L+2)−2(22r(L+2)−m−13 + 1) ≡ 2 mod 8

⇒ 3m− 2r+1(L + 2)− 2 = 1

⇒ m =
3 + 2r+1(L + 2)

3

But L+2 is prime, so m = 3+2r+1(L+2)
3 6∈ Z. This is a contradiction, so b 6≡ 1 mod 8.

Thus δ is not a square in Z2.
Therefore the all the conditions for the existence of genus 2 curves C over Fq are

satisfied for the given (a1, a2) described in the proposition.
ut

B Proof of Proposition 3

We give a proof of Proposition 3, which establishes the existence of a family of curves
whose Jacobian is divisible by a Mersenne prime. The proposition also determines
the embedding degree and measures the difference between the size of the actual
minimal embedding field and the one suggested by the embedding degree.
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Proof. First let us show that the conditions of Theorem 1 are met for the existence
of genus 2 curves C when a1 = −1 and a2 = 2m − 22m−p. Clearly a1 is odd, and
|a1| ≤ 4

√
q. Let us show 2

√
q − 2q ≤ a2 ≤ 1/4 + 2q, that is,

2m/2+1 − 2m+1 ≤ 2m − 22m−p ≤ 1/4 + 2m+1.

Clearly the second inequality holds. The first inequality holds if

2m/2+1 + 22m−p = 2m(21−m/2 + 2m−p) ≤ 2m3.

This holds if m−p ≤ 1. But our restriction that d2p
3 e ≤ m ≤ p−1 implies m−p ≤ −1,

so we see this condition holds true.
Now let us show that 2dm/2e divides a2.

2dm/2e | 2m − 22m−p ⇐⇒ 2m− p ≥ dm/2e

⇐⇒ b3m/2c ≥ p

⇐⇒ m ≥ d2p

3
e

Thus the condition holds.
Now let us show ∆ = a2

1 − 4a2 + 8q is not a square in Z.
For contradiction, suppose ∆ = 1−2m+2+22m−p+2+2m+3 = 1+22m−p+2+2m+2 = x2

for some integer x. Since ∆ is odd, then x is odd, so let x = 2n + 1 for some integer
n. Then ∆ is a square if and only if 22m−p(2p−m + 1) = n(n + 1), if and only if
2m− p = p−m, that is, m = 2p/3. But p ≥ 5 is prime, so m is not an integer, thus
this cannot happen. Therefore ∆ is not a square in Z.

Now let us show δ = (a2 +2q)2−4qa2
1 is not a square in Z2. That is, for δ = 2xb,

we must show that either b 6≡ 1 mod 8 or x ≡ 1 mod 2. Now

δ = (2m − 22m−p + 2m+1)2 − 2m+2

= (2m − 2P 2m− p)2 + 2m+2(2m − 22m−p) + 22m+2 − 2m+2

= 22m+3 + 2m − 23m−p+2 − 23m−p+1 + 24m−2p − 2m+2

2m+2(2m+1 + 2m−2 − 22m−p − 22m−p−1 + 23m−2p−2 − 1)

⇒ b = 2m−2(23 + 1)− 22m−p−1(2 + 1) + 23m−2p−2 − 1

For m ≥ 5, we have

b ≡ −22m−p−13 + 23m−2p−2 − 1 ≡ 23m−2p−2(1− 2p−m+13)− 1
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Now, suppose b ≡ 1 mod 8. Then

b ≡ 23m−2p−2(1− 2p−m+13) ≡ 2 mod 8

⇒ 3m− 2p− 2 = 1

⇒ m =
3 + 2p

3

But p is prime, so m = 3+2p
3 6∈ Z. This is a contradiction, so b 6≡ 1 mod 8. Thus

δ is not a square in Z2. Therefore the conditions of Theorem 1 are satisfied for the
existence of a curve C over Fq.

Now let us show that #JC(F2m) = 22m−pN whenever a1 = −1 and a2 = 2m −
22m−p.

#JC(F2m) = q2 + a1q + a2 + a1 + 1 = 22m − 22m−p

⇒ #JC(F2m) = 22m−p(2p − 1) = 22m−pN

Now we find the embedding degree k with respect to N = 2p − 1. We see that
ordN2 = p, so gcd(ordN2,m) = 1 since m ≤ p − 1. Therefore by Lemma 2, k = p,
and the difference in field exponents is m

gcd(ordN2,m) = m. Thus the proof of the
proposition is complete.

ut
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