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Abstract

In 1999, Naor and Pinkas [1] presented a useful protocol called oblivious polynomial eval-
uation(OPE). In this paper, the cryptanalysis of the OPE protocol is presented. It’s shown
that the receiver can successfully get the sender’s secret polynomial P after executing the OPE
protocol only once, which means the privacy of the sender can be violated and the security of
the OPE protocol will be broken. It’s also proven that the complexity of the cryptanalysis is
the same with the corresponding protocols cryptanalyzed.
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1 Introduction

In 1999, Naor and Pinkas [1] presented a useful protocol called oblivious polynomial evalua-
tion(OPE). It’s a protocol with two parties. A sender whose input is a polynomial P and a
receiver whose input is a value α. They are both in the field F . At the end of this protocol the
receiver learns P (α) and the sender learns nothing. In 2006, Naor and Pinkas [2] published a full
paper discussing this protocol.

In this paper, it will be pointed out that the receivers could learn the polynomial P through
learning P (α1), P (α2), · · · , P (αdP +1) (dP is the degree of the polynomial P) after executing the
OPE protocol once. This means the privacy of the sender will be violated and the security of the
OPE protocol could be broken. A detailed description of the cryptanalysis will also be given in
this paper.

The rest of this paper will be divided into these sections: at first a brief review of the OPE
protocol will be given, and then the weakness of the OPE protocol will be discussed. After that,
we will talk about the primitive idea of our cryptanalysis. Two attacks against the generic OPE
protocol and the OPE protocol secure against the malicious receivers are given respectively later.
The properties of these two attacks including the correctness of these attacks will be proven in
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Grant No. 20060248008.

1



the later sections. Some applications based on the OPE protocol which could be attacked by the
attacks presented in this paper will be pointed out and the suggestion which could prevent these
application from these attacks will also be given in the remark section. At last the conclusion of
this paper will be given.

2 A review of the OPE protocols

The functionality of OPE protocol [2] between a receiver and a sender over a field F is as follow:
Input

• Receiver: an input α ∈ F .

• Sender: A polynomial P defined over F .

Output

• Receiver: P (α).

• Sender: nothing.

The requirements of a private OPE protocol can be divided into correctness, receiverprivacy,
serverprivacy. The definition of these requirements are as follow:

Definition 1 (Correctness, or Functionality) At the end of the protocol the receiver obtains
the output of the OPE functionality, namely P (α).

Definition 2 (Receiver’s privacy - indistinguishability) For any probabilistic polynomial
time B′ executing the sender’s part, for any x and x’ in F , the views that B′ sees in case the
receiver’s input is x and in case the receiver’s input is x’ are computationally indistinguishable.

Definition 3 (Sender’s privacy - comparison with the ideal model) For every probabilistic
polynomial-time A′ substituting the receiver, there exists a probabilistic polynomial-time machine
A′′ that plays the receiver’s role in the ideal implementation, such that the view of A′ and the output
of A′′ are computationally indistinguishable.

Definition 4 (Private OPE protocol) A two-party protocol satisfying the above three definitions.

The whole OPE protocol is constructed based on Polynomial reconstruction problem, the poly-
nomial reconstruction problem is defined as follow:

Definition 5 (Polynomial reconstruction problem (PR problem)) INPUT: Integers k and
t, and n points {(xi, yi)}n

i=1, where xi, yi ∈ F .
OUTPUT: Any univariate polynomial P of degree at most k such that P (xi) = yi for at least t

values i ∈ [1, n].

Another polynomial list reconstruction problem really close to PR problem can be formulated as
follow:

2



Definition 6 (Polynomial list reconstruction problem) INPUT: Integers k and t, and n
points {(xi, yi)}n

i=1, where xi, yi ∈ F .
OUTPUT: All univariate polynomial P of degree at most k such that P (xi) = yi for at least t

values i ∈ [1, n].

There are two intractability assumptions related to polynomial reconstruction problem[2], and we
only introduce the first assumption here since it’s the only one to be used.

The intractability assumption depends on the following parameters:

• F , the field over which the polynomial is defined.

• k, the degree of the hidden polynomial.

• n, the number of correct valued of the polynomial, which is also the number of queries made
in the OPE protocol. (This parameter corresponds to ”t” in the definition of the polynomial
reconstruction problem.)

• m, the expansion ratio (namely, the ratio between the total number of points and n). (This
parameter corresponds to n/t in the definition of the polynomial reconstruction problem.)

The first intractability assumption assumes that given an input to the polynomial list recon-
struction problem with all xi being distinct, the value of the polynomial at x = 0 is pseudo-random.
[2] uses Ak,α

n,m to denote the probability distribution of sets generated in the following way:

• Pick a random polynomial P over F , of degree at most k, for which it holds that P (0) = α.

• Generate nm random values x1, x2, · · · , xnm in F subject to the constraint that all xi values
are distinct and different from 0.

• Choose a random subset S of n different indices in [1, nm], and set yi = P (xi) for all i ∈ S.
For every i 6∈ S set yi to be a random value in F .

• 4. Output the set {xi, yi}nm
i=1.

The pseudo-randomness assumption is defined based on the notion of computationally indistin-
guishability as follow:

Definition 7 (First pseudo-randomness assumption) Let l be a security parameter, and let
n(l), m(l), k(l), F (l) be polynomially bounded functions that define the parameters n, m, k and the
size in bits of the representation of an element in the field F . Let Ak,α

n,m and Ak,α′
n,m be random variables

that are chosen according to the distributions Ak,α
n,m and Ak,α′

n,m respectively. Then it holds that for
every α, α′ ∈ F the probability ensembles Ak,α

n,m and Ak,α′
n,m are computationally indistinguishable for

adversaries whose running time is polynomial in the security parameter l.

There are mainly two OPE protocols given in [2]: A generic OPE protocol and an OPE protocol
secure against malicious receivers.

The generic OPE protocol is as follow:
A generic protocol for OPE
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• Step 1. The sender hides P of degree dP in a bivariate polynomial: The sender
generates a random masking polynomial Z(x) of degree d, s.t., Z(0) = 0. Namely Z(x) =∑d

i=1 aix
i. The parameter d equals the product of the degree of P and the security parameter

k. The sender then defines a bivariate polynomial Q(x, y) = Z(x) + P (y) =
∑d

i=1 aix
i +∑dP

i=0 biy
i for which it holds that Q(0, y) = P (y).

• Step 2. The receiver hides a secret α in a univariate polynomials: The receiver
chooses a random polynomial S of degree k, such that S(0) = α. The receiver’s plan is
to use the univariate polynomials R(x) = Q[x, S(x)] to learn P (α): it holds that R(0) =
Q[0, S(0)] = P (S(0)) = P (α) and, therefore, if the receiver is able to interpolate R she can
learn R(0) = P (α). The degree of R is dR = k ∗ dP .

• Step 3. The receiver learns points of R: The receiver learns dR + 1 values of the form
< xi, R(xi) >.

• Step 4. The receiver computes P (α): The receiver uses the values of R that it learned
to interpolate R(0) = P (α).

The OPE protocol secure against malicious receivers is as follow:
OPE protocol secure against malicious receivers The sender’s input is still P and the

receiver’s input is still α.

• Step 1. The sender generates the dP linear polynomial P1, · · · , PdP
that are used for reducing

the OPE of the polynomial P to dP OPEs of linear polynomials, by the method of Lemma 3.4
in [2].

• Step 2. The parties execute dp instances of OPE in which the receiver evaluates the linear
polynomials P1, P2, · · · , PdP

at the point α, under the following constraints:

– The sender generates independent masking polynomials Zi(x), 1 ≤ i ≤ dP , and conse-
quently the resulting bivariate polynomials Qi(x, y) = Zi(x) + Pi(y), one for each of the
dP OPEs. (step 1 of the above protocol).

– The receiver generates a single polynomial S for use in all the OPEs (step 2 of the
above protocol). This step defines dP polynomials R1(x) = Q1(x, S(x)), · · · , RdP

(x) =
QdP

(x, S(x)), such that for each i it holds that Ri(0) = Pi(α).

– The receiver learns dR + 1 tuples of the form (xj , R1(xj), · · · , RdP
(xj)). These values

enable it to interpolate P1(α), · · · , PdP
(α) (step3 and step4 of the above protocol). The

implementation of this step is done by executing the same number of oblivious transfers
as is required for a single OPE of a linear polynomial. In each OPE the sender sends to
the receiver dP values of the polynomials, namely (xj , R1(xj), · · · , RdP

(xj)), instead of
a single value xj , R(xj).

• Step 3. The receiver uses P1(α), · · · , PdP
(α) to compute P (α) by the method of Lemma 3.4

in [2].
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3 The weakness of the OPE protocol

After the concept of oblivious polynomial evaluation has been presented, there were lots of work
done by the cryptography community. These work mainly focused on the security of the OPE
protocol. When Naor and Pinkas firstly presented the concept of OPE protocol [1], they use a new
intractability assumption named ”noisy polynomial interpolation problem” to build their protocol.
However, Bleichenbacher and Nguyen [3] later showed that this problem can be transformed into
a lattice shortest vector problem with high probability, which means this problem is much easier
than expected. If the assumption used to build the OPE protocol isn’t strong enough then we can’t
guarantee the privacy of the receiver since the privacy of the receiver depends on the underlying
intractability assumption. The adversary (the third-party adversary or the malicious sender) could
easily get the secret α hold by the receiver through solving the noisy polynomial interpolation
problem. This attack has been considered in the recent version of OPE protocol [2]. When different
assumptions related to polynomial reconstruction are used to build the OPE protocol, this kind of
attack will not work successfully against it.

Although the security definition which considers both the privacy of the receiver and the privacy
of the sender has been given in the papers [2][1], the work done later put their emphasis on the
privacy of the receiver. The privacy of the sender faces the challenge of the third-party adversary
and the dishonest receiver. In [2], the dishonest receiver is classified into two categories: semi-honest
receiver and malicious receiver. Semi-honest receiver’s operation is assumed to follow the behavior
that it should take according to the protocol, but it also may try to deduce more information from
the data it learns in the execution of the protocol. Malicious receiver can behave arbitrarily. This
paper will focus on the attacks launched by the receiver. We will prove that the attacks launched
by the receiver or the adversary who pretends to be the receiver can successfully break the security
of the two OPE protocols, one of which is supposed to be secure against the malicious receiver by
cheating the sender of his secret polynomial P .

4 The primitive of cryptanalysis of the OPE protocol

The basic idea of OPE protocol is to hide the receiver’s secret α in a randomly chosen polynomial
S of degree k by letting the equation S(0) = α hold. The privacy of the receiver is realized based
on two intractability assumptions, which are both closely related to the Noisy Polynomial Recon-
struction Problem [2]. In these two assumptions, N random values x1, x2, · · · , xN are generated
at first, and then the polynomial P is represented as n different points {(xi, yi)}jn

i=j1
which satisfy

yi = S(xi), and here {j1, j2, · · · , jn} is a random set of n indices in [1, N ]. The polynomial then
will be covered by the rest of the N values by choosing their yi randomly which satisfies yi 6= S(xi).
We describe the basic idea in Fig.1.

For ease of exposition, we choose k = 3, N = 8, S(x) = x3 − 4 ∗ x2 + x + 8, n = 4, and we have
α = S(0) = 8 since S(0) = 8. We randomly choose {(−1, 2), (2, 2), (4, 12), (5, 38)} in the curve of
this polynomial to represent S(x), i.e. to represent the secret α = S(0) hold by the receiver. These
four points will be covered by the other four points {(−4,−20), (1,−40), (7,−5), (9,−20)} which are
randomly chosen in the field F . However, these points can do more. If we randomly choose three of
these four points such as {(−1, 2), (2, 2), (4, 12)}, then we can find a polynomial S1(x) = x2−x which
fits these three points satisfying S1(0) = 0. This means that we can use these points to represent
another α1 which is equal to 0. If we use the other three points {(4, 12), (2, 2), (5, 38)} we can get
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Figure 1: The polynomials hide secrets more than just one

another polynomial S2(x) = 7x2−37x+48 which can represents another α2 = S2(0) = 48. For there
are

(
4
3

)
= 4 combinations of three points in these four points, we will have 4 polynomials to represent

4 secrets α1, α2, α3, α4. When the number of points used to represent a secret goes down, for example
if the two of these four points are used to construct the polynomial, then the degree of the polynomial
to represent αi will go down too, but still we can easily get the polynomial satisfying Si(0) = αi

in the same way mentioned above. For example, in Fig.1. if we use {(5, 38), (2, 2)} to represent a
secret, we will have a polynomial S3(x) = 12x− 22 to represent the secret α = S3(0) = −22. That
means if we use the two of these four points to represent a secret we can hide

(
4
2

)
= 6 secrets. To sum

up, if the receiver does not care the number of points to represent the secrets, he will manage to hide(
n

n−1

)
+

(
n

n−2

)
+ · · ·+ (

n
2

)
= 2n−n− 2 secrets in the set of n points which are far more than to hide

just one secret. This is exactly the primitive idea which will lead to our cryptanalysis. Although
in [2] the OPE protocol were given, the authors obviously neglected the contraction between the
definition of malicious receiver and what can be done by this kind of receiver. Since the malicious
receiver could act arbitrarily, it’s very likely for him to choose several ’secrets’ which he doesn’t
care about in order to cheat the sender of his secret polynomial P . This also means the receiver
does not need to consider his own privacy at all. Since it’s the malicious receiver who is supposed to
choose the n points by himself, then he can choose these points so that they don’t just represent one
secret but several subsets of them can represent more ’secrets’ than just one in the way mentioned
above. That means the N points sending from the receiver to the sender could hide the secret
S1(0) = α1, S2(0) = α2, · · · , SdP +1(0) = αdP +1 rather than a single value α which it’s supposed to
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be. From the sender the receiver can get {Q[xij , Sj(xij )]}ij∈Ij ,j=1,2,··· ,dP +1, where I1, I2, · · · , IdP +1

is the corresponding subsets which represent secrets α1, α2, · · · , αdP +1 in the way mentioned above.
For the receiver, he is able to learn the polynomial {Rj(x) = Q[x, Sj(x)]}j=1,2,··· ,dP +1 by using the
corresponding points set {Q[xij , Sj(xij )]}ij∈Ij ,j=1,2,··· ,dP +1 to interpolate {Rj(x)}j=1,2,··· ,dP +1. The
receiver can easily learn P (α1), P (α2), · · · , P (αdP +1) Because {Rj(0) = Q(0, Sj(0)) = P (Sj(0)) =
P (αj)}j=1,2,··· ,dP +1 [2]. At last, the receiver could use these points {αj , P (αj)}dP +1

j=1 to interpolate
the sender’s polynomial P of degree dP + 1.

5 An attack on the generic protocol for OPE

As mentioned above, with n points the receiver could actually hide 2n − n− 2 secrets which is far
more than dP +1, hence, there are lots of ways for the receiver to choose the degree of polynomials
S1(x), S2(x), · · · , SdP +1(x) and to choose the set of n points in order to represent dP + 1 different
secrets. In this paper, for ease of exposition we let the degree of the polynomials be the same with
k − l. In the description of this attack below the detailed way to partition the set will be given.
Theorem 1 will show the requirement for l in this situation. We also follow the notation of [2] here
for ease of exposition.

An attack on the generic protocol for OPE

• Step 1. The receiver hides secrets α1, α2, · · · , αdP +1 in several univariate polyno-
mials: The receiver chooses dP + 1 polynomials S1(x), S2(x), · · · , SdP +1(x) of degree k − l,
such that

S1(0) = α1,
S2(0) = α2,· · · ,
SdP +1(0) = αdP +1

and α1, α2, · · · , αdP +1 are randomly chosen to make sure that they are different from each
other. The receiver’s plan is to use the univariate polynomials {Rj(x) = Q[x, Sj(x)]}dP +1

j=1

to learn {P (αj)}dP +1
j=1 : it holds that Rj(0) = Q[0, Sj(0)] = P (Sj(0)) = P (αj) (see the second

section) and, therefore, if the receiver is able to interpolate Rj(x) she can learn Rj(0) = P (αj).
The degree of Rj(x) is dRj(x) = (k − l) ∗ dP .

• Step 2. The receiver learns points of {Rj(x)}j=1,2,··· ,dP +1: The receiver learns [(k −
l)dp + 1] ∗ (dP + 1) values of the form {Rj(xij )}ij∈Ij ,j=1,2,··· ,dP +1.

• Step 3. The receiver computes P (x): The receiver uses the values of {Rj(x)}j=1,2,··· ,dP +1

that it learned to interpolate {Rj(0) = P (αj)}j=1,2,··· ,dP +1. Then the receiver can use
{P (αj)}dP +1

j=1 to interpolate the polynomial P (x).

In [2], two detailed protocols based on two different assumptions were given. Since the pseudo-
randomness assumption can be chosen by the receiver and pseudo-randomness assumption 2 is
stronger than pseudo-randomness assumption 1 (the second problem is easier than the first one), we
give a description of an attack on OPE based on assumption 1 for the receiver (In here, the receiver
just uses the randomness assumption 1 to hide his secrets instead of following the assumption
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exactly since the goal of him is to get the sender’s polynomial and he doesn’t care about his secrets
actually).

An attack on OPE based on assumption 1 The attack is the attack on the generic protocol,
where the second step is run as follows:

• The receiver sets n = dR + 1 = d + 1 = kdP + 1 (k is the degree of the polynomial which is
supposed to be used in the honest way to hide just one secret.) and choose N = nm distinct
random values x1, · · · , xN ∈ F , all different from each other and 0.

• The receiver chooses a random set T of n indices 1 ≤ t1, t2, · · · , tn ≤ N . The set T will
be partitioned into several subsets I1, I2, · · · , IdP +1 satisfying |I1| = |I2| = · · · = |IdP +1| =
(k − l)dP + 1 and another subset IdP +2 satisfying |IdP +2| = ldP − dP − kd2

P + ld2
P . She then

defines N values yi, for 1 ≤ i ≤ N . The value yi = Sj(xi) if i ∈ Ij , 1 ≤ j ≤ dP + 1, and a
random value if i is not in any of the first dP + 1 subsets.

• The receiver sends the N points {xi, yi}N
i=1 to the sender.

• The receiver and sender execute an n−out−of−N oblivious transfer protocol, for the N values
Q(x1, y1), · · · , Q(xN , yN ). The receiver will choose the corresponding Q(xi, yi) for the indices
i ∈ I1, I2, · · · , IdP +1(since n > |I1| + |I2| + · · · + |IdP +1|, the receiver could choose what he
wants after the OT protocol), and then he will have {Q[xij , Sj(xij )]}ij∈Ij ,j=1,2,··· ,dP +1. Since
in step 1 {Rj(x) = Q[x, Sj(x)]}dP +1

j=1 , That means the receiver has {Rj(xij )}ij∈Ij ,j=1,2,··· ,dP +1.

The realization of n − out − of −N oblivious transfer protocol can be found in [1]. Since the
way to use oblivious transfer protocol here isn’t essentially different from that of [2], the receiver
can get what he wants from the sender.

Theorem 2 in the latter section will show this attack will be successful, and the complexity of
this attack will also be given in theorem 3.

6 An attack on the OPE protocol secure against malicious re-
ceivers

In [2], an OPE protocol secure against malicious receivers was given. This protocol was claimed to
be secure against malicious receivers. In this section an attack against this protocol is given, and
we’ll show that this attack will successfully attack this protocol.

The attack on OPE protocol secure against malicious receivers is not significantly different from
the attack on the generic protocol.

An attack on OPE protocol secure against malicious receivers

• Step 1. The receiver hides secrets α1, α2, · · · , αdP +1 in several univariate polynomials: The
receiver chooses dP +1 polynomials S1(x), S2(x), · · · , SdP +1(x) of degree k− l(Theorem 4 will
show the requirement for l), such that S1(0) = α1, S2(0) = α2, · · · , SdP +1(0) = αdP +1 and
α1, α2, · · · , αdP +1 are randomly chosen to make sure that they are different from each other.
The receiver’s plan is to use the univariate polynomials
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Rj1(x) = Q1(x, Sj(x))dP +1
j=1 ,

Rj2(x) = Q2(x, Sj(x))dP +1
j=1 ,

· · ·
RjdP

(x) = QdP
(x, Sj(x))dP +1

j=1

to learn {P1(αj), P2(αj), · · · , PdP
(αj)}dP +1

j=1 since it holds that

Rj1(0) = P1(αj)
dP +1
j=1 ,

Rj2(0) = P2(αj)
dP +1
j=1 ,

· · ·
RjdP

(0) = PdP
(αj)

dP +1
j=1

(see the second section).

The degree of {[Rjm(x)]|dP
m=1}|dP +1

j=1 is (k − l) since the polynomials P1, P2, · · · , PdP
are all

linear.

• Step 2. The receiver learns points of {[Rjm(x)]|dP
m=1}|dP +1

j=1 : The receiver learns [(k − l) + 1] ∗
(dP + 1) tuples of the form {xij , Rj1(xij ), Rj2(xij ), · · · , RjdP

(xij )}ij∈Ij ,j=1,2,··· ,dP +1.

• Step 3. The receiver computes P (x): The receiver uses the values {xij , Rj1(xij ), Rj2(xij ), · · · ,

RjdP
(xij )}ij∈Ij ,j=1,2,··· ,dP +1 that it learned to interpolate {[Rjm(x)]|dP

m=1}|dP +1
j=1 . Then the re-

ceiver can use {P1(αj), P2(αj), · · · , PdP
(αj)}dP +1

j=1 to compute {P (αj)}dP +1
j=1 by the method of

Lemma 3.4 in [2]. The receiver can use {P (αj)}dP +1
j=1 to interpolate the polynomial P (x).

The realization of the second step is based on pseudo-randomness assumption 1. This attack is
as follow:

An attack on the OPE protocol secure against malicious receivers based on as-
sumption 1 The second step of this attack is run as follows:

• The receiver sets n = dR + 1 = d + 1 = kdP + 1 (k is the degree of the polynomial which is
supposed to be used in the honest way to hide just one secret.) and choose N = nm distinct
random values x1, · · · , xN ∈ F , all different from each other and 0.

• The receiver chooses a random set T of n indices 1 ≤ t1, t2, · · · , tn ≤ N . The set T will
be partitioned into several subsets I1, I2, · · · , IdP +1 satisfying |I1| = |I2| = · · · = |IdP +1| =
(k − l) + 1 and another subset IdP +2 satisfying |IdP +2| = ldP − dP − k + l. It then defines N
values yi, for 1 ≤ i ≤ N . The value yi = Sj(xi) if i ∈ Ij , 1 ≤ j ≤ dP + 1, and a random value
if i is not in any of the first dP + 1 subsets.

• The receiver sends the N points {xi, yi}N
i=1 to the sender.

• The receiver and sender execute an n − out − of − N oblivious transfer protocol, for the N
tuples {Q1(xi, yi), Q2(xi, yi), · · · , QdP

(xi, yi)}N
i=1. The receiver will choose the corresponding

Q1(xi, yi), Q2(xi, yi), · · · , QdP
(xi, yi) for the indices i ∈ I1, I2, · · · , IdP +1(since n > |I1|+|I2|+

· · ·+ |IdP +1|, the receiver could choose what he wants after the OT protocol), and then it will
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have {Q1[xij , Sj(xij )], Q2[xij , Sj(xij )], · · · , QdP
[xij , Sj(xij )]} ij∈Ij ,j=1,2,··· ,dP +1. Since it hold

that

Rj1(x) = Q1(x, Sj(x))dP +1
j=1 ,

Rj2(x) = Q2(x, Sj(x))dP +1
j=1 ,

· · ·
RjdP

(x) = QdP
(x, Sj(x))dP +1

j=1

in step 1 of this attack. This means the receiver has {[Rjm(xij )]|ij∈Ij ,j=1,2,··· ,dP +1}|dP
m=1.

Theorem 5 in the latter section will show this attack will be successful, and the complexity of
this attack will also be given in Theorem 6.

7 The properties of these attacks

Theorem 1 The requirement for l to satisfy the requirement for the partition of the random set T
of n indices is kdP +1

dP +1 ≤ l < k.

Proof 1 Since the whole set will be partitioned into dP + 1 subsets I1, I2, · · · , IdP +1 satisfying
|I1| = |I2| = · · · = |IdP +1| = (k − l)dP + 1 and the remainder subset IdP +2. It should be hold that

(dP + 1)× [(k − l)dP + 1] ≤ kdP + 1

, and since we choose the degree of our polynomials as k − l, we have

k − l > 0

. Combine these two inequations together we have kdP +1
dP +1 ≤ l < k.

Theorem 2 The attack on the generic OPE protocol based on pseudo-randomness assumption 1
will succeed.

Proof 2 From the description of the attack we have {Rj(xij )}ij∈Ij ,j=1,2,··· ,dP +1. Since these x’s are
all chosen to be different from each other and from 0 and |I1| = |I2| = · · · = |IdP +1| = (k− l)dP +1,
Rj(x) of degree dRj(x) = (k − l) ∗ dP can be easily computed. Since we have Rj(0) = P (αj), then
the receiver can have {P (αj)}dP +1

j=1 in step 3 to interpolate P (x) of degree dP . So the attack is
successful.

Theorem 3 The complexity of the attack against the generic OPE protocol based on pseudo-
randomness assumption 1 is running a single invocation of kdP + 1 − out − of − (kdP + 1)m
oblivious transfer, i.e., n− out− of −N ] oblivious transfer.

Proof 3 As we can see from the description of this attack, the whole execution of this attack is
actually an execution of the generic OPE protocol except that the receiver needs to partition his
indices of x into several subsets and he needs to interpolate P (x) after the execution of the protocol.
However, if we measure the overhead of the attack in terms of the oblivious transfer stage as in [2]
we can see that the overhead of this attack is the same with the OPE protocol based on Assumption
1. The complexity of this attack is running a single invocation of kdP + 1− out− of − (kdP + 1)m
oblivious transfer.
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Theorem 4 The requirement for l to satisfy the requirement for the partition of the random set T
of n indices for the attack on the OPE secure against malicious receiver is kdP +1

dP +1 ≤ l < k.

Proof 4 Since the whole set will be partitioned into dP + 1 subsets I1, I2, · · · , IdP +1 satisfying
|I1| = |I2| = · · · = |IdP +1| = (k − l) + 1 and the remainder subset IdP +2. Then is should be hold
that

(dP + 1)× [(k − l) + 1] ≤ kdP + 1

, and since we choose the degree of our polynomials as k − l, we have

k − l > 0

. Combine these two inequations together we have k+dP
dP +1 ≤ l < k.

Theorem 5 The attack on the OPE protocol against malicious receiver based on pseudo-randomness
assumption 1 will succeed.

Proof 5 From the description of the attack we have {[Rjm(xij )]|ij∈Ij ,j=1,2,··· ,dP +1}|dP
m=1. Since

these x’s are all chosen to be different from each other and from 0 and |I1| = |I2| = · · · = |IdP +1| =
(k − l) + 1, {[Rjm(x)]|dP

m=1}|dP +1
j=1 of degree k − l can be easily computed. Then following step 3 in

this attack the receiver will finally get the polynomial P (x). So the attack is successful.

Theorem 6 The complexity of the attack on the OPE protocol against malicious receiver based on
pseudo-randomness assumption 1 is running a single invocation of k + 1 − out − of − (k + 1)m
oblivious transfer.

Proof 6 The way to calculate the complexity of this attack is the same with the way to calculate
the complexity of the attack on the generic OPE protocol based on pseudo-randomness assumption
1. It’s straightforward to conclude that the complexity of this attack is k + 1− out− of − (k + 1)m
since the complexity of this attack is the same with the OPE protocol against malicious receiver
in terms of oblivious transfer and the complexity of OPE protocol against malicious receiver is the
same with an OPE protocol of a linear polynomial.

8 Remark

Chang and Lu [4] presented an oblivious polynomial evaluation protocol only based on oblivious
transfer. The attacks presented in this paper won’t work successfully on Chang and Lu’s protocol.
There are several applications of OPE protocol such as [8][7][6][3] . Since their protocols are all
based on Naor and Pinkas’s OPE protocol[2], then the attacks of this paper all work successfully
on their protocols. To make these attacks ineffective, they only need to choose some other OPE
protocols not based on polynomial reconstruction problem such as Chang and Lu’s protocol[4].

9 Conclusion

In this paper, we present two attacks on the OPE protocols and prove these attacks will make the
receiver successfully achieve the sender’s secret polynomial P , which also make the OPE protocol
based on polynomial reconstruction problem not a private OPE protocol any more by the definition
4. We also show that the complexity of these attacks is the same with that of the corresponding
protocols attacked.
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