Security analysis of the variant of the
self-shrinking generator proposed at ICISC 2006

Dong Hoon Lee, Je Hong Park, and Jaewoo Han

National Security Research Institute
161 Gajeong-dong, Yuseong-Gu, Daejeon, South Korea
{dlee, jhpark, jwhan}@etri.re.kr

Abstract. In this paper, we revisit the variant of the self-shrinking gen-
erator(SSG) proposed by Chang et al. at ICISC 2006. This variant, which
we call SSG-XOR was claimed to have better cryptographic properties
than SSG in a practical setting. But we show that SSG-XOR has no
advantage over SSG from the viewpoint of practical cryptanalysis.

Keywords: Stream cipher, LESR, Self-Shrinking generator, Cryptanal-
ysis

1 Introduction

The self-shrinking generator (SSG) is a well-known keystream generator pro-
posed by Meier and Staffelbach [4]. SSG requires only one LFSR, which generates
a binary sequence a = (a;);>0 in the usual way. For each bit pair (a2, azit1), if
a2; = 1, SSG outputs as;4+1 as a keystream bit, otherwise no output is produced.

Until now, several methods have been proposed for attacking SSG [5, 3,2,
6]. The designers of SSG have also described two kinds of simple attacks called
exhaustive search and entropy attack whose time complexity is O(2°7%%) and
O(2°75L) respectively, where L is a length of the underlying LFSR, [4]. The
time complexity was reduced to O(2%-%%L) in [5]. In [3] the BDD-attack was
proposed, it requires O(2%55L) time complexity from [2.41L] bits keystream.
However the memory requirement for the BDD-attack is infeasible. This attack
was improved in [2]. The advantage of the HJ attack [2] over the BDD-attack
is to have the almost same time complexity with only O(L?) memory from L-
bit keystream. Recently a new guess-and-determine attack was proposed [6]. It
requires O(2°-56L) time with memory O(L?) from O(2°-161L)bit keystream for
L > 100 and requires O(2%-571L) time with memory O(L?) from O(2°-194L)-bit
keystream for L < 100.

The variant of SSG (denoted by SSG-XOR) was proposed by Chang et al.
[1] to improve some cryptographic properties of SSG. It has a similar struc-
ture to SSG, but it handles 4-tuple of consecutive bits produced by the un-
derlying LFSR to produce two keystream bits in a lump. For each 4-tuple
(a4i, 4511, Qait2,a4i+3), SSG-XOR outputs two bits as;j+2 and as;rs if ag; &
a4;+1 = 1, and discards otherwise. The following Figure 1 clarifies the difference
between SSG and SSG-XOR.

LFSR LFSR
a2 =1 4; D agi41 =
SSG g SSG-XOR g
a2;4+1 A4i42, A4i+3

Fig. 1. SSG and SSG-XOR

The authors of [1] analyzed the security of SSG-XOR by applying the existing
attacks for SSG and claimed that SSG-XOR is more secure than SSG against
attacks using short keystream sequences such as entropy attack [4] or the BDD-
attack [3].

In this paper, however, we show that the security of SSG-XOR against several
attacks using short keystream sequences can be decreased significantly. First, we
re-analyze the security of SSG-XOR against exhaustive search attack, entropy
attack and the BDD-attack. And then we investigate the security of SSG-XOR
against the HJ attack and the guess-and-determine attack. Our analysis shows
that SSG-XOR has no advantage over SSG from the viewpoint of the security.
In Table 1, we compare with the complexity of several attacks for SSG and
SSG-XOR. (Note that we ignore some polynomial factors in Table 1.)

Table 1. Comparison of complexity of several attacks for SSG and SSG-XOR

SSG SSG-XOR
Time | Memory | Data Time | Memory | Data
Exhaus. search [4]|| O(2°7°%) - O(2%77L) — —
Entropy attack [4]|| O(2%7F) _ 0(20557L) _ ~

BDD-attack [3] ||O(2°-%°%L)|infeasible| [2.41L] |O(2°%3'L)|infeasible| [2.21L]
HIJ attack [2] || O(2°%¢L) | O(L?) L o2%* Ly | o(L?) L
G & D attack [6] 0(20.556L) O(LZ) 0(20.161L) 0(20.384L) O(LZ) 0(20.111L)

2 Security Analysis

Although the designers of SSG-XOR analyzed the security against several at-
tacks which have been mounted to the original SSG, the analysis would not be
sufficient. So we re-analyze the resistance against possible attacks.

2.1 Exhaustive search and entropy attack

These attacks were described in the paper proposing SSG [4] to reconstruct the
initial state with only a few keystream bits. The first attack is called exhaustive
search. The initial state of SSG may be reconstructed with complexity 2°-7°F
by the exhaustive search attack. Let z = (29, 21,-.-,2i,-..) be a known short
keystream of SSG-XOR. The designer of SSG-XOR claimed that the exhaustive
search attack requires 2°-839%L steps since there are 10 possibilities to generate
each (zzj, Z2j+]_). However, given a keystream z, it is not necessary to guess ay;
and a4;4+1 of the underlying LFSR output sequence a, independently. Instead,
we only guess one bit information whether as; @ a4;41 is equal to 1 or not.
This way, we will reconstruct an initial state that is no necessarily equal to the
original initial state, but it is equivalent in a sense that it will create z. From
this point of view, there exist five possibilities rather than ten for a 3-tuple
(a4; D agit1,04i+2,a4i+3) of a. So we can estimate that there exist

5L/3=1 o 5L/3 _ 9((log;5)/3)L _ 90.774L

possible initial states of the LFSR.

The second attack is called entropy attack. For SSG, the entropy per bit is
3/4 so an exhaustive search among all different cases in the order of probability
would require 2% 7% steps. For SSG-XOR, the designers claimed the the entropy
attack requires 20-8305L gteps. However, for each (227, 22j41) there are 5 different
possibilities (a4i ©® A4i+1,A4542, a4i+3), namely (]., 225, 22j+1), (0, 0, 0), (0, 0,].),
(0,1,0), and (0, 1,1). The probability for (1, 22, z2j+1) is 1/2 and the probability
for the others is 1/8. Thus the entropy of 3-tuple is

H=—-(1/2)log,(1/2) —4-(1/8) log,(1/8) = 2.
Therefore, the entropy per bit is 2/3 so the complexity of the attack for SSG-
XOR would be 206671
2.2 BDD-attack

For the BDD-attack [3], the required length of consecutive keystream bits is
[v6~'L] and the time complexity is LOW2((1=0)/(1+))L " where v and § are
defined as follows:

— 7 is the maximal ratio of the length of the keystream z to the length of the
output sequence a of the underlying LFSR.

— 0 is the information rate (per bit) which would be revealed about the output
sequence a of the underlying LFSR from the keystream z.

For SSG, § =~ 0.2075 and v = 0.5. Thus the BDD-attack for SSG can compute
the initial state with [2.41L] consecutive keystream bits in time L(1)20-6563L
The designers of SSG-XOR claimed that the BDD-attack for SSG-XOR can
reconstruct the initial state from the [2.95L] consecutive keystream bits in time
1,0(1)90.7101L

Now we re-analyze the security against the BDD-attack for SSG-XOR. We
can also set v = 0.5 for SSG-XOR. For a fixed m, let p(m) be the probability
that the shrinking result of a randomly chosen bitstream from {0, 1}™ is a prefix
of the given keystream. If chosen bitstreams are uniformly distributed in {0, 1},
there are p(m)2™ possible z’s such that the shrinking result of z is a prefix of z.
Note that p(m) can be supposed to behave as p(m) = 279™.

On the other hand, we observe that for all m with m = 0 mod 4 and all
keystreams z, there are exactly 5™/3 bitstreams z € {0,1}™ such that the
shrinking result of z is a prefix of z. Hence, we obtain an information rate
§ =1— (logy 5)/3 ~ 0.226 for SSG-XOR by evaluating the relation 2(1-9™ =
5™/3. So the required length of consecutive output bits is [2.21L] and the time
complexity is L9(1)20-6313L

2.3 HJ attack

Each known keystream bit gives, by default, a few equations in the initial state.
Assume that we know 2N keystream bits

20y Ry 3y R2N—1- (].)

In the case of SSG-XOR, each known keystream bit pair (z2;, 22;41) will give us
three equations for some j:

a4 D agjr1 =1, Qg2 = 225, Q4543 = 22i41-

Additionally, we only know that the observed keystream sequence (1) corre-
sponds to the output sequence of the underlying LFSR

agp, @o, 20, 21, X0,a1,01,22,23, X1, -+, XN—2,AN—1,AN 1, 22N -2, 22N 1,

where a; = 1®a; and each X; corresponds to a sequence of zero or more 4-tuples
in {(0,0,%,x),(1,1,%,%)}. For each of these 4-tuples that we guess correctly, we
will get one more equation since the first two bits have the same bit parity. The
total number of equations available is thus 3N + k where k is the number of
4-tuples discarded. To get a complete system of equations in the (equivalent)
initial state bits we require that N = [(L — k)/3]. The probability that in total
k 4-tuples are discarded is, for each possible assumption,

2—N—k+1

The number of ways to discard k 4-tuples in a total of N — 1 gaps is given by

)

We start by testing the case when 0 bits are discarded, then the case when 2
bits has been discarded, etc. The probability that we guess correctly within

’“Z (N —2+4 k)
k=0 k
guesses is
kmzax (N _: + k) 9~ N—k+1_
k=0

By fixing the probability of success to 0.5, we calculate the complexity of the at-
tack for some different LFSR lengths. In Table 2, we can see that the complexity
is approximately O(2°-5%).

Table 2. The Complexity of the Attack for some LFSR Lengths

LFSR length|Complexity|kmax
128 2613 34
256 21254 67
512 22537 1132
1024 25105 262

2.4 Guess-and-determine attack

The guess-and-determine attack for SSG was recently proposed in Asiacrypt
2006 [6]. The proposed attack can restore the initial state with time complexity
0(2°-5%6L) and memory complexity O(L?) from O(2°-161F) keystream bits when
L > 100. It utilizes the fact that the two decimated sequences {as;} and {az;+1}
share the feedback polynomial as that of the sequence {a;} which is a binary
maximal length sequence produced by a LFSR of length L and differ by a shift
value 2°~1. This approach can be applied to SSG-XOR immediately.

Let f(x) = 1+cyz+---+cp 1ot ~1 +x be the primitive feedback polynomial
of the LFSR for the SSG-XOR, i.e. for each i > 0, a; 1 = Y.[_, ¢;ai41—; where
¢, = 1. Then the reciprocal of f(z) is el + a4+ -+ ¢cp_1z + 1 which is

denoted by f*(x). It is easy to show that each a; corresponds to x! mod f*(x)
from the recurrence relation.

L
L= chm”L*j mod f*(x).
i=1

By squaring (or exponentiating by 2¥) the above formula, we can show that the
decimated sequence {as;} (or {asr;}) shares the feedback polynomial with the
original sequence {a;}. Thus once we know any consecutive L-bit sequence of
the decimated sequence, we can immediately compute the next sequences using
the given recurrence relation. However other decimated sequences (for example
{as;}) would not share the feedback polynomial.

Lemma 1. Let a = {agp,a1,---} be a binary mazimal length sequence produced
by a LFSR of length L. Let s(© = {ay;}, sV = {asj11}, s® = {asjt2}, and
s(3) = {asj1+3} be decimated sequences of a. Then they share the feedback polyno-
mial with the sequence a and the shift value between s'9 and sUTY fori=0,1,2
is 202,

Proof. As mentioned before, each decimated sequence s(? = {sgz)} shares the
feedback polynomial with the original sequence a. Thus they differs each other
by only some shift. Our lemma suffices to note that

(4) _ _ _ _ i+
Sifor—2 = Q4(j+20-2)+i = Q45420 4i = Qg+ (i+1)+ (28 -1) = 5 .

We define polynomials h;(x) for i = 1,2, 3 as follows.
L-1 ' L—1 ' L—1 '
hi(z) = Z hixt, he(z) = Z haiat, hs(z) = Z hsx,
i=0 i=0 i=0

such that hy(z) = 22~ mod f*(z), he(z) = 2> mod f*(z), and hs(z) =
232" mod f*(z). Then we have

-1 -1 -1
Qgiy1 = E hijasivy), Qaiv2 = E hajasivy), Qaits = E hs3,jas(iyj)-
j=0 7j=0 j=0

Now we are ready to attack SSG-XOR. Let {z;}7 ;! be the keystream of
SSG-XOR. We first set A = (ao, a4, - ,a4(;—1)) With L variables. It is enough to
find these unknowns for attacking SSG-XOR. Instead of guessing the unknowns
directly, we guess an [-bit length segment guess = (go, g1, - ,g1—1) for (ap ®
ay,ay © as, -+ ,a40-1) D ag-1)41)- Let Hy,(-) be the Hamming weight of the
corresponding vector. Then from the guessed segment guess, we can obtain [+

2H,,(guess) linear equations with L variables as follows.

L-1
A4i D Qajg1 = Qa4 D Z hi jayivjy = gi, for 0 <@ <,
=0
L-1
Qaivy = D o jain)) = 2y, g 20 0T i =1
=0
L-1
Agi43 = Z hs jaagivy) = Z2(si_g g5-1> forgi=1.
=0

If we can solve the above system of linear equations, we can recover the
initial state of the SSG-XOR. In order to solve the system, we have to get linear
equations as many as possible. We observe that the more 1 in the guessed segment
guess, the more linear equations can be obtained. To mount efficient attack, we
just search over those possible guess satisfying the following condition instead of
exhaustively searching over all the possible value.

H,(guess) > [al],

where a (0.5 < a < 1) is a parameter to be determined later.

By the argument in [6], the obtained equations in the above process are al-
most linearly independent. Thus we have O(l + 2al) linearly independent equa-
tions with L variables. In order to solve the system of equations, we let

1
O(l+2al)_L—_—>l_O<1+2aL).

The attack proceeds as follows.

1. For each guessed segment guess satisfying that H, (guess) > [al] for a given
parameter a, derive linear expressions on the L variables without filling the

constant terms (keystream bits) as explained above and store them in matrix
U.

(a) For each 0 < j < N —1— (I +2[ad]), make (by filling constant terms)
the system of linear equations with the linear expression U using the
keystream bits starting from z;.

(b) Solve the linear system U, find the candidate initial state, and check the
candidate state is correct by running SSG-XOR with the state and com-
paring the generated stream with the (original) keystream bits {z;} 2 ;1.

(c) If the above test succeeds, we find the initial state (or an equivalent
state). Thus stop this process and output the state as a solution.

(d) If the above test fails, repeat the process from the step (a) with incre-

menting j.

2. If we could not find the initial state with the segment guess, we choose
another guess at random and try again from the first step 1.

Now we determine the length IV of keystream bits in order to succeed the
above attack. Our search space is H = {guess | [al] < H(guess) < [, and gy =
1}, thus the cardinality of H is

| = li <l_il>'

i=[al]—1

For each [-bit guessed segment guess, we will try N — L times to find an equivalent
state. To succeed the attack, we have to find at least one match pair between the
guess set H and the initial state derived from the keystream segments involved
in each IV — L trials. Thus the length N should satisfy

(N —L)-|H| > 2 :>N:0(2f€—ziL),

where |H| = 2°! and 3 is a parameter determined by a.
Since for each guessed segment guess we have to try at most N — L times,
the total time complexity of the attack in worst case is

O(L*)O(N — L)O(2°) = 0 (LB : 21+%L) ,

where O(L?) factor reflects the complexity of solving a system of linear equations
of size L.

Theorem 1. The guess-and-determine attack for SSG-XOR has time complex-
ity O (L3 . 2ﬁL), memory complexity O(L?) and data complezity O (Z%L)
where L is the length of the underlying LFSR of SSG-XOR, 0.5 < a <1, and

is a parameter determined by «.

Now we give comparison result in the following table between SSG and SSG-
XOR ignoring the polynomial factor L3.

Table 3. The asymptotic time, memory, and data complexity to attack SSG and SSG-
XOR when L > 100

SSG SSG-XOR

al|l p Time |Memory| Data Time |Memory| Data
0.5/0.99][0(2°557E)| O (L2) [0(27F)|[0(2°5E) | O(L?) |0(2°0%5F)
0.8]0.71 0(20.556L) O(L?) 0(20.161L) 0(20.384L) O(L?) 0(20.111L)
1.0/0.00|| O(2°°%) | O(L?) | 0(2°°) [|0(2°***")| O(L?) |0(2"****)

Experiments We made several experimental results in C language on a gen-
eral PC to check the validity of our attack. For example, we choose an LFSR’s
feedback polynomial of length 30 as follows.

f@) =2 + 2" + 2@ + 22 + 2T+ M et P e+ L
We note that f(z) is a primitive polynomial, thus the generated sequence would

have a maximal length. Then hy(z), ho(x), and hs(z) modulo the reciprocal
f*(x) can be obtained as follows.

228 *
hi(z) =2 mod f"(x)
Z %8 %0 % 20 4 1B 1l L 0 8 L T 6 a2
229 *
ha(z) = mod f*(z)
T I TP S S TR L RS S JUEDL £ UUDS IR C RIS S RIS grape
3.228 *
h3(z) =z mod f*(x)

:$27+$24+$23+$17+$14+$11+$10+$6+$5+$3

For a random chosen initial state, our attack recovers the initial state or an
equivalent state in a minute from 200 bits keystream.

3 Conclusion

In this paper, we investigated the security aspects for a variant of self-shrinking
generator called SSG-XOR which was proposed at ICISC 2006. The author of
SSG-XOR alleged that SSG-XOR is more secure than the original SSG in a
sense that the complexity of attacks for SSG-XOR is higher than that of SSG.
However we showed that the security of SSG-XOR, does not reach that of SSG.

References

1. K.-Y. Chang, J.-S. Kang, M.-K. Lee, H. Lee and D. Hong. New variant of the self-
shringking generator and its cryptographic properties. Information Seucirty and
Cryptology - ICISC 2006, Lecture Notes in Comput. Sci., vol. 4296, pp. 41-50,
2006.

2. M. Hell and T. Johansson. Two new attacks on the self-shrinking generator. IEEE
Trans. Infor. Theory, vol. 52, no. 8, pp. 3837-3843, 2006.

3. M. Krause. BDD-based cryptanalysis of keystream generator. Advances in Cryptol-
ogy - EUROCRYPT 2002, Lecture Notes in Comput. Sci., vol. 2332, pp. 222-237,
2002.

4. W. Meier and O. Staffelbach. The self-shrinking generator. Advances in Crptology
- EUROCRYP1T"94, Lecture Notes in Comput. Sci., vol. 950, pp. 205-214, 1994.

5. E. Zenner, M. Krause and S. Lucks. Improved cryptanalysis of the self-shrinking
generator. Information Security and Privacy - ACISP 2001, Lecture Notes in Com-
put. Sci., vol. 2119, pp. 21-35, 2001.

6. B. Zhang and D. Feng. New guess-and-determine attack on the self-shrinking gener-
ator. Advances in Cryptology - ASTACRYPT 2006, Lecture Notes in Comput. Sci.,
vol. 4284, pp. 54-68, 2006.

