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Abstract. Hyperelliptic curves of small genus have the advantage of providing a
group of comparable size as that of elliptic curves, while working over a field of smaller
size. Pairing-friendly hyperelliptic curves are those whose order of the Jacobian is
divisible by a large prime, whose embedding degree is small enough for computations
to be feasible, and whose minimal embedding field is large enough for the discrete
logarithm problem in it to be difficult. We give a sequence of Fq-isogeny classes for a
family of Jacobians of genus two curves over Fq, for q = 2m, and their corresponding
small embedding degrees. We give examples of the parameters for such curves with
embedding degree k < (log q)2, such as k = 8, 13, 16, 23, 26, 37, 46, 52.
For secure and efficient implementation of pairing-based cryptography on genus g
curves over Fq, it is desirable that the ratio ρ = g log2 q

log2 N
be approximately 1, where N

is the order of the subgroup with embedding degree k. We show that for our family
of curves, ρ is often near 1 and never more than 2.
We also give a sequence of Fq-isogeny classes for a family of Jacobians of genus 2
curves over Fq whose minimal embedding field is much smaller than the finite field
indicated by the embedding degree k. That is, the extension degrees in this example
differ by a factor of m, where q = 2m, demonstrating that the embedding degree can
be a far from accurate measure of security. As a result, we use an indicator k′ = ordN 2

m

to examine the cryptographic security of our family of curves.

Keywords: embedding degree, genus 2, hyperelliptic curves, binary curves, pairing-based
cryptography

1 Introduction

The security of elliptic curve cryptosystems is based on the computational difficulty of solv-
ing the discrete logarithm problem (DLP). There is currently no sub-exponential algorithm
for solving the discrete logarithm problem on the Jacobians of properly chosen curves. With
hyperelliptic curves of small genus, it is possible to work over a smaller field while achieving
comparable security as in other DL cryptosystems. Formulas for fast arithmetic on Jaco-
bians of hyperelliptic curves over binary fields of genus two are known, as Lange and Stevens
give in [10], which garners more support for their use in cryptosystems.

Pairings on groups have been used for constructive purposes such as identity-based en-
cryption, one-round three-party key agreement and short digital signatures. On the other
hand, pairings have been used destructively to attack cryptographic security. For example,
the Frey-Rück attack (or MOV attack) uses the Tate pairing (or Weil pairing) to map the
discrete logarithm problem on the Jacobian of a curve defined over Fqk , for some integer k,



to the discrete logarithm in the multiplicative group of a finite field F∗
qk′ , for some ratio-

nal number k′, where there are more efficient methods for solving the DLP. (See [8] for an
discussion on this rational k′.) So for pairing-based cryptosystems, it is important to find
curves with embedding degree k small enough that the pairing is efficiently computable and
with k′ large enough that the DLP in the finite field is hard. We note that when q is prime,
then k = k′, so one needs a balance of k being both sufficiently small and sufficiently large.

We know that k ≤ 6 for supersingular elliptic curves, as first shown by Miyaji, Nakabayashi
and Takano in [13]. Galbraith in [5] shows that k ≤ 12 for supersingular curves of genus two,
which is attained in characteristic two. It has also been shown by Galbraith, McKee and
Valença in [6] that one can obtain k = 12 for ordinary genus two curves in characteristic
two. In general, one expects k to be roughly the size of the prime-order subgroup, and for
cryptographic applications such a k would be much too large for the computation of pairings
to be feasible.

It is also desirable for the number of Fq-rational points of the Jacobian of C to be prime
or near-prime, since the attack of [14] can reduce the DLP to prime-order subgroups. Thus
for a curve over Fq of genus g and embedding degree k with respect to a subgroup of prime
order N , one examines the ratio ρ = g log2 q

log2 N . For secure and efficient implementation, the
ideal situation is to have ρ ∼ 1, though currently the best ratio achieved is ρ ∼ 5/4, as in
[3].

This leads to the understanding of a pairing-friendly hyperelliptic curve over Fq as one
that satisfies the following conditions: (1) The number of Fq-rational points of the Jacobian
of C, denoted #JC(Fq), should be divisible by a sufficiently large prime N so that the DLP
in the order-N subgroup of JC(Fq) is suitably hard, (2) the embedding degree k should
be sufficiently small so that the arithmetic in Fqk can be efficiently implemented, and (3)
the security indicator k′

g should be large enough so that the DLP in F∗
qk′ withstands index-

calculus attacks.
In this paper, we consider genus two curves over Fq, where q = 2m, and whose associated

Jacobian is 2-rank 1, neither supersingular, nor ordinary. Birkner in [2] gives formulas for
fast arithmetic on 2-rank 1 curves, so such curves may be worthwhile to consider. We let C
be a genus two curve over Fq of the form

y2 + xy = ax5 + bx3 + cx2 + dx

where a ∈ F∗
q , b, c, d ∈ Fq, and with characteristic polynomial of Frobenius f(t) = t4 +a1t

3 +
a2t

2 + qa1t + q2 ∈ Z[t]. Our approach is as follows. In Section 3, we give a parametrization
of a family of large integers, Nr,L = 22rL+1

22r +1
for r ≥ 0 and odd L ≥ 9, and we determine the

embedding degrees for subgroups of Jacobians of curves over Fq having these orders when
they are prime. In Section 4, we associate with each of these primes a sequence of genus two
curves over Fq, whose group of Fq-rational points of its Jacobian has order that is divisible
by the prime Nr,L. For example, for each m in the interval d 2r+1L

3 e ≤ m ≤ 2r(L − 1) − 1,
we get #JC(Fq) = 2x(22r

+ 1)Nr,L, where x = 2m − 2rL. We describe the curves by the
Fq-isogeny class of their Jacobians, such as having a1 = −1, and a2 = 2m + 2x in the case
mentioned above (where a1 and a2 are the coefficients of the characteristic polynomial of
Frobenius). We show that for our family of curves the ratio ρ is often near 1 and is never
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more than 2, which suggests efficient implementation would be possible. We give examples
of the parameters for such curves with embedding degree k = 8, 13, 16, 23, 26, 37, 46, 52. In
Section 5, we show that the embedding degree k is always “small” for the curves presented
in this paper, that is, k < (log q)2, so that computations in Fqk may be feasible.

In Section 6, we give an example of another family of curves, whose minimal embedding
field and the field indicated by the embedding degree k have extension degrees that differ
by a factor of m. This demonstrates that the embedding degree may be an inaccurate
indicator of security. If ordNp is the smallest positive x such that px ≡ 1 mod N , then we
use k′ =

ordNr,L
2

m to examine the cryptographic security of our family of 2-rank 1 curves.

2 Preliminaries

Let Fq be a finite field with q = pm for some prime p and positive integer m,1 and let C be
a smooth projective curve over Fq with genus g ≥ 1. There exists an abelian variety, called
the Jacobian of C, denoted JC , of dimension g such that JC(Fq) is isomorphic to the degree
zero divisor class group of C over Fq. Assume there exists a prime N dividing the order of
JC(Fq), with q < N < qg. A subgroup of JC(Fq) with order N is said to have embedding
degree k if N divides qk − 1, but does not divide qi − 1 for all integers 0 < i < k. A pairing
has been understood to embed the subgroup of order N into the multiplicative group of Fqk ,
for some integer k. However, it was shown in [8] that when q is not prime, then the minimal
embedding field is Fqk′ , for some rational number k′.

The Tate pairing is a (bilinear, non-degenerate) function

JC(Fqk)[N ]× JC(Fqk)/NJC(Fqk) −→ F∗
qk/F∗N

qk .

One can then map F∗
qk/F∗N

qk isomorphically into the set of Nth roots of unity, µN , by raising

the image to the power qk−1
N .

Pairing-based attacks transport the discrete logarithm problem in JC(Fq) to the discrete
logarithm in a finite field, where there are sub-exponential methods for solving the DLP.
Whenever q is not prime, the smallest finite field containing the Nth roots of unity is actually
Fqk′ , where k′ = ordN p

m , and this field may be much smaller than Fqk . So for pairing-based
cryptosystems, one would like to find curves with k′ large enough for the DLP in the minimal
embedding field to be difficult, but with embedding degree k small enough for computations
to be feasible. For most non-supersingular curves, the embedding degree is enormous. We will
give a sequence of (non-supersingular, non-ordinary) 2-rank 1 curves with small embedding
degree.

The fact that there exist simple abelian surfaces with characteristic polynomial of Frobe-
nius f(t) = t4 + a1t

3 + a2t
2 + qa1t + q2 ∈ Z[t] for certain conditions on a1 and a2 is

shown in [15], but that there exists a Jacobian of a curve defined over Fq with such a
characteristic polynomial is due to [11]. So we have that (a1, a2) determines the Fq-isogeny
class of the Jacobian of a smooth projective curve C of genus two defined over Fq, with
#JC(Fq) = q2 + a1q + a2 + a1 + 1.

1 We view Fq as a general field extension, though for practical cryptographic applications, one
usually restricts to prime degree field extensions in order to avoid Weil descent attacks.
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We use the results of [11] for curves of 2-rank 1 in Theorem 1, letting C be a curve of
genus two over Fq of the form y2 +xy = ax5 + bx3 + cx2 +dx, where a ∈ F∗

q and b, c, d ∈ Fq.

We consider when Nr,L = 22rL+1
22r +1

is a prime2 for some r ≥ 0 and odd L ≥ 5. These primes

are of the form AL+1
A+1 where L is prime and A is a positive integer; if the behavior follows that

of the primes AL−1
A−1 and there is no algebraic factorization, then we would expect there to be

infinitely many such primes, and that the number of such primes with L ≤ M is asymptotic
to log log M

log A for fixed A [4]. Experimental evidence seems to confirm this for r = 0, 2, 3.
Our families of curves will be those whose Jacobian is such that its group of Fq-rational

points has order divisible by Nr,L, and whose (a1, a2) have a specific description to be
explicitly given later.

3 Family of primes and their embedding degrees

We must first prove several lemmas that will enable us to achieve our main result. We begin
by noting that r = 1 never yields a prime.

Lemma 1. Let L ≥ 5 be odd. N1,L = 22L+1
22+1 is not a prime.

Proof. Let P = 2L+1
2+1 = N0,L. We see that 9P 2 = 22L + 2L+1 + 1. So N1,L = 9P 2−2L+1

22+1 .

Now L is odd, so L + 1 is even. So N1,L = (3P−2
L+1

2 )(3P+2
L+1

2 )
22+1 , and for L > 1, each factor

is greater than 1. Now N1,L ∈ Z and 22 + 1 is prime, so ( 3P−2
L+1

2

22+1 ) ∈ Z or (3P+2
L+1

2

22+1 ) ∈ Z.

Since 3P + 2
L+1

2 = 2L + 1 + 2
L+1

2 equals 5 only if L = 1 and 3P − 2
L+1

2 = 2L + 1 − 2
L+1

2

equals 5 only if L = 3, then this is a nontrivial factorization when L ≥ 5. Thus, N1,L is not
prime for L ≥ 5.

We now determine the embedding degree for a general prime N over Fq. We let ordNp
be the smallest positive integer x such that px ≡ 1 mod N .

Lemma 2. Let q = pm for some prime p and positive integer m, N be a prime not equal
to p, and k be the smallest positive integer such that qk ≡ 1 mod N . Then

k =
ordNp

gcd(ordNp,m)
.

Proof. Let D = gcd(ordNp, m). We observe that

1 ≡ pordN p ≡ (pordN p)m/D ≡ (pm)ordN p/D mod N,

so since q = pm and k is the smallest integer such that qk ≡ 1 mod N , then we have
k | ordN p

D .
We also know that ordNp | mk, and this implies ordN p

D | m
D k. But gcd( ordN p

D , m
D ) = 1,

therefore it must be that ordN p
D | k. Thus we have k = ordN p

D and the proof is complete.

2 Nr,L = 22r(L−1) − 22r(L−2) + 22r(L−3) − 22r(L−4) + · · · − 22r

+ 1, so clearly Nr,L ∈ Z for r ≥ 0
and odd L ≥ 5.
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Motivated by this understanding of k, we determine ordNr,L
2 via the following lemmas.

Lemma 3. Let r ≥ 0 and L ≥ 5 be odd. If Nr,L = 22rL+1
22r +1

is prime, then L is prime.

Proof. We first note that if A = ab for positive integers a, b where b is odd, then xa+1 | xA+1
for any integer x. To see this:

xA + 1 = xab + 1 = (xa + 1)(xa(b−1) − xa(b−2) + xa(b−3) − · · ·+ 1).

Thus xa + 1 |xA + 1.
Now, if our odd L is not prime, then L = ab for odd a, b > 1. By the above argument,

22r

+ 1 | 22ra + 1 and 22ra + 1 | 22rL + 1 imply that 22ra+1
22r +1

| 22rL+1
22r +1

. But if 22rL+1
22r +1

is prime,
then it must be that a = L, and hence L is prime.

Lemma 4. Let r ≥ 0 and L ≥ 5 be odd. If Nr,L = 22rL+1
22r +1

is prime, then ordNr,L
2 = 2r+1L.

Proof. We have (22r

+ 1)Nr,L = 22rL + 1. So 22rL ≡ −1 mod Nr,L. This implies 22r+1L ≡
1 mod Nr,L. So ordNr,L

2 | 2r+1L. But by Lemma 3 we know that L is prime, so it must be
that either ordNr,L

2 = 2j or ordNr,L
2 = 2jL for some 0 ≤ j ≤ r + 1.

We know that Nr,L > 22r(L−2) ≥ 22r3 > 22r+1 − 1 for L ≥ 5, therefore, ordNr,L
2 6= 2j

for 0 ≤ j ≤ r + 1.
Now suppose ordNr,L

2 = 2jL for some 0 ≤ j ≤ r. Then

22jL ≡ 1 mod Nr,L ⇒ (22jL)2
r−j

≡ 1 mod Nr,L,

⇒ 22rL ≡ 1 mod Nr,L.

But we know that 22rL ≡ −1 mod Nr,L. Thus it must be that j = r + 1 and so ordNr,L
2 =

2r+1L.

We are now able to state the embedding degree k of a group of order Nr,L, where q = 2m

for a specific range of m. Here we study the traditional embedding degree k. In Section 6,
we will revisit this understanding and consider a separate indicator that takes into account
the minimal embedding field.

Lemma 5. Let Nr,L = 22rL+1
22r +1

be prime for some r ≥ 0 and odd L ≥ 5, 1 ≤ m ≤ 2r(L−1)−1
and also allow m = L+1

2 in the case that r = 0, and let k be the embedding degree of the curve
C with respect to Nr,L. Then k = 2r+1−i when gcd(ordNr,L

2,m) = 2iL for i ∈ {0, . . . , r−1},
and k = 2r+1−iL when gcd(ordNr,L

2,m) = 2i for i ∈ {0, . . . , r + 1}.

Proof. By Lemma 4, we know that ordNr,L
2 = 2r+1L. Suppose

gcd(ordNr,L
2,m) = 2iL for 0 ≤ i ≤ r − 1. (Note that i ≤ r − 1 since gcd(ordNr,L

2,m) =
2iL ≤ m ≤ 2r(L− 1)− 1.) Then by Lemma 2,

k =
ordNr,L

2
gcd(ordNr,L

2,m)
=

2r+1L

2iL
= 2r+1−i.
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Now suppose gcd(ordNr,L
2,m) = 2i for 0 ≤ i ≤ r + 1. Then

k =
ordNr,L

2
gcd(ordNr,L

2,m)
=

2r+1L

2i
= 2r+1−iL.

(Note that since 2r+1L
2i ∈ Z and L is odd, then i ≤ r + 1.)

We note that the embedding degree k is unbounded as L is unbounded. We now seek to
find curves over Fq associated with Jacobians whose group of Fq-rational points has order
divisible by Nr,L.

4 Genus 2 curves for a given Fq-isogeny class of Jacobians

We know that the (a1, a2) determines the Fq-isogeny class of the Jacobian of a curve of
genus two [16]. The following theorem is a consequence of [11] and gives the conditions for
a curve defined over a field of characteristic two associated with such a Jacobian to exist.
(This statement combines Lemma 2.1, Theorem 2.9 part (M) and Corollary 2.17 of [11], as
it appears in [12].)

Theorem 1. Let q = 2m for a positive integer m. There exists a curve of the form y2 +
xy = ax5 + bx3 + cx2 + dx, a 6= 0, b, c, d arbitrary, with characteristic polynomial f(t) =
t4 + a1t

3 + a2t
2 + qa1t + q2 if the following conditions hold:

1. a1 is odd,
2. |a1| ≤ 4

√
q,

3. (a) 2|a1|
√

q − 2q ≤ a2 ≤ a2
1/4 + 2q,

(b) a2 is divisible by 2dm/2e,
(c) ∆ = a2

1 − 4a2 + 8q is not a square in Z,
(d) δ = (a2 + 2q)2 − 4qa2

1 is not a square in Z2 (the 2-adic integers).

The authors of [11] show that the conditions on a1 and a2 in Theorem 1 guarantee
that the Jacobian of the given curve has 2-rank 1, in other words is neither ordinary nor
supersingular. A converse is also proven in [11], but we will not need it for our result. We
use this theorem to establish the existence of genus two curves with specific conditions on
(a1, a2). We then show these are the conditions needed so that the order of JC(Fq) is divisible
by Nr,L.

We first give a lemma that will be used in the proof of the next proposition.

Lemma 6. If a, b, c are integers, with a, b > 0, and 2a(2b − 1) = c(c + 1) then a ≤ b.

Proof. Suppose c is even. Then c + 1 is odd. So 2a | c, and c = 2ax for some odd integer x
such that |x| ≥ 1, and x(c+1) = 2b−1. Then 2b = x(2ax+1)+1. If x ≥ 1, then 2b ≥ 2a +2
and so b > a. If x ≤ 1, then 2b = |x|(2a|x| − 1) + 1 ≥ 2a and so b ≥ a.

Now suppose c + 1 is even. Then c is odd. So 2a | c + 1 and c + 1 = 2ax for some odd
integer x such that |x| ≥ 1 and xc = 2b−1. Then 2b = x(2ax−1)+1. If x ≥ 1, then 2b ≥ 2a,
and so b ≥ a. If x ≤ 1, then 2b = |x|(2a|x|+ 1) + 1 ≥ 2a + 2, and so b > a.
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Proposition 1. Let q = 2m, r ≥ 0 and L ≥ 9 be prime. When m = L+1
2 , let a1 = 1 and

a2 = −2m, and when d 2r+1L
3 e ≤ m ≤ 2r(L − 1) − 1, let a1 = −1 and a2 = 2m + 22m−2rL.

These a1 and a2 satisfy the conditions for the existence of the curves of genus 2 in Theorem
1.

Proof. We first note that since L ≥ 9, then m = L+1
2 ≥ 5. Now, clearly a1 is odd and

|a1| ≤ 4
√

q in both cases of the proposition.
Let us show 2|a1|

√
q − 2q ≤ a2 ≤ a2

1/4 + 2q. The first case (when a1 = 1 and a2 = −q

for m = L+1
2 ), gives 2

√
q − 2q ≤ −q ≤ 1/4 + 2q, which is true for L ≥ 9. Now consider the

second case (when a1 = −1, and a2 = 2m + 22m−2rL):

2
√

q − 2q ≤ a2 ≤ 1/4 + 2q

⇐⇒ 2m/2+1 − 2m+1 ≤ 2m + 22m−2rL ≤ 1/4 + 2m+1.

Clearly the first inequality holds. The second inequality holds if 22m−2rL ≤ 2m, which holds
if m ≤ 2rL. This is true since m ≤ 2r(L− 1)− 1.

Let us show 2dm/2e | a2. Clearly the first case is true: 2dm/2e | −2m. Now consider the
second case:

2dm/2e | 2m + 22m−2rL

⇐⇒ 2m− 2rL ≥ dm/2e
⇐⇒ b3m/2c ≥ 2rL

⇐⇒ m ≥ d2r+1L/3e
Thus the condition holds.

Now we show ∆ = a2
1−4a2+8q is not a square in Z. The first case yields ∆ = 1+3·2m+2.

Suppose ∆ = 1+3·2m+2 = x2 for some integer x. Since 1+3·2m+2 is odd, then x is odd, so let
x = 2c+1 for some integer c. Then ∆ is a square if and only if 3 ·2m = 2m(22−1) = c(c+1).
We apply Lemma 6, letting a = m and b = 2. Then ∆ is a square implies m ≤ 2. Thus ∆ is
not a square in Z for m = L+1

2 , since m ≥ 5 for L ≥ 9.
The second case yields ∆ = 22m−2rL+2(22rL−m − 1) + 1. For contradiction, suppose

∆ = 22m−2rL+2(22rL−m−1)+1 = x2 for some integer x. Since ∆ is odd, then x is odd, so let
x = 2c+1 for some integer c. Then ∆ is a square if and only if 22m−2rL(22rL−m−1) = c(c+1).
We apply Lemma 6, letting a = 2m − 2rL and b = 2rL − m. We note that a > 0 since
m ≥ d 2r+1L

3 e implies b 3m
2 c ≥ 2rL, and so 2m− 2rL > 0. Also b > 0 since m ≤ 2r(L− 1)− 1

implies m ≤ 2rL, and so 2rL − m > 0. Thus ∆ a square implies 2m − 2rL ≤ 2rL − m,

that is, m ≤ 2r+1L
3 . Since L is prime and L 6= 3, then 2r+1L

3 6∈ Z, so in fact we have
m ≤ b 2r+1L

3 c < d 2r+1L
3 e. But we know that d 2r+1L

3 e ≤ m, so this will not hold, and hence
∆ is not a square.

Now we show δ = (a2 + 2q)2 − 4qa2
1 is not a square in the 2-adic integers, Z2. That is,

for δ = 2xb, we must show that either b 6≡ 1 mod 8 or x ≡ 1 mod 2.
The first case yields δ = q2−4q = 2m+2(2m−2−1). So b = 2m−2−1 ≡ −1 mod 8 for m ≥ 5.
Therefore δ is not a square in Z2 for m = L+1

2 , since m ≥ 5 when L ≥ 9.
Now consider the second case:

δ = (2m + 22m−2rL + 2m+1)2 − 2m+2
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= (2m + 22m−2rL)2 + 2m+2(2m + 22m−2rL) + 22m+2 − 2m+2

= 22m+3 + 22m + 23m−2rL+2 + 23m−2rL+1 + 24m−2r+1L − 2m+2

= 2m+2(2m+1 + 2m−2 + 22m−2rL + 22m−2rL−1 + 23m−2rL−2 − 1)

⇒ b = 2m−2(23 + 1) + 22m−2rL−1(2 + 1) + 23m−2r+1L−2 − 1.

For m ≥ 5, we have

b ≡ 22m−2rL−1(3) + 23m−2r+1L−2 − 1 mod 8

≡ 23m−2r+1L−2(22rL−m+13 + 1)− 1 mod 8.

Now, suppose b ≡ 1 mod 8. Then

b + 1 ≡ 23m−2r+1L−2(22rL−m+13 + 1) ≡ 2 mod 8.

Clearly 3m−2r+1L−2 cannot be greater than or equal to 3. Now if 3m−2r+1L−2 = 2, then
we have 4(22rL−m+13+1) ≡ 2 mod 8. But a multiple of 4 cannot be congruent to 2 modulo
8, so this cannot happen. If 3m − 2r+1L − 2 = 1, then m = 3+2r+1L

3 . But L is prime and
L 6= 3, so m 6∈ Z, and this cannot happen as we require an integer m. If 3m−2r+1L−2 = 0,
then we have 22rL−m+13 + 1 ≡ 2 mod 8. But an odd number cannot be congruent to 2
modulo 8, so this cannot happen. Thus b 6≡ 1 mod 8, and so δ is not a square in Z2.

Therefore all the conditions for the existence of genus two curves C over Fq are satisfied
for the given (a1, a2) described in the proposition.

We are now able to state our main result in the following theorem.

Theorem 2. Let Nr,L = 22rL+1
22r +1

be a prime for some r ≥ 0 and odd L ≥ 9. If r = 0,
then for m = L+1

2 there exists a curve C of genus two over F2m with the property that
#JC(F2m) = 2 · 3 · N0,L, and a1 = 1, a2 = −2m. If r ≥ 0, then for each integer m in the
interval d 2r+1L

3 e ≤ m ≤ 2r(L−1)−1, there exists a curve C of genus two over F2m with the
property that #JC(F2m) = 2x(22r

+1)Nr,L, where x = 2m−2rL, and a1 = −1, a2 = 2m+2x.

Proof. Let Nr,L = 22rL+1
22r +1

be a prime for some r ≥ 0 and odd L ≥ 9.
We know by Proposition 1, that the (a1, a2) stated in the theorem, with m in the specified

range, satisfy the conditions for the existence of a curve C of genus two over F2m .
First we consider when r = 0 and m = L+1

2 . For a1 = 1 and a2 = −2m, we have

#JC(F2m) = 22m + 2m − 2m + 2 = 22m + 2.

#JC(F2m) = 2L+1 + 2 = 2(2L + 1)

= 2 · 3 ·N0,L since N0,L =
2L + 1
2 + 1

.
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Now we consider when r ≥ 0 is an integer not equal to 1, and d 2r+1L
3 e ≤ m ≤ 2r(L−1)−1.

For a1 = −1 and a2 = 2m + 2x, where x = 2m− 2rL, we have

#JC(F2m) = 22m − 2m + 2m + 2x = 22m + 2x

= 2x(22rL + 1)

= 2x(22r

+ 1)Nr,L since Nr,L =
22rL + 1
22r + 1

.

Thus the theorem is complete.

Now let #JC(Fq) = hNr,L. For the most efficient implementation of a pairing-based
cryptosystem, we would like the cofactor h to be small, that is, for the ratio ρ = 2 log2 q

log2 Nr,L

to be approximately 1. For our family of curves, we see that ρ ∼ m
2r−1(L−1) , which is often

near 1 and at most 2. In particular, when m = L+1
2 , we get ρ ∼ L+1

L−1 . When d 2r+1L
3 e ≤ m ≤

2r(L− 1)− 1, the ratio can be as small as ρ ∼ 4L
3(L−1) and at most ρ ∼ 2− 2

2r(L−1) .
In [9], an algorithm for point compression is proposed when the order of an elliptic curve

over F2m is divisible by a power of two. In our case, since #JC(F2m) is divisible by a high
power of two, these curves may lend themselves to point compression using methods similar
to those in [9].

Table 1 gives some examples of the parameters for curves over Fq yielding small embed-
ding degrees k = 8, 13, 16, 23, 26, 37, 46, 52. An efficient method of determining the explicit
coefficients of a curve when given the (a1, a2) parameters that distinguish the Fq-isogeny
class of its Jacobian is not yet established. As such, in Example 1 we have used brute force
with MAGMA code to generate some examples of these curves over small Fq.

Example 1. We give examples over small Fq for r = 0. We let g be a primitive element of
Fq.

L = 11, m = L+1
2 = 6, k = 11, ρ ∼ 6/5,

C : y2 + xy = x5 + g8x3 + g3x2 + gx,

L = 11, m = d 2r+1L
3 e = 8, k = 11, ρ ∼ 8/5,

C : y2 + xy = x5 + g7x3 + g7x,

L = 11, m = 2r(L− 1)− 1 = 9, k = 22, ρ ∼ 9/5,
C : y2 + xy = x5 + g8x3 + g3x,

L = 13, m = L+1
2 = 7, k = 26, ρ ∼ 7/6,

C : y2 + xy = x5 + g92x3 + g7x2 + gx,

L = 17, m = L+1
2 = 9, k = 34, ρ ∼ 9/8,

C : y2 + xy = x5 + g103x3 + g5x2 + gx.
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k L r m a1 a2 ρ

8 37 2 111 -1 2111 + 274 3/2
8 89 2 267 -1 2267 + 2178 3/2
8 149 2 447 -1 2447 + 2298 3/2

13 13 3 80 -1 280 + 256 5/3

16 13 3 91 -1 291 + 278 2

23 23 2 64 -1 264 + 236 3/2
23 23 2 72 -1 272 + 252 5/3
23 23 2 80 -1 280 + 268 9/5

26 13 3 72 -1 272 + 240 3/2
26 13 3 88 -1 288 + 272 9/5

37 37 2 104 -1 2104 + 260 7/5
37 37 2 112 -1 2112 + 276 3/2
37 37 2 120 -1 2120 + 292 5/3
37 37 2 128 -1 2128 + 2108 9/5
37 37 2 136 -1 2136 + 2124 2

46 23 2 68 -1 268 + 244 3/2
46 23 2 76 -1 276 + 260 7/4
46 23 2 84 -1 284 + 276 2

52 13 3 76 -1 276 + 248 5/3
52 13 3 88 -1 288 + 264 7/4
52 13 3 92 -1 292 + 280 2

Table 1. Examples of parameters for families of genus 2 curves over F2m with small embedding
degree k.

5 Size of the embedding degrees

We examine the size of the embedding degrees of the family of curves from Theorem 2. We
find that for cryptographic sizes, these curves always yield embedding degrees such that
k < (log q)2, which suggests that the embedding degree may be small enough so that
computations are feasible. (See [1] and [7, Section 5.2.1] for discussion of the probability of
k in this range.)

Proposition 2. Let q = 2m, Nr,L = 22rL+1
22r +1

be prime for some r ≥ 0 and odd L ≥ 5, and k
be the embedding degree of the curve C with respect to Nr,L. If L ≥ 11, then for each integer
m in the interval d 2r+1L

3 e ≤ m ≤ 2r(L − 1) − 1, k < (log q)2. If L ≥ 15, then when r = 0
and m = L+1

2 , k < (log q)2.

Proof. Let d 2r+1L
3 e ≤ m ≤ 2r(L−1)−1. By Lemma 5, the largest that k can be is k = 2r+1L,

so it suffices to consider this case. Given the acceptable range for m, it is enough to show
k < (log q)2 for m = d 2r+1L

3 e. Now k < (log q)2 if

2r+1L < (log 2
2r+1L

3 )2

10



⇐⇒ 2r+1L <

(
2r+1L

3

)2

(log2 2)

⇐⇒ 9 · 2r+1L < 22r+2(log2 2)L2

⇐⇒ 9
2r+1(log2 2)

< L.

This holds if L ≥ 10 for r = 0. Since we require L to be odd, we can say that L ≥ 11 for
any r ≥ 0 gives the result.
Now let m = L+1

2 and r = 0. By Lemma 5, it suffices to consider k = 2L. So k < (log q)2 if

2L < (log 2(L+1)/2)2

⇐⇒ 2L <

(
L + 1

2

)2

(log2 2)

⇐⇒ 2(L + 1)− 2 <
log2 2

4
(L + 1)2

⇐⇒ 0 <
log2 2

4
(L + 1)2 − 2(L + 1) + 2.

This holds if L + 1 >
2+
√

4−2(log2 2)
log2 2

2

, that is, if L ≥ 15.

6 Minimal embedding field

In [8], we constructed examples to show that the embedding degree k is not always the ap-
propriate indicator of cryptographic security, as the actual minimal embedding field (where
solving the DLP would take place) can be much smaller than suggested by k. In particular,
if q = pm, then the pairings embed into µN which lies in F∗

pordN p , not merely in F∗
qk . This

difference in the size of the groups can be quite large, by as much as a factor of m.
To illustrate the discrepancy, we now give a family of curves with a difference of a factor

of m between the extension degrees of the minimal embedding field and the field indicated
by the embedding degree k. This family of curves is such that #JC(Fq) is divisible by a
Mersenne prime N .

Theorem 3. Let q = 2m, and p ≥ 7 be a prime. If N = 2p − 1 is prime, then for each
integer m such that d 2p

3 e ≤ m ≤ p− 1, there exists a genus two curve C over F2m with the
property that #JC(F2m) = 22m−pN , where a1 = −1 and a2 = 2m − 22m−p. The embedding
degree is k = p and so the difference in size between the extension degrees of Fqk and the
minimal embedding field F2p is m.

Proof. First let us show that the conditions of Theorem 1 are met for the existence of genus
2 curves C when a1 = −1 and a2 = 2m − 22m−p. Clearly a1 is odd, and |a1| ≤ 4

√
q. Let us

show 2
√

q − 2q ≤ a2 ≤ 1/4 + 2q, that is,

2m/2+1 − 2m+1 ≤ 2m − 22m−p ≤ 1/4 + 2m+1.

11



Clearly the second inequality holds. The first inequality holds if

2m/2+1 + 22m−p = 2m(21−m/2 + 2m−p) ≤ 2m3.

This holds if m− p ≤ 1. But our restriction that d 2p
3 e ≤ m ≤ p− 1 implies m− p ≤ −1, so

we see this condition holds true.
Now let us show that 2dm/2e divides a2.

2dm/2e | 2m − 22m−p ⇐⇒ 2m− p ≥ dm/2e

⇐⇒ b3m/2c ≥ p

⇐⇒ m ≥ d2p/3e.

Thus the condition holds.
Now let us show ∆ = a2

1 − 4a2 + 8q is not a square in Z.
For contradiction, suppose ∆ = 1−2m+2 +22m−p+2 +2m+3 = 1+22m−p+2 +2m+2 = x2 for
some integer x. Since ∆ is odd, then x is odd, so let x = 2n + 1 for some integer n. Then ∆
is a square if and only if 22m−p(2p−m +1) = n(n+1), if and only if 2m−p = p−m, that is,
m = 2p/3. But p ≥ 5 is prime, so m is not an integer, thus this cannot happen. Therefore
∆ is not a square in Z.

Now let us show δ = (a2 + 2q)2 − 4qa2
1 is not a square in Z2. That is, for δ = 2xb, we

must show that either b 6≡ 1 mod 8 or x ≡ 1 mod 2. Now

δ = (2m − 22m−p + 2m+1)2 − 2m+2

= (2m − 2P 2m− p)2 + 2m+2(2m − 22m−p) + 22m+2 − 2m+2

= 22m+3 + 2m − 23m−p+2 − 23m−p+1 + 24m−2p − 2m+2

2m+2(2m+1 + 2m−2 − 22m−p − 22m−p−1 + 23m−2p−2 − 1)

⇒ b = 2m−2(23 + 1)− 22m−p−1(2 + 1) + 23m−2p−2 − 1.

For m ≥ 5, we have

b ≡ −22m−p−13 + 23m−2p−2 − 1 ≡ 23m−2p−2(1− 2p−m+13)− 1.

Now, suppose b ≡ 1 mod 8. Then

b ≡ 23m−2p−2(1− 2p−m+13) ≡ 2 mod 8

⇒ 3m− 2p− 2 = 1

⇒ m =
3 + 2p

3
.

But p is prime, so m = 3+2p
3 6∈ Z. This is a contradiction, so b 6≡ 1 mod 8. Thus δ is not

a square in Z2. Therefore the conditions of Theorem 1 are satisfied for the existence of a
curve C over Fq.

Now let us show that #JC(F2m) = 22m−pN whenever a1 = −1 and a2 = 2m − 22m−p.

#JC(F2m) = q2 + a1q + a2 + a1 + 1 = 22m − 22m−p

12



⇒ #JC(F2m) = 22m−p(2p − 1) = 22m−pN.

Now we find the embedding degree k with respect to N = 2p−1. We see that ordN2 = p,
so gcd(ordN2,m) = 1 since m ≤ p− 1. Therefore by Lemma 2, k = p, and the difference in
field exponents is m

gcd(ordN2,m) = m. Thus the proof of the proposition is complete.

In light of [8], we revisit the family of curves presented in Section 4, and now we not
only consider the embedding degree k, but also the minimal embedding field, indicated by
k′ =

ordNr,L
2

m . Table 2 gives the examples of our curves with the sizes (in bits) of the fields
Fqk , Fqk′ and the prime-order subgroup, thus providing a more accurate security comparison
between the DLP on the Jacobian of the curve and in the finite field.

k L r m a1 a2 log2 Nr,L k log2 q k′ log2 q

8 37 2 111 -1 2111 + 274 143 888 296
8 89 2 267 -1 2267 + 2178 351 2136 712
8 149 2 447 -1 2447 + 2298 591 3576 1192

13 13 3 80 -1 280 + 256 95 1040 208

16 13 3 91 -1 291 + 278 95 1456 208

23 23 2 64 -1 264 + 236 87 1472 184
23 23 2 72 -1 272 + 252 87 1656 184
23 23 2 80 -1 280 + 268 87 1840 184

26 13 3 72 -1 272 + 240 95 1872 208
26 13 3 88 -1 288 + 272 95 2288 208

37 37 2 104 -1 2104 + 260 143 3848 296
37 37 2 112 -1 2112 + 276 143 4144 296
37 37 2 120 -1 2120 + 292 143 4440 296
37 37 2 128 -1 2128 + 2108 143 4736 296
37 37 2 136 -1 2136 + 2124 143 5032 296

46 23 2 68 -1 268 + 244 87 3128 184
46 23 2 76 -1 276 + 260 87 3496 184
46 23 2 84 -1 284 + 276 87 3864 184

52 13 3 76 -1 276 + 248 95 3952 208
52 13 3 88 -1 288 + 264 95 4368 208
52 13 3 92 -1 292 + 280 95 4784 208

Table 2. Examples of families of genus 2 curves over F2m with appropriate parameters for com-
parison of security.

We recall that the difficulty of solving the DLP in a subgroup of prime 160-bit order of
the Jacobian of a hyperelliptic curve is roughly equivalent to solving the DLP in a finite
field of around 1024-bits. This means that one needs Fqk′ > 21024. We present the numerical
data in Table 2, recognizing that for some of these examples, the DLP on the Jacobian of
the curve is easy, so the difficulty of the DLP in the finite field is irrelevant. However, for
L ≥ 149, one expects the DLP to be suitably hard in both places.
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7 Concluding remarks

Hyperelliptic curves are receiving increased attention for use in cryptosystems, which mo-
tivates the search for pairing-friendly curves. We have produced a sequence of Fq-isogeny
classes for a family of Jacobians of genus two, 2-rank 1 curves over Fq, for q = 2m, and their
corresponding small embedding degrees. In particular, we gave examples of the parameters
for such curves with embedding degree k < (log q)2, such as k = 8, 13, 16, 23, 26, 37, 46, 52,
so that the computations in Fqk may be feasible. Our family of curves also yields the ratio
ρ often near 1 and never more than 2.

We have also given another family of curves over Fq, whose minimal embedding field is
much smaller than the one indicated by the embedding degree k. That is, the field exponents
differ by a factor of m, which demonstrates that the embedding degree may be an inaccurate
indicator of security. As a result, we used an indicator k′ = ordN2

m to better examine the
cryptographic security of our family of curves.

An efficient and systematic way of determining the explicit coefficients of a curve when
given the (a1, a2) parameters that distinguish the isogeny class of its Jacobian is not yet
established. This is an area to be explored in future research, so that one can construct such
curves of cryptographic size.
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