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Abstract. In cryptographic applications, hyperelliptic curves of small genus have
the advantage of providing a group of comparable size to that of elliptic curves, while
working over a field of smaller size. Pairing-friendly hyperelliptic curves are those for
which the order of the Jacobian is divisible by a large prime, whose embedding degree
is small enough for pairing computations to be feasible, and whose minimal embedding
field is large enough for the discrete logarithm problem in it to be difficult. We give
a sequence of Fq-isogeny classes for a family of Jacobians of genus 2 curves over Fq,
for q = 2m, and the corresponding small embedding degrees. We give examples of
the parameters for such curves with embedding degree k < (log q)2, such as k =
8, 13, 16, 23, 26.
For secure and efficient implementation of pairing-based cryptography on genus g
curves over Fq, it is desirable that the ratio ρ = g log2 q

log2 N
be approximately 1, where N

is the order of the subgroup with embedding degree k. We show that for our family
of curves, ρ is between 1 and 2.
We also give a sequence of Fq-isogeny classes for a family of Jacobians of genus 2
curves over Fq for which the minimal embedding field is much smaller than the finite
field indicated by the embedding degree k. That is, the extension degrees in this
example differ by a factor of m, where q = 2m, demonstrating that the embedding
degree can be a far from accurate measure of security. As a result, we use an indicator
k′ = ordN 2

m
to examine the cryptographic security of our family of curves.

Keywords: embedding degree, genus 2, hyperelliptic curves, binary curves, pairing-
based cryptography.

1 Introduction

The security of elliptic and hyperelliptic curve cryptosystems is based on the com-
putational difficulty of solving the discrete logarithm problem (DLP). There is cur-
rently no sub-exponential algorithm for solving the discrete logarithm problem on
the Jacobians of properly chosen curves. With hyperelliptic curves of small genus, it
is possible to work over a smaller field while achieving security comparable to that
of other discrete-log-based cryptosystems. Formulas for fast arithmetic on Jacobians
of hyperelliptic curves over binary fields of genus 2 are known, as Lange and Stevens
give in [16], which garners more support for their use in cryptosystems.



Pairings on groups have been used for constructive purposes such as identity-
based encryption, one-round three-party key agreement and short digital signatures.
On the other hand, pairings have been used destructively to attack cryptographic
security. For example, informally, the Frey-Rück attack and MOV attack use the
Tate pairing and Weil pairing, respectively, to map the discrete logarithm problem
on the curve’s Jacobian defined over Fq to the discrete logarithm in the multiplicative
group of the extension field Fqk , for some integer k, where there are more efficient
methods for solving the DLP. This extension degree k is known as the embedding
degree. We will say a curve C has embedding degree k with respect to an integer N
if and only if a subgroup of order N of its Jacobian JC does. So for pairing-based
cryptosystems, it is important to find curves with embedding degree k small enough
that the pairing is efficiently computable yet large enough that the DLP in the
multiplicative group of the finite field is hard.

We know that k ≤ 6 for supersingular elliptic curves, as first shown by Miyaji,
Nakabayashi and Takano in [19]. Galbraith in [10] shows that k ≤ 12 for supersin-
gular curves of genus 2, which is attained in characteristic 2. Freeman in [8] shows
one can obtain arbitrary k for ordinary genus 2 curves. In general, one expects k to
be roughly the size of the prime-order subgroup, and for cryptographic applications
such a k would be much too large for the computation of pairings to be feasible.

It is also desirable for the number of Fq-rational points of the Jacobian of C to
be prime or near-prime, since the attack of [20] can reduce the DLP to prime-order
subgroups. Thus for a curve over Fq of genus g whose Jacobian has a subgroup
of prime order N with embedding degree k, one examines the ratio ρ = g log2 q

log2 N .
For secure and efficient implementation, the ideal situation is to have ρ ∼ 1. For
elliptic curves of prime order, one can get ρ ∼ 1 for prescribed embedding degree
k, as done by Miyaji-Nakabayashi-Takano in [19] for k = 3, 4, 6, Barreto-Naehrig in
[2] for k = 12 and Freeman in [7] for k = 10. Freeman’s construction in [8] gives
ordinary hyperelliptic curves of genus 2 with ρ ∼ 8.

This leads to the understanding of a pairing-friendly hyperelliptic curve over Fq

as one that satisfies the following conditions: (1) The number of Fq-rational points
of the Jacobian of C, denoted #JC(Fq), should be divisible by a sufficiently large
prime N so that the DLP in the order-N subgroup of JC(Fq) is suitably hard, (2)
the embedding degree k should be sufficiently small so that the arithmetic in Fqk can
be efficiently implemented, and (3) the security indicator k′ should be large enough
so that the DLP in F∗

qk′ withstands index-calculus attacks.

In this paper, we consider genus 2 curves over Fq, where q = 2m, and whose
associated Jacobian has 2-rank 1, i.e. is neither supersingular, nor ordinary. Birkner
in [3] gives formulas for fast arithmetic on 2-rank 1 curves, so such curves may be
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worthwhile to consider. We let C be a genus 2 curve over Fq of the form

y2 + xy = ax5 + bx3 + cx2 + dx

where a ∈ F∗q , b, c, d ∈ Fq, and with characteristic polynomial of Frobenius f(t) =
t4 + a1t

3 + a2t
2 + qa1t + q2 ∈ Z[t]. Our approach is as follows. In Section 3, we

give a parametrization of a family of integers, Nr,` = 22r`+1
22r+1

for r ≥ 0 and odd
` ≥ 9, and we determine the embedding degrees for subgroups of Jacobians of
curves over Fq having these orders when they are prime. In Section 4, we associate
with each of these primes a sequence of fields Fq and genus 2 curves C over Fq,
such that the Jacobian of each curve has an Fq-rational subgroup of order Nr,`. For
example, for each m in the interval d2r+1`

3 e ≤ m ≤ 2r(` − 1) − 1, if q = 2m we get
#JC(Fq) = 2x(22r

+ 1)Nr,`, where x = 2m − 2r`. We describe the curves by the
Fq-isogeny class of their Jacobians, such as having a1 = −1, and a2 = 2m + 2x in
the case mentioned above (where a1 and a2 are the coefficients of the characteristic
polynomial of Frobenius). We show that for our family of curves the ratio ρ is
between 1 and 2, which suggests efficient implementation could be possible if the
curves can be explicitly constructed. We give examples of the parameters for such
curves with embedding degree k = 8, 13, 16, 23, 26. In Section 5, we show that the
embedding degree k is always “small” for the curves presented in this paper, that
is, k < (log q)2, so that computations in Fqk may be feasible.

In Section 6, we give an example of another family of curves, whose minimal
embedding field and the field indicated by the embedding degree k have extension
degrees that differ by a factor of m. This demonstrates that the embedding degree
may be an inaccurate indicator of security. If ordNp is the smallest positive x such
that px ≡ 1 mod N , then we use k′ = ordN2

m to examine the cryptographic security
of our family of 2-rank 1 curves.

2 Preliminaries

Let Fq be a finite field with q = pm for some prime p and positive integer m,1 and let
C be a smooth projective curve over Fq with genus g ≥ 1. There exists an abelian
variety, called the Jacobian of C, denoted JC , of dimension g such that JC(Fq) is
isomorphic to the degree zero divisor class group of C over Fq. Assume there exists
a prime N dividing the order of JC(Fq), with N relatively prime to q. A subgroup
of JC(Fq) with order N is said to have embedding degree k with respect to N if N
divides qk − 1, but does not divide qi − 1 for all integers 1 ≤ i < k.

1 We view Fq as a general field extension, though for practical cryptographic applications, one
usually restricts to prime degree field extensions in order to avoid Weil descent attacks [9].
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The Tate pairing is a (bilinear, non-degenerate) function

JC(Fqk)[N ]× JC(Fqk)/NJC(Fqk) −→ F∗qk/F∗Nqk .

One can then map F∗
qk/F∗Nqk isomorphically into the set of Nth roots of unity, µN ,

by raising the image to the power qk−1
N .

Pairing-based attacks transport the discrete logarithm problem in JC(Fq) to
the discrete logarithm in the multiplicative group of a finite field, where there are
sub-exponential methods for solving the DLP. As shown in [12], whenever q is not
prime, the smallest finite field containing the Nth roots of unity is actually Fqk′ ,
where k′ = ordNp

m , and this field may be much smaller than Fqk . So for pairing-based
cryptosystems, one would like to find curves with k′ large enough for the DLP in the
minimal embedding field to be difficult, but with embedding degree k small enough
for computations to be feasible. For most non-supersingular curves, the embedding
degree is enormous. We will give a sequence of (non-supersingular, non-ordinary)
2-rank 1 curves with small embedding degree.

The fact that there exist simple abelian surfaces with characteristic polynomial
of Frobenius f(t) = t4 + a1t

3 + a2t
2 + qa1t + q2 ∈ Z[t] for certain conditions on

a1 and a2 is shown in [21]. Howe in [13] showed which characteristic polynomials
of Frobenius correspond to isogeny classes of abelian surfaces that contain ordinary
Jacobians of genus 2 hyperelliptic curves, and the non-ordinary case is a consequence
of [14] and [17]. So we have that (a1, a2) determines the Fq-isogeny class of the
Jacobian of a smooth projective curve C of genus 2 defined over Fq, with #JC(Fq) =
q2 + a1q + a2 + a1 + 1.

In Theorem 1, we use the results of [17, 14, 6] for curves whose non-ordinary
Jacobian has 2-rank 1, letting C be a curve of genus 2 over Fq of the form y2 +xy =
ax5 + bx3 + cx2 + dx, where a ∈ F∗q and b, c, d ∈ Fq. We consider when Nr,` = 22r`+1

22r+1

is a prime2 for some r ≥ 0 and odd ` ≥ 5. These primes are of the form A`+1
A+1 where

` is prime and A is a positive integer; if the behavior follows that of the primes A`−1
A−1

and there is no algebraic factorization, then we would expect there to be infinitely
many such primes, and that the number of such primes with ` ≤M is asymptotic to
log log M

log A for fixed A [5]. Experimental evidence seems to confirm this for r = 0, 2, 3.
Our families of curves will be those whose Jacobian is such that its group of

Fq-rational points has order divisible by Nr,`, and whose (a1, a2) have a specific
description to be explicitly given later.

2 Nr,` = 22r(`−1) − 22r(`−2) + 22r(`−3) − 22r(`−4) + · · · − 22r

+ 1, so clearly Nr,` ∈ Z for r ≥ 0 and
odd ` ≥ 5.
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3 Family of primes and the associated embedding degrees

We must first prove several lemmas that will enable us to achieve our main result.
We begin by noting that r = 1 never yields a prime.

Lemma 1. Let ` ≥ 5 be odd. N1,` = 22`+1
22+1

is not a prime.

Proof. Let P = 2`+1
2+1 = N0,`. We see that 9P 2 = 22` + 2`+1 + 1. So N1,` = 9P 2−2`+1

22+1
.

Now ` is odd, so ` + 1 is even. So N1,` = (3P−2
`+1
2 )(3P+2

`+1
2 )

22+1
, and for ` > 1, each

factor is greater than 1. Now N1,` ∈ Z and 22 + 1 is prime, so (3P−2
`+1
2

22+1
) ∈ Z

or (3P+2
`+1
2

22+1
) ∈ Z. Since 3P + 2

`+1
2 = 2` + 1 + 2

`+1
2 equals 5 only if ` = 1 and

3P −2
`+1
2 = 2` +1−2

`+1
2 equals 5 only if ` = 3, then this is a nontrivial factorization

when ` ≥ 5. Thus, N1,` is not prime for ` ≥ 5. ut

We now determine the embedding degree with respect to a general prime N ,
for a (sub)group of order N defined over Fq. We let ordNp be the smallest positive
integer x such that px ≡ 1 mod N .

Lemma 2. Let q = pm for some prime p and positive integer m, N be a prime not
equal to p, and k be the smallest positive integer such that qk ≡ 1 mod N . Then

k =
ordNp

gcd(ordNp,m)
.

Proof. Let D = gcd(ordNp,m). We observe that

1 ≡ pordNp ≡ (pordNp)m/D ≡ (pm)ordNp/D mod N,

so since q = pm and k is the smallest integer such that qk ≡ 1 mod N , then we have
k | ordNp

D .
We also know that ordNp | mk, and this implies ordNp

D | m
Dk. But gcd(ordNp

D , m
D ) =

1, therefore it must be that ordNp
D | k. Thus we have k = ordNp

D and the proof is
complete. ut

Motivated by this understanding of k, we determine ordNr,`
2 via the following

lemmas.

Lemma 3. Suppose r ≥ 0, ` ≥ 5, and ` is odd. If Nr,` = 22r`+1
22r+1

is prime, then ` is
prime.
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Proof. We first note that if A = ab for positive integers a, b where b is odd, then
xa + 1 | xA + 1 for any integer x, since

xA + 1 = xab + 1 = (xa + 1)(xa(b−1) − xa(b−2) + xa(b−3) − · · ·+ 1).

Now, if our odd ` is not prime, then ` = ab for odd a, b > 1. By the above argument,
22r

+ 1 | 22ra + 1 and 22ra + 1 | 22r` + 1, and thus 22ra+1
22r+1

| 22r`+1
22r+1

. But if 22r`+1
22r+1

is
prime, then it must be that a = `, and hence ` is prime. ut

Lemma 4. Suppose r ≥ 0, ` ≥ 5, and ` is odd. If Nr,` = 22r`+1
22r+1

is prime, then
ordNr,`

2 = 2r+1`.

Proof. We have (22r
+ 1)Nr,` = 22r` + 1. So 22r` ≡ −1 mod Nr,`. This implies

22r+1` ≡ 1 mod Nr,`. So ordNr,`
2 | 2r+1`. But by Lemma 3 we know that ` is prime,

so it must be that either ordNr,`
2 = 2j or ordNr,`

2 = 2j` for some 0 ≤ j ≤ r + 1.
We know thatNr,` > 22r(`−2) ≥ 22r3 > 22r+1−1 for ` ≥ 5, therefore, ordNr,`

2 6= 2j

for 0 ≤ j ≤ r + 1.
Now suppose ordNr,`

2 = 2j` for some 0 ≤ j ≤ r. Then

22j` ≡ 1 mod Nr,` ⇒ (22j`)2
r−j ≡ 1 mod Nr,`,

⇒ 22r` ≡ 1 mod Nr,`.

But we know that 22r` ≡ −1 mod Nr,`. Thus it must be that j = r + 1 and so
ordNr,`

2 = 2r+1`. ut

We are now able to state the embedding degree k with respect to Nr,` of a
(sub)group of order Nr,` defined over Fq, where q = 2m for a specific range of m.
Here we study the traditional embedding degree k. In Section 6, we will consider a
different indicator that takes into account the minimal embedding field.

Lemma 5. Let Nr,` = 22r`+1
22r+1

be prime for some r ≥ 0 and odd ` ≥ 5, and let
1 ≤ m ≤ 2r(` − 1) − 1. Suppose there is a genus 2 curve C defined over Fq, where
q = 2m, such that Nr,` divides #JC(Fq). Let k be the embedding degree of C with
respect to Nr,`. Then k = 2r+1−i when gcd(ordNr,`

2,m) = 2i` for i ∈ {0, . . . , r − 1},
and k = 2r+1−i` when gcd(ordNr,`

2,m) = 2i for i ∈ {0, . . . , r + 1}.

Proof. By Lemma 4, we know that ordNr,`
2 = 2r+1`. Suppose

gcd(ordNr,`
2,m) = 2i` for 0 ≤ i ≤ r−1. (Note that i ≤ r−1 since gcd(ordNr,`

2,m) =
2i` ≤ m ≤ 2r(`− 1)− 1.) Then by Lemma 2,

k =
ordNr,`

2
gcd(ordNr,`

2,m)
=

2r+1`

2i`
= 2r+1−i.
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Now suppose gcd(ordNr,`
2,m) = 2i for 0 ≤ i ≤ r + 1. Then

k =
ordNr,`

2
gcd(ordNr,`

2,m)
=

2r+1`

2i
= 2r+1−i`.

(Note that since 2r+1`
2i ∈ Z and ` is odd, then i ≤ r + 1.) ut

We note that the embedding degree k is unbounded as ` is unbounded. We now
seek to find curves over Fq associated with Jacobians whose group of Fq-rational
points has order divisible by Nr,`.

4 Genus 2 curves for a given Fq-isogeny class of Jacobians

We know that the (a1, a2) determines the Fq-isogeny class of the Jacobian of a
curve of genus 2 [22]. The following theorem is a consequence of [17, 14, 6] and gives
the conditions for a curve defined over a field of characteristic 2 associated with a
Jacobian that has 2-rank 1 to exist. Cardona-Pujolas-Nart in [6] showed that such
a 2-rank 1 curve will be of the form given in Theorem 1. (Our statement combines
Lemma 2.1, Theorem 2.9 part (M) and Corollary 2.17 of [17], as it appears in [18].)

Theorem 1. Let q = 2m for a positive integer m. There exists a curve of the form
y2+xy = ax5+bx3+cx2+dx, a ∈ F∗q, b, c, d ∈ Fq, whose Jacobian has characteristic
polynomial f(t) = t4 + a1t

3 + a2t
2 + qa1t+ q2 if the following conditions hold:

1. a1 is odd,
2. |a1| ≤ 4

√
q,

3. (a) 2|a1|
√
q − 2q ≤ a2 ≤ a2

1/4 + 2q,
(b) a2 is divisible by 2dm/2e,
(c) ∆ = a2

1 − 4a2 + 8q is not a square in Z,
(d) δ = (a2 + 2q)2 − 4qa2

1 is not a square in Z2 (the 2-adic integers).

The authors of [17] show that the conditions on a1 and a2 in Theorem 1 guarantee
that the Jacobian of the given curve has 2-rank 1, in other words is neither ordinary
nor supersingular. A converse is also proven in [17], but we will not need it for our
result. We use Theorem 1 to establish the existence of genus 2 curves with specific
conditions on (a1, a2). We then show these are the conditions needed so that the
order of JC(Fq) is divisible by Nr,`.

We first give a lemma that will be used in the proof of the next proposition.

Lemma 6. Let a, b, c be integers, with a, b > 0.

i) If 2a(2b − 1) = c(c+ 1) then a ≤ b.
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ii) If 2a(2b + 1) = c(c+ 1) then a ≤ b or (a, b) = (2, 1).

Proof. Without loss of generality, we may choose the sign of c and c + 1 so that c
is even. Then c + 1 is odd. We consider case i) first. Since c is even, then 2a | c,
c = 2ax for some odd integer x, and x(c+ 1) = 2b − 1. Then 2b = x(2ax+ 1) + 1. If
x > 0, then 2b ≥ 2a + 2 and so b > a. If x < 0, then 2b = |x|(2a|x| − 1) + 1 ≥ 2a and
so b ≥ a.

Now we consider case ii). Since c is even, then 2a | c, c = 2ax for some odd
integer x, and x(c + 1) = 2b + 1. Then 2b = x(2ax + 1) − 1. If x > 0, then 2b ≥ 2a

and so b ≥ a. If x < 0, then 2b = |x|(2a|x| − 1) − 1 ≥ 2a − 2. Thus b ≥ a unless
(a, b) = (2, 1). ut

Proposition 1. Let q = 2m, r ≥ 0 and ` ≥ 11 be prime. When m = `+1
2 , let

a1 = 1 and a2 = −2m, and when d2r+1`
3 e ≤ m ≤ 2r(` − 1) − 1, let a1 = −1 and

a2 = 2m + 22m−2r`. These a1 and a2 satisfy the conditions for the existence of the
curves of genus 2 in Theorem 1.

Proof. We first note that since ` ≥ 9, then m ≥ 6 and q ≥ 64. Now, clearly a1 is
odd and |a1| ≤ 4

√
q in both cases of the proposition.

Let us show 2|a1|
√
q − 2q ≤ a2 ≤ a2

1/4 + 2q. The first case (when a1 = 1 and
a2 = −q for m = `+1

2 ), gives 2
√
q − 2q ≤ −q ≤ 1/4 + 2q, which is true for q ≥ 64.

Now consider the second case (when a1 = −1, and a2 = 2m + 22m−2r`):

2
√
q − 2q ≤ a2 ≤ 1/4 + 2q

⇐⇒ 2m/2+1 − 2m+1 ≤ 2m + 22m−2r` ≤ 1/4 + 2m+1.

Clearly the first inequality holds. The second inequality holds if 22m−2r` ≤ 2m, which
holds if m ≤ 2r`. This is true since m ≤ 2r(`− 1)− 1.

Let us show 2dm/2e | a2. Clearly the first case is true: 2dm/2e | −2m. Now consider
the second case:

2dm/2e | 2m + 22m−2r` ⇐⇒ 2m− 2r` ≥ dm/2e
⇐⇒ b3m/2c ≥ 2r`

⇐⇒m ≥ d2r+1`/3e

Thus the condition holds.
Now we show ∆ = a2

1 − 4a2 + 8q is not a square in Z. The first case yields
∆ = 1 + 3 · 2m+2. Suppose ∆ = 1 + 3 · 2m+2 = x2 for some integer x. Since
1 + 3 · 2m+2 is odd, then x is odd, so let x = 2c + 1 for some integer c. Then ∆ is
a square if and only if 3 · 2m = 2m(22 − 1) = c(c + 1). We apply Lemma 6, letting
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a = m and b = 2. Then ∆ is a square implies m ≤ 2. Thus ∆ is not a square in Z
for m = `+1

2 , since m ≥ 6 for ` ≥ 9.
The second case yields ∆ = 22m−2r`+2(22r`−m−1)+1. For contradiction, suppose

∆ = x2 for some integer x. We claim that 2m−2r`+2 > 0, and thus ∆ is odd. To see
this is true, we note that since ` is prime, m ≥ d2r+1`

3 e implies 2m−2r` ≥ 2r`−m+1.
Also m ≤ 2r(` − 1) − 1 implies 2r` − m ≥ 2r + 1, thus putting the two together,
we see our claim is true. Now since ∆ is odd, then x is odd, so let x = 2c + 1 for
some integer c. Then ∆ is a square if and only if 22m−2r`(22r`−m − 1) = c(c + 1).
We apply Lemma 6, letting a = 2m − 2r` and b = 2r` − m. We note that a > 0
and b > 0 by the same argument as above. By the lemma, if ∆ is a square then
2m − 2r` ≤ 2r` −m, that is, m ≤ b2r+1`

3 c. But we require that m ≥ d2r+1`
3 e, and

since ` ≥ 9 is prime, then b2r+1`
3 c 6= d

2r+1`
3 e, so this cannot happen. Therefore ∆ is

not a square.
Now we show δ = (a2 + 2q)2 − 4qa2

1 is not a square in the 2-adic integers, Z2.
That is, for δ = 2tb, it is sufficient to prove that b 6≡ 1 mod 8 or t ≡ 1 mod 2.
The first case yields δ = q2 − 4q = 2m+2(2m−2 − 1). So b = 2m−2 − 1 ≡ −1 mod 8
for m ≥ 5. Therefore δ is not a square in Z2 for m = `+1

2 , since m ≥ 6 when ` ≥ 9.
Now consider the second case:

δ = (2m + 22m−2r` + 2m+1)2 − 2m+2

= (2m + 22m−2r`)2 + 2m+2(2m + 22m−2r`) + 22m+2 − 2m+2

= 22m+3 + 22m + 23m−2r`+2 + 23m−2r`+1 + 24m−2r+1` − 2m+2

= 2m+2(2m+1 + 2m−2 + 22m−2r` + 22m−2r`−1 + 23m−2r+1`−2 − 1)

We will consider two cases. First, let us suppose 3m− 2r+1`− 2 > 0, and hence
all these powers of 2 are positive. Then

b = 2m−2(23 + 1) + 22m−2r`−1(2 + 1) + 23m−2r+1`−2 − 1.

For m ≥ 5, we have

b ≡ 22m−2r`−1(3) + 23m−2r+1`−2 − 1 mod 8

≡ 23m−2r+1`−2(22r`−m+13 + 1)− 1 mod 8.

Now, suppose b ≡ 1 mod 8. Then

b+ 1 ≡ 23m−2r+1`−2(22r`−m+13 + 1) ≡ 2 mod 8.

For this to be true, we must have 3m−2r+1`−2 ≤ 1. If 3m−2r+1`−2 = 1, then
m = 3+2r+1`

3 . But ` is prime and ` 6= 3, so m 6∈ Z, and this cannot happen as we
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require an integer m. We are already under the assumption that 3m−2r+1`−2 6= 0,
thus by contradiction we see that b 6≡ 1 mod 8. Therefore, for 3m− 2r+1`− 2 > 0,
δ is not a square in Z2.

Now suppose that 3m− 2r+1`− 2 = 0 (it cannot be negative, due to our bounds
on m). Then

δ = 22m+3 + 22m + 23m−2r`+2 + 23m−2r`+1

= 22m+3 + 22m + 22r`+3(2 + 1)
= 22r`+3(22m−2r` + 22m−2r`−3 + 3).

The hypotheses that 3m− 2r+1`− 2 = 0 and ` ≥ 11 imply 2m − 2r` − 3 > 0, so
22r`+3 is the largest even factor of δ. If r > 0, then 2r` + 3 ≡ 1 mod 2, so δ is not
a square in Z2. If r = 0, then consider b = 22m−2r` + 22m−2r`−3 + 3. For ` ≥ 11, we
have 2m− 2r`− 3 = 2r`− 5/3 ≥ 9, which implies that b 6≡ 1 mod 8. Thus δ is not
a square in Z2.

Therefore all the conditions for the existence of genus 2 curves C over Fq are
satisfied for the given (a1, a2) described in the proposition. ut

We are now able to state our main result in the following theorem.

Theorem 2. Let Nr,` = 22r`+1
22r+1

be a prime for some r ≥ 0 and prime ` ≥ 11. If
r = 0, then for m = `+1

2 there exists a curve C of genus 2 over F2m with the property
that #JC(F2m) = 2 · 3 ·N0,`, and a1 = 1, a2 = −2m. If r ≥ 0, then for each integer
m in the interval d2r+1`

3 e ≤ m ≤ 2r(` − 1) − 1, there exists a curve C of genus 2
over F2m with the property that #JC(F2m) = 2x(22r

+ 1)Nr,`, where x = 2m− 2r`,
and a1 = −1, a2 = 2m + 2x.

Proof. Let Nr,` = 22r`+1
22r+1

be a prime for some r ≥ 0 and prime ` ≥ 11.
We know by Proposition 1 that the (a1, a2) stated in the theorem, with m in the

specified range, satisfy the conditions for the existence of a curve C of genus 2 over
F2m .

First we consider when r = 0 and m = `+1
2 . For a1 = 1 and a2 = −2m, we have

#JC(F2m) = 22m + 2m − 2m + 2
= 2`+1 + 2
= 2(2` + 1)

= 2 · 3 ·N0,` since N0,` =
2` + 1
2 + 1

.
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Now we consider when r ≥ 0 is an integer not equal to 1, and d2r+1`
3 e ≤ m ≤

2r(`− 1)− 1. For a1 = −1 and a2 = 2m + 2x, where x = 2m− 2r`, we have

#JC(F2m) = 22m − 2m + 2m + 2x

= 22m + 2x

= 2x(22r` + 1)

= 2x(22r
+ 1)Nr,` since Nr,` =

22r` + 1
22r + 1

.

Thus the theorem is complete. ut

Now let #JC(Fq) = hNr,`. For the most efficient implementation of a pairing-
based cryptosystem, we would like the cofactor h to be small, that is, for the ratio
ρ = 2 log2 q

log2 Nr,`
to be approximately 1. For our family of curves, we see that ρ ∼

m
2r−1(`−1)

, which is between 1 and 2. In particular, when m = `+1
2 , we get ρ ∼ `+1

`−1 .

When d2r+1`
3 e ≤ m ≤ 2r(` − 1) − 1, the ratio can be as small as ρ ∼ 4`

3(`−1) and at
most ρ ∼ 2− 2

2r(`−1) .
In [15], an algorithm for point compression is proposed when the order of an

elliptic curve over F2m is divisible by a power of 2. In our case, since #JC(F2m) is
divisible by a high power of 2, these curves may lend themselves to point compression
using methods similar to those in [15].

Table 1 gives some examples of the parameters for curves over Fq yielding small
embedding degrees k = 8, 13, 16, 23, 26. Our parameter space was 11 ≤ ` ≤ 500 and
0 ≤ r ≤ 5, and we have displayed only a small selection of the output.

An efficient method of determining the explicit coefficients of a curve when given
the (a1, a2) parameters that distinguish the Fq-isogeny class of its Jacobian is not
yet established. As such, in Example 1 we have used brute force with MAGMA [4]
code to generate some examples of these curves over small Fq.

Example 1. We give examples of curves over small Fq for r = 0, along with the
approximation of ρ. We let g be a generator of F∗q .

` = 11, m = `+1
2 = 6, k = 11, ρ = 1.27,

C : y2 + xy = x5 + g8x3 + g3x2 + gx,

` = 11, m = d2r+1`
3 e = 8, k = 11, ρ = 1.70,

C : y2 + xy = x5 + g7x3 + g7x,

` = 11, m = 2r(`− 1)− 1 = 9, k = 22, ρ = 1.91,
C : y2 + xy = x5 + g8x3 + g3x,

11



` = 13, m = `+1
2 = 7, k = 26, ρ = 1.23,

C : y2 + xy = x5 + g92x3 + g7x2 + gx,

` = 17, m = `+1
2 = 9, k = 34, ρ = 1.17,

C : y2 + xy = x5 + g103x3 + g5x2 + gx.

5 Size of the embedding degrees

We examine the size of the embedding degrees of the family of curves from Theo-
rem 2. We find that for cryptographic sizes, these curves always yield embedding
degrees such that k < (log q)2, which suggests that the embedding degree may be
small enough so that computations are feasible. (See [1] and [11, Section 5.2.1] for
discussion of the probability of k in this range.)

Proposition 2. Let ` ≥ 11 be odd, r ≥ 0 and Nr,` = 22r`+1
22r+1

be prime. For each

integer m in the interval d2r+1`
3 e ≤ m ≤ 2r(` − 1) − 1, let C be a genus 2 curve

defined over Fq, where q = 2m, such that Nr,` divides #JC(Fq). Then the embedding
degree k of C with respect to Nr,` is such that k < (log q)2. If ` ≥ 15 and r = 0,
then also for m = `+1

2 , the embedding degree of C with respect to Nr,` is such that
k < (log q)2.

Proof. Let d2r+1`
3 e ≤ m ≤ 2r(` − 1) − 1. By Lemma 5, the largest that k can be is

k = 2r+1`, so it suffices to consider this case. Given the acceptable range for m, it
is enough to show k < (log q)2 for m = d2r+1`

3 e. Now k < (log q)2 if

2r+1` < (log 2
2r+1`

3 )2 ⇐⇒ 2r+1` <

(
2r+1`

3

)2

(log2 2)

⇐⇒ 9 · 2r+1` < 22r+2(log2 2)`2

⇐⇒ 9
2r+1(log2 2)

< `.

This holds if ` ≥ 10 for r = 0. Since we require ` to be odd, we can say that ` ≥ 11
for any r ≥ 0 gives the result.
Now let m = `+1

2 and r = 0. By Lemma 5, it suffices to consider k = 2`. So
k < (log q)2 if

2` < (log 2(`+1)/2)2 ⇐⇒ 2` <
(
`+ 1

2

)2

(log2 2)

⇐⇒ 2(`+ 1)− 2 <
log2 2

4
(`+ 1)2

⇐⇒ 0 <
log2 2

4
(`+ 1)2 − 2(`+ 1) + 2.
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k ` r m a1 a2 ρ

8 37 2 111 -1 2111 + 274 1.54
8 89 2 267 -1 2267 + 2178 1.52
8 149 2 447 -1 2447 + 2298 1.51
8 173 2 519 -1 2519 + 2346 1.51
8 239 4 2868 -1 22868 + 21912 1.51
8 251 2 753 -1 2753 + 2502 1.51
8 307 2 921 -1 2921 + 2614 1.51
8 317 2 951 -1 2951 + 2634 1.50

13 13 3 80 -1 280 + 256 1.67

16 13 3 91 -1 291 + 278 1.90
16 239 4 3346 -1 23346 + 22868 1.76

23 23 2 64 -1 264 + 236 1.46
23 23 2 72 -1 272 + 252 1.64
23 23 2 80 -1 280 + 268 1.82

26 13 3 72 -1 272 + 240 1.50
26 13 3 88 -1 288 + 272 1.83

32 239 4 2629 -1 22629 + 21434 1.38
32 239 4 3107 -1 23107 + 22390 1.63
32 239 4 3585 -1 23585 + 23346 1.88

37 37 2 104 -1 2104 + 260 1.45
37 37 2 112 -1 2112 + 276 1.56
37 37 2 120 -1 2120 + 292 1.67
37 37 2 128 -1 2128 + 2108 1.78
37 37 2 136 -1 2136 + 2124 1.89

46 23 2 68 -1 268 + 244 1.55
46 23 2 76 -1 276 + 260 1.73
46 23 2 84 -1 284 + 276 1.91

52 13 3 76 -1 276 + 248 1.58
52 13 3 84 -1 284 + 264 1.75
52 13 3 92 -1 292 + 280 1.92

167 167 0 84 1 −284 1.02

191 191 0 96 1 −296 1.01

199 199 0 100 1 −2108 1.01
Table 1. Examples of parameters for families of genus 2 curves over F2m with small embedding
degree k and their approximate ρ values.
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This holds if `+ 1 > 2+
√

4−2(log2 2)
log2 2

2

, that is, if ` ≥ 15. ut

6 Minimal embedding field

In [12], we constructed examples to show that the embedding degree k is not always
the appropriate indicator of cryptographic security, as the actual minimal embed-
ding field (where solving the DLP would take place) can be much smaller than
suggested by k. In particular, if q = pm, then the pairings embed into µN which lies
in (FpordN p)∗, not merely in F∗

qk . The ratio of the extension degrees [Fqk : Fp] and
ordNp can be as large as m.

To illustrate the discrepancy, we now give a family of curves with a difference
of a factor of m between the extension degrees of the minimal embedding field and
the field indicated by the embedding degree k. This family of curves is such that
#JC(Fq) is divisible by a Mersenne prime N .

Theorem 3. Let ` ≥ 7 be a prime. If N = 2`− 1 is prime, then for each integer m
such that d2`

3 e ≤ m ≤ `− 1, there exists a genus 2 curve C over Fq, where q = 2m,
with the property that #JC(F2m) = 22m−`N , where a1 = −1 and a2 = 2m − 22m−`.
The embedding degree of C with respect to N is `, and the minimal embedding field
is F2`. Thus the ratio of the extension degrees [Fqk : F2] and [F2` : F2] is m.

Proof. First let us show that the conditions of Theorem 1 are met for the existence
of genus 2 curves C when a1 = −1 and a2 = 2m − 22m−`. We note that since ` ≥ 7,
then m ≥ 5. Clearly a1 is odd, and |a1| ≤ 4

√
q. Let us show 2

√
q−2q ≤ a2 ≤ 1/4+2q,

that is,
2m/2+1 − 2m+1 ≤ 2m − 22m−` ≤ 1/4 + 2m+1.

Clearly the second inequality holds. The first inequality holds if

2m/2+1 + 22m−` = 2m(21−m/2 + 2m−`) ≤ 2m3.

This holds if m−` ≤ 1. But our restriction that d2`
3 e ≤ m ≤ `−1 implies m−` ≤ −1,

so we see this condition holds.
Now let us show that 2dm/2e divides a2.

2dm/2e | 2m − 22m−` ⇐⇒ 2m− ` ≥ dm/2e
⇐⇒ b3m/2c ≥ `
⇐⇒m ≥ d2`/3e.

Thus the condition holds.
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Now let us show ∆ = a2
1 − 4a2 + 8q is not a square in Z.

For contradiction, suppose ∆ = 1−2m+2+22m−`+2+2m+3 = 1+22m−`+2+2m+2 = x2

for some integer x. We claim that 2m− `+ 2 > 0, and thus ∆ is odd. To see this, we
note that d2`

3 e ≤ m implies 2m− ` ≥ `−m+ 1. Also, m ≤ `− 1 implies `−m ≥ 1,
thus putting the two together, we see our claim is true. Now since ∆ is odd, then
x is odd, so let x = 2c + 1 for some integer c. Then ∆ is a square if and only if
22m−`(2`−m + 1) = c(c+ 1). We apply Lemma 6, letting a = 2m− ` and b = `−m.
Clearly a > 0 and b > 0 by the above argument. The lemma implies 2m−` ≤ `−m,
or 2m− ` = 2 and `−m = 1. If the latter case, then 2m− (1 +m)− 2 = 0, which
implies m = 3. But we know that m ≥ 5, so this can’t happen. If the former case,
then 2m−` ≤ `−m implies m ≤ b2`/3c. But we require that m ≥ d2`/3e, and since
` ≥ 7 is prime, then b2`/3c 6= d2`/3e, so this cannot happen. Therefore ∆ is not a
square in Z.

Now let us show δ = (a2 + 2q)2− 4qa2
1 is not a square in Z2. That is, for δ = 2tb,

it is sufficient to prove that b 6≡ 1 mod 8 or t ≡ 1 mod 2. Now

δ = (2m − 22m−` + 2m+1)2 − 2m+2

= (2m − 22m−`)2 + 2m+2(2m − 22m−`) + 22m+2 − 2m+2

= 22m+3 + 22m − 23m−`+2 − 23m−`+1 + 24m−2` − 2m+2

= 2m+2(2m+1 + 2m−2 − 22m−` − 22m−`−1 + 23m−2`−2 − 1).

We will consider two cases. First, let us suppose 3m− 2`− 2 > 0, and hence all
these powers of 2 are positive. Then

b = 2m−2(23 + 1)− 22m−`−1(2 + 1) + 23m−2`−2 − 1.

For m ≥ 5, we have

b ≡ −22m−`−13 + 23m−2`−2 − 1 ≡ 23m−2`−2(1− 2`−m+13)− 1 mod 8.

Now, suppose b ≡ 1 mod 8. Then

b+ 1 ≡ 23m−2`−2(1− 2`−m+13) ≡ 2 mod 8.

For this to be true, we must have 3m − 2` − 2 ≤ 1. If 3m − 2` − 2 = 1, then
m = 3+2`

3 . But ` is a prime not equal to 3, so m 6∈ Z, and this cannot happen as we
require an integer m. We are already under the assumption that 3m − 2` − 2 6= 0,
thus by contradiction we see that b 6≡ 1 mod 8. Therefore, for 3m− 2`− 2 > 0, δ is
not a square in Z2.
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Now suppose that 3m− 2`− 2 = 0 (it cannot be negative, due to our bounds on
m). Then

δ = 22m+3 + 22m − 23m−`+2 − 23m−`+1

= 22m+3 + 22m − 23m−`+1(2 + 1)
= 2`+3(22m−` + 22m−`−3 − 3).

The hypotheses that 3m − 2` − 2 = 0 and ` ≥ 7 imply that 2m − ` − 3 > 0, so
2`+3 is the largest even factor of δ. Since ` + 3 ≡ 0 mod 2, we must show that
22m−` + 22m−`−3 − 3 6≡ 1 mod 8. The case that ` = 7 cannot occur because this
implies m = 16/3 6∈ Z. When ` = 11, N is not prime, so we do not consider this case.
For ` ≥ 13, we have 2m− `− 3 > 2, which implies 22m−` + 22m−`−3− 3 ≡ 5 mod 8.
Thus δ is not a square in Z2.

Therefore the conditions of Theorem 1 are satisfied for the existence of a curve
C over Fq.

Now let us show that #JC(F2m) = 22m−`N whenever a1 = −1 and a2 = 2m −
22m−`. Recall that #JC(Fq) = q2 + a1q + a2 + a1 + 1. So

#JC(F2m) = 22m − 22m−`

= 22m−`(2` − 1)
= 22m−`N.

Now we find the embedding degree k with respect to N = 2` − 1. We see that
ordN2 = `, so gcd(ordN2,m) = 1 since m ≤ `− 1. Therefore the embedding degree
is k = ` by Lemma 2, and the minimal embedding field is F2` . Thus the ratio of the
extension degrees [Fqk : F2] and [F2` : F2] is m. ut

In light of [12], we revisit the family of curves presented in Section 4, and now
we not only consider the embedding degree k, but also the minimal embedding field,

indicated by k′ =
ordNr,`

2

m . Table 2 gives the examples of our curves with the sizes
(in bits) of the fields Fqk , Fqk′ and the prime-order subgroup, thus providing a more
accurate security comparison between the DLP on the Jacobian of the curve and in
the multiplicative group of the finite field. Our parameter space was 11 ≤ ` ≤ 500,
0 ≤ r ≤ 5, though we have only displayed a small selection of the output. We
emphasize that for each `, r there exists a curve over F2m for each m in the interval
d2r+1`

3 e ≤ m ≤ 2r(`−1)− 1, with the same security parameters log2N and k′ log2 q.
We recall that the difficulty of solving the DLP in a subgroup of prime 160-bit

order of the Jacobian of a hyperelliptic curve is roughly equivalent to solving the
DLP in the multiplicative group of a finite field of around 1024-bits. This means
that one needs qk′ > 21024. We present the numerical data in Table 2, recognizing
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k ` r m a1 a2 log2Nr,` k log2 q k
′ log2 q

8 37 2 111 -1 2111 + 274 143 888 296
8 89 2 267 -1 2267 + 2178 351 2136 712
8 149 2 447 -1 2447 + 2298 591 3576 1192
8 173 2 519 -1 2519 + 2346 687 4152 1384
8 239 4 2868 -1 22868 + 21912 3807 22944 7648
8 251 2 753 -1 2753 + 2502 999 6024 2008
8 307 2 921 -1 2921 + 2614 1223 7368 2456
8 317 2 951 -1 2951 + 2634 1263 7608 2536

13 13 3 80 -1 280 + 256 95 1040 208

16 239 4 3346 -1 23346 + 22868 3807 53536 7648

23 23 2 80 -1 280 + 268 87 1840 184

26 13 3 88 -1 288 + 272 95 2288 208

32 239 4 2629 -1 22629 + 21434 3807 84128 7648
32 239 4 3107 -1 23107 + 22390 3807 99424 7648
32 239 4 3585 -1 23585 + 23346 3807 114720 7648

37 37 2 112 -1 2112 + 276 143 4144 296
37 37 2 120 -1 2120 + 292 143 4440 296
37 37 2 128 -1 2128 + 2108 143 4736 296
37 37 2 136 -1 2136 + 2124 143 5032 296

46 23 2 84 -1 284 + 276 87 3864 184

52 13 3 92 -1 292 + 280 95 4784 208

149 149 2 400 -1 2400 + 2204 591 59600 1192
149 149 2 584 -1 2584 + 2572 591 87016 1192

173 173 2 464 -1 2464 + 2236 687 80272 1384
173 173 2 680 -1 2680 + 2668 687 117640 1384

Table 2. Examples of families of genus 2 curves over F2m with appropriate parameters for com-
parison of security.
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that for some of these examples, the DLP on the Jacobian of the curve is easy, so
the difficulty of the DLP in the multiplicative group of the finite field is irrelevant.
However, for ` ≥ 149, one expects the DLP to be suitably hard in both places.

7 Concluding remarks

Hyperelliptic curves are receiving increased attention for use in cryptosystems, which
motivates the search for pairing-friendly curves. We have produced a sequence of
Fq-isogeny classes for a family of Jacobians of genus 2, 2-rank 1 curves over Fq,
for q = 2m, and the corresponding small embedding degrees. In particular, we gave
examples of the parameters for such curves with embedding degree k < (log q)2,
such as k = 8, 13, 16, 23, 26, 32, 37, 46, 52, so that the computations in Fqk may be
feasible. Our family of curves also yields the ratio ρ between 1 and 2.

We have also given another family of curves over Fq, whose minimal embedding
field is much smaller than the one indicated by the embedding degree k. That is,
the field exponents differ by a factor of m, which demonstrates that the embedding
degree may be an inaccurate indicator of security. As a result, we used an indicator
k′ = ordN2

m to better examine the cryptographic security of our family of curves.
An efficient and systematic way of determining the explicit coefficients of a curve

when given the (a1, a2) parameters that distinguish the isogeny class of its Jacobian
is not yet established. This is an area to be explored in future research, so that one
can construct such curves of cryptographic size.
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