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Abstract. In this paper, we propose a new method for designing public key cryp-
tosystems based on general non-commutative rings. The key idea of our proposal is
that for a given non-commutative ring, we can define polynomials and take them as
the underlying work structure. By doing so, it is easy to implement Diffie-Helman-
like key exchange protocol. And consequently, ElGamal-like cryptosystems can be de-
rived immediately. Moreover, we show hot to extend our method to non-commutative
groups (or semi-groups).

1 Introduction

1.1 Background of Public-Key Cryptography and Proposals Based on
Commutative Rings

Since the idea of public key cryptography (PKC) was introduced by Diffie and Hellman
[20] in 1976, many PKC schemes have been proposed and broken. The trapdoor one-way
functions play the key roles in the idea of PKC. Today, most succusseful PKC schemes are
based on the perceived difficulty of certain problems in particular large finite commutative
rings. For example, the difficulty of solving the integer factoring problem (IFP) defined over
the ring Zn (where n is the product of two large primes) forms the ground of the basic
RSA cryptosystem [54] and its variants, such as Rabin-Williams [52,65,66] schemes, LUC’s
scheme[60], Cao’s schemes [13,15] and elliptic curve version of RSA like KMOV [37]. The
extended multi-dimension RSA cryptosystem [14], which can efficiently resist low exponent
attacks, is also defined over the commutative ring ZN [x]. Another good case is that ElGamal-
type PKC family, including the basic ElGamal scheme [22], elliptic curve cryptosystem, DSS
and McCurley scheme [45], is based on the difficulty of solving the discrete logarithm problem
(DLP) defined over a finite field Zp (where p is a large prime), of course a commutative ring.

1.2 PKC Proposals Based on Generic Group Theory

The theoretical foundations for the above cyrptosystems lie in the intractability of prob-
lems closer to number theory than group theory [42]. On quantum computer, IFP and DLP,
as well as DLP over elliptic curves (ECDLP), turned out to be efficiently solved by al-
gorithms due to Shor [56], Kitaev [34] and Proos-Zalka [51]. Although practical quantum
computers are as least 10 years away, their potential weakness will soon create distrust in
current cryptographic methods [38].

As addressed in [38], in order to enrich cryptography as well as not to put all eggs in
one basket, there have been many attempts to develop alternative PKC based on different
kinds of problems [38]:



– In 1984, Wagner et al. [64] proposed an approach to design public-key cryptosystems
based on the undecidable word problem for groups and semigroups. In 2005, Birget et
al. [7] pointed out that Wagner’s idea is actually not based on word problem, but on
another, generally easier, premise problem. And finally, Birget et al. proposed a new
public-key cryptosystem which is based on finitely presented groups with hard word
problem.

– In 1999, Anshel et al. [2] proposed a compact algebraic key establishment protocol.
The foundation of their method lies in the difficulty of solving equations over algebraic
structures, in particular non-commutative groups [2]. In their pioneering paper, they
also suggested that braid groups maybe are good alternative platforms for PKC.

– Subsequently, Ko et al. [36] firstly proposed new PKC by using braid groups in 2000.
The security foundation is that the conjugator search problem (CSP) is intractable
when the system parameters, such as braid index and the canonical length of the work-
ing braids, are selected properly. After that, the subject has met with a quick suc-
cess [1,3,16,35,40,61,62]. However, from 2001 to 2003, repeated cryptanalytic success
[17,31,32,33,39,46] also diminished the initial optimism on the subject significantly [10].
Some authors even announced the premature death of the braid-based PKC [19]. De-
hornoy’s paper [19] gives a good survey on the state of the subject, and evidently sig-
nificant research is still needed to reach a definite conclusion on cryptographic potential
of braid groups [10].

– In 2001, Paeng et al. [49] also published a new PKC built on finite non-abelian groups.
Their method is based on the DLP in the inner automorphism group defined via the
conjugate action. Their systems was later improved to the so-called MOR systems [50].

– Meanwhile, Magliveras et al. [41] developed new approaches to design public key cryp-
tosystems using one-way functions and trapdoors in finite groups. It is worth remarking
that their method originates in group theory. Two public key cryptosystems based on
the difficulty of computing certain factorizations in finite groups, have been introduced:
MST1 and MST2. Subsequently, in 2002, Vasco et al. [63] demonstrated that, after
a suitable generalization, the factorization concepts used in MST1 and MST2 allow a
uniform description of several cryptographic primitives. Also, it turned out that a gen-
eralization of MST2 can serve as a unifying framework for several proposed public key
cryptosystems, including the ElGamal public key system, the braid group based system
[36] and the MOR cryptosystem [50].

– In 2002, certain homomorphic cryptosystems were constructed for the first time for non-
abelian groups due to Grigoriev and Ponomarenko [29]. Shortly afterwards, Grigoriev
and Ponomarenko [30] extended their method to arbitrary nonidentity finite groups
based on the difficulty of the membership problem for groups of integer matrices.

– Enlightened by the idea in the arithmetic key exchange [2], in 2004, Eick and Kahrobaei
[21] proposed a new cryptosystem based on polycyclic groups. Polycyclic groups are
a natural generalization of cyclic groups, but they are much more complex in their
structure than cyclic groups. Hence their algorithmic theory is more difficult and thus
it seems promising to investigate classes of polycyclic groups as candidates to have a
more substantial platform perhaps more secure.

– In 2005, Shpilrain and Ushakov [57] suggested that R. Thompson’s group maybe is a
good platform for constructing public-key cryptosystems. In their contribution, the key
assumption is the intractability of the decomposition problem, which is more general
than the conjugator search problem, defined over R. Thompson’s group, also a infinite
non-abelian group given by finite presentation.



Among the above cryptosystems, those based on generic algebraic systems, especially
non-commutative ones, attract more and more attentions. So far, most cryptosystems using
non-commutative algebraic systems are related to the difficulty of solving CSP over cer-
tain non-abelian groups. Although there are algorithms for solving some variants of CSP
in certain groups, such as braid groups [8,9,23,26,28], none of them can solve CSP itself
defined over general non-abelian group in polynomial time with respect to the system para-
meters. However, non-commutative is a double-edged sword: on the one hand, it makes CSP
meaningful; on the other hand, it brings some inconvenience for designing PKC schemes,
for example, in Diffie-Hellman-like key agreement protocol, we require that the operations
executed by both of the participants are symmetrical and commutable. How to utilize non-
commutative and overcome its inconvenience is the key problem for developing PKC over
non-commutative algebraic systems.

1.3 Motivations and Organization

In this paper, we would like to propose a new method for designing public key cryp-
tosystems based on general non-commutative rings. The key idea of our proposal is that
for a given non-commutative ring, we can define polynomials and take them as the un-
derlying work structure. By doing so, it is much easy to implement the Diffie-Helman-like
key exchange protocol and consequently ElGamal-like cryptosystems can also be derived
immediately. In addition, in [58], Shpilrain et al. gave six criteria for choosing alternative
non-commutative group G as PKC platforms. The firth criteria is: It is easy to produce
some pairs (a, {a1, · · · , ak}) such that aai = aia,(i = 1, · · · , k). We find that our proposal
indeed provides a general way to produce pairs that meet Shpilrain’s firth criteria for general
non-commutative group G.

The rest of the paper is organized as follows. In Section 2, preliminaries on security
models are introduced; In Section 3, we survey necessary cryptographic assumptions over
non-commutative groups and then develop some new assumptions; In Section 4, we develop
our method step by step: At first, we define polynomial over an arbitrary non-commutative
ring and prove necessary propositions that supports our later design; Then, we describe a
Diffie-Hellman-like key agreement protocol and two ElGamal cryptosystems based on new
underlying structure and new developed assumptions; In Section 5, we extend our method to
non-commutative groups and non-commutative semi-groups. Meanwhile, concrete examples
are provided to support our method in practice. Finally, concluding remarks are made in
Section 6.

2 Preliminaries

2.1 Notations

Throughout this paper, if x is a string then |x| denotes its length, and if S is a set
then |S| denotes its size. We denote by N the set of positive integers, the integer k ∈ N
denotes the security parameter. We say a function ε(k) : N 7→ [0, 1] is negligible if for
all α > 0, ε(k) < 1/kα for all sufficiently large k [43]. Assume that A is a probabilistic
algorithm that runs in polynomial time with respect to the security parameter k. Then we
denote z ← A(x, y, · · · ) the operation of running A with inputs x, y, · · · and letting z be
the output, z ← A(x, y, · · · ,O1,O2, · · · , ) the operation of running A with inputs x, y, · · ·
and access to oracles O1,O2, · · · and letting z be the output.



2.2 Public Key Encryption

In this subsection, we recall the formal definition for public key encryption schemes,
together with the security notions.

Definition 1. A public key encryption scheme Π = (KGen,Enc,Dec) consists of the
following three polynomial-time (in k) algorithms:

– The key generation algorithm – KGen: On input 1k (unary representation of k), the
algorithm KGen produces a pair (pk, sk) of matching public and private keys. Algorithm
KGen is probabilistic.

– The encryption algorithm – Enc: Given a message m and a public key pk, Enc produces
a ciphertext c = Π(m) of m. This algorithm may be probabilistic.

– The decryption algorithm – Dec: Given a ciphertext c = Π(m) and the private key sk.
Dec(sk, c) gives back the plaintext m. This algorithm is necessarily deterministic.

In addition, for every pair (pk, sk) generated by KGen(1k), and for every α, algorithms
Enc and Dec satisfy

Pr[Dec(sk,Enc(pk, m)) = m] = 1

where the probability is taken over the internal coin tosses of algorithm Enc and Dec.

Adversarial goals. The basic security notion required from a public key encryption
scheme is the one-wayness (OW), which roughly means that one can’t recover the whole
plaintext from a given ciphertext.

Definition 2 (One-Wayness). A public key encryption scheme Π = (KGen,Enc,Dec)
is said to be one-way if for all probabilistic polynomial time algorithms A, for every α > 0
and sufficiently large k,

Pr[A(pk, c) = Dec(sk, c) = m] <
1
kα

where c = Π(m) ← Enc(pk, m), (pk, sk) ← KGen(1k) and m is any message in message
space.

A stronger security notion for a public key encryption scheme is the so-called semantic
security (a.k.a. indistinguishability (IND) of encryption) [27]. This security notion requires
computational impossibility to distinguish between two messages chosen by an adversary,
which one has been encrypted, with a probability significantly better than 1/2.

Definition 3 (Semantic Security). A public key encryption scheme Π = (KGen,Enc,Dec)
is said to be semantic security if for all probabilistic polynomial time algorithms A, for every
α > 0 and sufficiently large k,

Pr[A(pk, m0,m1, c) = m] <
1
2

+
1
kα

where (m0,m1) is chosen by A, m ← {m0,m1}, c = Π(m) ← Enc(pk, m), (pk, sk) ←
KGen(1k).



Adversarial models. Currently, there are several types of attacks models for public
key encryption, namely the chosen-plaintext attack (CPA), non-adaptive chosen-ciphertext
attacks (CCA1) [47] and adaptive chosen-ciphertext attacks (CCA2) [53]. In a CPA, an ad-
versary can access an encryption oracle. This scenario clearly cannot be avoided. In a CCA1,
an adversary also can access a decryption oracle before being given the challenge ciphertext.
While in a CCA2, an adversary can access a decryption oracle before and after being chal-
lenged; and the only restriction for him is that he cannot feed the oracle with the challenge
ciphertext himself. This is the strongest known attack scenario.

Security levels are usually defined by pairing each goal (OW, IND) with an attack model
(CPA, CCA1 or CCA2); i.e., OW-CPA, OW-CCA1, OW-CCA2; IND-CPA, IND-CCA1 and IND-
CCA2. Among each security level, the following relations are satisfied.

OW-CPA ←− OW-CCA1 ←− OW-CCA2

↑ ↑ ↑
IND-CPA ←− IND-CCA1←− IND-CCA2

Definition 4 (OW-ATK). Let Π = (KGen,Enc,Dec) be a public key encryption scheme
and let A = (A1,A2) be any probabilistic polynomial time algorithm. For ATK ∈ {CPA, CCA1, CCA2},
under sufficiently large k, let define

SuccOW-ATK
A,Π := Pr


(pk, sk)← KGen(1k);

s← A1(pk,O1)
c = Enc(pk, m) :
A2(s, c,O2) = m


where s is A’s inner statement information, O1,O2 are oracles that A can access. According
to each attack, O1,O2 are defined as follows:

– If ATK = CPA then O1(.) = ε and O2(.) = ε;
– If ATK = CCA1 then O1(.) = Dsk(.) and O2(.) = ε;
– If ATK = CCA2 then O1(.) = Dsk(.) and O2(.) = Dsk(.).

Here a limitation is that A2 is not allowed to make access to decryption oracle with the
challenge c itself as a query. We say that Π is (t, qD, ε)-secure if for every adversary A
that runs at most in time t, achieving SuccOW-ATK

A,Π (k) < ε, where qD is the query times on
decryption oracle Dsk(.).

Definition 5 (IND-ATK). Let Π = (KGen,Enc,Dec) be a public key encryption scheme
and let A = (A1,A2) be any probabilistic polynomial time algorithm. For ATK ∈ {CPA, CCA1, CCA2},
under sufficiently large k, let define

AdvIND-ATK
A,Π := 2× Pr


(pk, sk)← KGen(1k);

(m0,m1, s)→ A1(pk,O1)
b

R←− {0, 1}; c = Enc(pk, mb) :
A2(m0,m1, s, c,O1) = b

− 1

where s is A’s inner statement information, O1,O2 are oracles that A can access. According
to each attack, O1,O2 are defined as follows:



– If ATK = CPA then O1(.) = ε and O2(.) = ε;
– If ATK = CCA1 then O1(.) = Dsk(.) and O2(.) = ε;
– If ATK = CCA2 then O1(.) = Dsk(.) and O2(.) = Dsk(.).

Here a limitation is that A2 is not allowed to make access to decryption oracle with the
challenge c itself as a query. We say that Π is (t, qD, ε)-secure if for every adversary A
that runs at most in time t, achieving AdvIND-ATK

A,Π (k) < ε, where qD is the query times on
decryption oracle Dsk(.).

Remark 1. The above security notion is defined in the standard model. In the random oracle
model [5], one should think A = (A1,A2) is also allowed to make access to random oracle
OH . To date, the strongest security notion for public key encryption is IND-CCA21. In
the standard model, the typical IND-CCA2 public key encryption scheme is Crame-Shoup
scheme [18]; and the typical IND-CCA2 public key encryption schemes in the random oracle
model include OAEP [6] and others [11,24,48]. Identity-based public key cryptography is a
paradigm introduced by Shamir to simplify key management and remove the necessity of
public key certificates [55]. To achieve this, the user’s public key should be an information
which can directly identify him in a non ambiguous way, such as e-mail address, IP address,
and so on. The first practical identity based encryption scheme (IBE) was found by Boneh
and Franklin in 2001 [12]. Using Fujisaki-Okamoto transformation [24], the IBE can be
converted to IND-CCA2 secure under adaptive chosen identity attack.

3 Cryptographic Assumptions on Non-commutative Groups

3.1 Two Well-Known Cryptographic Assumptions

In a non-commutative group G, two elements x, y are conjugate, written x ∼ y, if y =
z−1xz for some z ∈ G. Here z or z−1 is called a conjugator. Over a non-commutative group
G [35], we can define the following cryptographic problems which are related to conjugacy
2:

– Conjugator Search Problem (CSP): Given (x, y) ∈ G × G, find z ∈ G such that y =
z−1xz.

– Decomposition Problem (DP): Given (x, y) ∈ G × G and S ⊆ G, find z1, z2 ∈ S such
that y = z1xz2.

At present, we believe that for general non-commutative group G, both of the above
problems are difficult enough to be cryptographic assumptions. That is, the CSP (DP,
respectively) assumption says that CSP (DP, respectively) is intractable. More precisely, the
CSP (DP, respectively) assumption states that there does not exist probabilistic polynomial
time algorithm which can solve CSP (DP, respectively) with non-negligible accuracy with
respect to problem scale, i.e., the number of input bits of the problem.

1 Non-malleability against adaptive chosen-ciphertext attacks (NM-CCA2) is another strongest
security notions, which has been proved to be equivalent to IND-CCA2 in [4].

2 Maybe, in theoretical, these problems are not solvable for arbitrary instance. But in practice of
the cryptographic applications, we usually start from some solvable instances to construct desired
schemes.



3.2 Symmetrical Decomposition and Computational Diffie-Hellman
Assumptions over Non-commutative Groups

Enlightened by the above problems, we would like to define the following cryptographic
problems over a non-commutative group G:

– Symmetrical Decomposition Problem (SDP): Given (x, y) ∈ G×G and m,n ∈ Z,
find z ∈ G such that y = zmxzn.

– Generalized Symmetrical Decomposition Problem (GSDP): Given (x, y) ∈ G×
G, S ⊆ G and m,n ∈ Z, find z ∈ S such that y = zmxzn.

Clearly, GSDP can be looked as a type of constrained SDP. In general, if the size of S is
large enough and its membership information does not help one to extract z from zmxzn,
then we believe that GSDP is at least as hard as SDP. So, in the subsequent presentation,
we always address GSDP unless specific indication. Then, the GSD assumption says that
GSDP is intractable, i.e., there is no probabilistic polynomial time algorithm which can
solve GSDP with non-negligible accuracy with respect to problem scale.

In the above definition of GSDP, if we fix the parameters m,n, then we can define a new
function on G× S as follows:

G× S → G,

(x, z) 7→ zmxzn.

Further, if we denoted zmxzn as a new form xz, then the above function can be looked as
a newly introduce exponential operation on G with respect to its subset S 3. Similarly, if
y = zmxzn, then z can be looked as the discrete logarithm of y with respect to the base x,
i.e. z can be denoted by logx y.

Now, we can regard GSDP as the discrete logarithm (DL) problem over G. Then, we
can introduce the computational Diffie-Hellman (CDH) problem over G by a similar way:

– Computational Diffie-Hellman (CDH) Problem over Non-commutative Group
G (with respect to its subset S): Compute xz1z2 (or xz2z1) for given x, xz1 and xz2 ,
where x ∈ G, z1, z2 ∈ S.

Note that if z1 ∈ C(z2), i.e., z1 is commutative with z2, then xz1z2 = xz2z1 holds. It is clear
that if GSDP, i.e. DL problem over G is tractable, so is CDH problem over G. But the
inverse maybe is not true. At present, we have no clue to solve this kind of CDH problem
without extracting z1 (or z2) from x and xz1 (or xz2). Then, the CDH assumption over G
says that CDH problem over G is intractable, i.e., there is no probabilistic polynomial time
algorithm which can solve CDH problem over G with non-negligible accuracy with respect
to problem scale.

The same definition can also be considered for the case when G is a non-commutative
semi-group and m,n ∈ Z>0. One thus arrives at the concept of the GSD (also DL) and
CDH assumptions over a non-commutative semi-group.

3 We omit the clause of “with respect to its subset S” for visual comfort, unless the set S should
be explicit specified.



3.3 Sampling and Disguising

Just as addressed in [35], we have to be careful when we mention instances in an infinite
group G. In the current information theory, it is hard to discuss a uniform distribution
in G of elements described by randomly chosen information [35]. To avoid any potential
controversy, we always assume that instances to a problem are randomly chosen in a finite
subset of an infinite group G restricted by system parameters [35].

Disguising is another issue we have to address here. In abstract groups, the result of
multiplication is simply concatenation: a · b = ab, thus an extra effort is always required to
disguise factors in a product [59]. The importance of this is rather obvious [59]: if, for exam-
ple, one transmits a conjugate x−1ax of a public element a “as is”, i.e., without disguising,
then the opponent can determine the private element x just by inspection. Choosing good
disguising technique is non-trivial problem outside the scope of this paper, please refer [59]
and [19] for more materials.

4 Public Key Cryptosystems Using Non-commutative Rings

4.1 Integral Coefficient Ring Polynomials

Suppose that R is a ring with (R,+,0) and (R, ·,1) as its additive abelian group and mul-
tiple non-abelian semi-group, respectively. Let us consider integral coefficient polynomials
with ring assignment.

At first, the notion of scale multiplication over R is already on hand. For k ∈ Z>0 and
r ∈ R,

(k)r , r + · · ·+ r︸ ︷︷ ︸
k times

. (1)

When k ∈ Z<0, we can define

(k)r , (−k)(−r) = (−r) + · · ·+ (−r)︸ ︷︷ ︸
−k times

. (2)

For k = 0, it is natural to define (k)r = 0.

Property 1. (a)rm · (b)rn = (ab)rm+n = (b)rn · (a)rm,∀a, b, m, n ∈ Z and ∀r ∈ R.

Proof. According to the definition of scale multiplication, the distributivity of multiplica-
tion with respect to addition, and commutativity of addition, this statement is concluded
immediately. ut

Remark 2. Note that in general, (a)r · (b)s 6= (b)s · (a)r when r 6= s, since multiplication in
R is non-commutative.

Now, let us proceed to define positive integral coefficient ring polynomials. Suppose that
f(x) = a0 + a1x + · · · + anxn ∈ Z>0[x] is a given positive integral coefficient polynomial.
We can assign this polynomial by using an element r in R and finally obtain

f(r) =
n∑

i=0

(ai)ri = (a0)1 + (a1)r + · · ·+ (an)rn, (3)



which is an element in R, of course. Further, if we regard r as a variable in R, then f(r) can
be looked as a polynomial about variable r. The set of all this kind of polynomials, taking
over all f(x) ∈ Z>0[x], can be looked the extension of Z>0 with r, denoted by Z>0[r]. For
convenience, we call it the set of 1-ary positive integral coefficient R-polynomials.

Suppose that f(r) =
n∑

i=0

(ai)ri ∈ Z>0[r], h(r) =
m∑

j=0

(bj)rj ∈ Z>0[r] and n ≥ m, then(
n∑

i=0

(ai)ri

)
+

 m∑
j=0

(bj)rj

 =

(
m∑

i=0

(ai + bi)ri

)
+

(
n∑

i=m+1

(ai)ri

)
, (4)

and according to Property 1 as well as the distributivity, we have(
n∑

i=0

(ai)ri

)
·

 m∑
j=0

(bj)rj

 =
n+m∑
i=0

(pi)ri, (5)

where pi =
i∑

j=0

ajbi−j =
∑

j+k=i

ajbk. And then, we can conclude immediately the following

theorem according to Property 1.

Theorem 1. f(r) · h(r) = h(r) · f(r),∀f(r), h(r) ∈ Z>0[r].

Remark 3. If r and s are two different variable, then f(r) · h(s) 6= h(s) · f(r) in general.

4.2 Further Assumptions on Non-commutative Rings

Suppose that (R,+, ·) is a non-commutative ring. For any randomly picked element
a ∈ R, we define a set Pa ⊆ R by

Pa , {f(a) : f(x) ∈ Z>0[x]}.

Then, let us consider the new versions of GSD and CDH problems over (R, ·) with respect
to its subset Pa, and name them as polynomial symmetric decomposition (PSD) problem
and polynomial Diffie-Hellman (PDG) problem respectively:

– Polynomial Symmetrical Decomposition (PSD) Problem over Non-commutative
Ring R: Given (a, x, y) ∈ R3 and m,n ∈ Z, find z ∈ Pa such that y = zmxzn.

– Polynomial Diffie-Hellman (PDH) Problem over Non-commutative Ring R:
Compute xz1z2 (or xz2z1) for given a, x, xz1 and xz2 , where a, x ∈ R, z1, z2 ∈ Pa.

Accordingly, the PSD (PDH, respectively) cryptographic assumption says that PSD
(PDH, respectively) problem over (R, ·) is intractable, i.e., there does not exist probabilistic
polynomial time algorithm which can solve PSD (PDH, respectively) problem over (R, ·)
with non-negligible accuracy with respect to problem scale.

4.3 Diffie-Hellman-Like Key Agreement Protocol from Non-commutative
Rings

Now, let us take R as the underlying work fundamental infrastructure and design a
Diffie-Hellman-like key exchange protocol, by which two entities, say Alice and Bob, can
reach an agreement on a shared, secret session key via a public, insecure network.

The protocol is described as follows:



(0) One of the entities (say, Alice) sends two random small, positive integers (say, less than
10) m,n ∈ Z>0 and two random4 elements a, b ∈ R to another entity (say, Bob) as the
signal of launching the protocol.

(1) Alice chooses a random polynomial f(x) ∈ Z>0[x] such that f(a) 6= 0 and then takes
f(a) as her private key.

(2) Bob chooses a random polynomial h(x) ∈ Z>0[x] such that h(a) 6= 0 and then takes
h(a) as his private key.

(3) Alice computes rA = f(a)m · b · f(a)n and sends5 rA to Bob.
(4) Bob computes rB = h(a)m · b · h(a)n and sends rB to Alice.
(5) Alice computes KA = f(a)m · rB · f(a)n as the shared session key.
(6) Bob computes KB = h(a)m · rA · h(a)n as the shared session key.

In practice, the steps (0), (1) and (3) can be finished simultaneously and require only one
pass communication from Alice to Bob. After that, the steps (2) and (4) can be finished in
one pass communication from Bob to Alice. Finally, Alice and Bob can execute the steps (5)
and (6) respectively, needless further communication. A high-level depiction of the protocol
is given in Figure 1.

Pass Alice Bob

Chooses m, n ∈ Z>0 at random
Chooses a, b ∈ R at random
Chooses f(x) ∈ Z>0[x] at random

1
m,n,a,b,f(a)mbf(a)n

−−−−−−−−−−−−−−−−−−→
Chooses h(x) ∈ Z>0[x] at random

2
h(a)mbh(a)n

←−−−−−−−−−−−−
KA = f(a)mh(a)mbh(a)nf(a)n = KB = h(a)mf(a)mbf(a)nh(a)n

Fig. 1. Diffie-Hellman-Like Key Agreement Based on Non-commutative Ring

It is trivial to prove that the above key agreement protocol can resist passive adversary
under the PDH assumption over the non-commutative monoid (R, ·). Obviously, similar to
the standard Diffie-Hellman protocol [20], the protocol depicted in Figure 1 cannot resist
the man-in-the-middle (MIM) attack. The revising work is a meaningful but little tough
task which is left for interested readers.

4.4 ElGamal-Like Encryption Scheme From Non-commutative Rings

Based on the above key agreement, it is straightforward to describe an ElGamal-like
encryption scheme as follows.

[Basic Scheme]

4 See Section 3.3 for the sampling issue.
5 In practice, the element has to be disguised by certain canonical form before it is transmitted

via the public channel. Please see Section 3.3 for the disguising issue.



– Initial setup: Suppose that the non-commutative ring (R,+, ·) is the underlying work
fundamental infrastructure and SDP is intractable on the monoid (R, ·). Pick two small
positive integers m,n ∈ Z>0. Let H : R →M be a cryptographic hash function which
maps R to the message space M. Then, the public parameters of the system would be
the tuple < R,m, n,M,H >.

– Key generation: Each user chooses two random elements p, q ∈ R and a random
polynomial f(x) ∈ Z>0[x] such that f(p) 6= 0 and then takes f(p) as his private key,
computes y = f(p)m · q · f(p)n and publishes his public key (p, q, y) ∈ R3.

– Encryption: Given a message M ∈ M and receiver’s key (p, q, y) ∈ R3, the sender
chooses a random polynomial h(x) ∈ Z>0[x] such that h(p) 6= 0 and then takes h(p) as
salt, computes

c = h(p)m · q · h(p)n, d = H(h(p)m · y · h(p)n)⊕M,

and finally outputs the ciphertext (c, d) ∈ R×M.
– Decryption: Upon receiving a ciphertext (c, d) ∈ R ×M, the receiver, by using his

private key f(p), computes the plaintext

M = H(f(p)m · c · f(p)n)⊕ d

First, we present an “all or nothing” security result for the above basic encryption scheme.
The statement of the result as well as the proof technique are very similar to Theorem 8.3
of [44], except an additional random oracle assumption on H.

Theorem 2. For a plaintext message uniformly distributed in the plaintext message space,
the above cryptosystem is “all-or-nothing” secure against CPA under the PDH assumption
over the non-commutative ring (R,+, ·) provided that H is a random oracle.

Proof. On the one hand, if PDH problem is tractable, for any given ciphertext pair (c, d)
and the corresponding public key (p, q, y), it is easy to compute k = q(logq c)(logq y) from the
triple (q, c, y) and then extract the plaintext M = d⊕H(k).

On the other hand, suppose on the contrary there exists an efficient adversary A, with
access to the random oracle H, against the above cryptosystem, that is, given any public
key (p, q, y = f(p)mqf(p)n) and ciphertext (c, d), A outputs

M ← AH(p, q, y, c, d)

with a non-negligible advantage ε such that M satisfies

M = d⊕H(ylogq c) = d⊕H(q(logq y)(logq c)), i.e. M = d⊕H(hmyhn) and c = hmqhn

for some h ∈ Pp. Then, for an arbitrary PDH instance (a, x, xz1 , xz2). We set (a, x, xz1) as
public key and set (xz2 , d) as ciphertext pair for a random d ∈M. Then, with the advantage
ε, A outputs

M ← AH(a, x, xz1 , xz2 , d)

with M satisfying

M = d⊕H(xz1z2), i.e. M = d⊕H(zm
2 zm

1 xzn
1 zn

2 )

for some z2 ∈ Pa. Recall that z1 ∈ Pa, thus z2z1 = z1z2 according to Theorem 1. Then,

M = d⊕H(zm
2 zm

1 xzn
1 zn

2 ) = d⊕H(xz1z2) = d⊕H(xz2z1).



Clearly, if the adversary A’s advantage ε is non-negligible, then A must make corresponding
H-query on xz1z2 ; Otherwise, since H is modeled as a cryptographic hash, A’s advantage
should be negligible no matter what he can compute before making such a query.

With the random oracle assumption on H, we can maintain a H-list which contains two
fields (ri, hi) and is initialized with empty. Whenever the adversary A makes a H-query
with input r, we examine whether there exists the pair (r, h) in H-list. If so, return h as the
answer to A; Otherwise, randomly pick h ∈ M, add the pair (r, h) into H-list and return
h as the answer to A. Clearly, the simulation on H is perfect. Finally, when A outputs M ,
we can retrieval the correct item xz1z2 = ri by checking the equality M = d⊕ hi. Thus, we
can solve PDH problem with the non-negligible probability ε. This contradicts the holding
of the PDH assumption. ut

The above theorem just say that the basic scheme reaches the weakest security, i.e. the
OW-CPA security. Although we can use a technique due to Fjisaki-Okamoto (at CRYPTO’99)
[25] to convert the above basic scheme into a chosen ciphertext secure system in the random
oracle, we would like to adopt another technique also due to Fjisaki-Okamoto (at PKC’99)
[24] to reach the same goal, since the latter is more direct than the former. Before to do
this, we have at first prove that the above basic scheme reaches the IND-CPA security.

Theorem 3 (IND-CPA of Basic Scheme). Let H be a random oracle from R to M.
Let A be an IND-CPA adversary that has advantage ε against the above basic scheme within
t steps. Suppose A makes a total of qH > 0 queries to H. Then there is an algorithm B that
solves PDH problem over the non-commutative ring R with advantage at least ε′ within t′

steps, where

ε′ =
2ε

qH
, and t′ = O(t).

Proof. Algorithm B is given as input a 4-tuple (a, x, y1, y2) with yi = xzi = zm
i xzn

i for
unknown zi ∈ Pa, i = 1, 2, i.e., an instance of PDH problem. Let y = xz1z2 denote the
solution to PDH problem on this instance.

– Setup. At first, the algorithm B sets the system parameters to be < R, m, n,M,H >
and creates a public key (a, x, y1). Both the system parameters and the public key should
be available to the adversary A.

– H-queries. Then, B maintains a H-list which contains two fields (rj , hj) and is initial-
ized with empty. Whenever the adversary A makes a H-query with input r, B examines
whether there exists the pair (r, h) in H-list. If so, returns h as the answer to A; Other-
wise, randomly picks h ∈M, adds the pair (r, h) into H-list and returns h as the answer
to A. Clearly, the simulation on H is perfect.

– Challenge. When A outputs two messages M0 and M1 on which it wished to be chal-
lenged. B picks randomly a string d ∈ M and defines C to be the ciphertext pair
C = (y2, d). It then gives C to A as the challenge. Notice that, by definition, the de-
cryption of C is d ⊕H(x(logx y1)(logx y2) = d ⊕H(xz1z2) = d ⊕H(y). (Recall that z1, z2

and y are all unknown and y is just the solution to the above instance of PDH.)
– Guess. A outputs its guess b′ ∈ {0, 1}. At this point, B picks a random tuple (rj , hj)

from the H-list and outputs rj as the solution to the given instance of PDH.

It is easy to see that A’s view in B’s simulation is the same as in a real attack, in other
words, the simulation is perfect. So A’s advantage in this simulation will be ε. We let H be
the event that y is queried to H oracle during B’s simulation.



Notice that H(y) is independent of A’s view, so if A never queries y to the H oracle in
the above simulation, then the decryption of C is also independent of its view. Therefore,
in the simulation we have Pr[b = b′|¬H] = 1/2. By the definition of A, we know that in
the real attack (and also in the simulation) | Pr[b = b′] − 1/2 | ≥ ε. We have the following
bounds on Pr[b = b′]:

Pr[b = b′] = Pr[b = b′|¬H]Pr[¬H] + Pr[b = b′|H]Pr[H]
≤ Pr[b = b′|¬H]Pr[¬H] + Pr[H]

=
1
2
Pr[¬H] + Pr[H]

=
1
2

+
1
2
Pr[H],

Pr[b = b′] ≥ Pr[b = b′|¬H]Pr[¬H]

=
1
2
Pr[¬H]

=
1
2
(1− Pr[H])

=
1
2
− 1

2
Pr[H]).

Hence we have | Pr[b = b′] − 1/2 | ≤ 1
2Pr[H]. By | Pr[b = b′] − 1/2 | ≥ ε we know that

Pr[H] ≥ 2ε. Furthermore, by the definition of the event H, we know that y appears in some
tuple on the H-list with probability at least 2ε. It follows that B outputs the correct answer
to the above instance of PDH with probability at least 2ε/qH as required. ut

At PKG’99, Fujisaki and Okamoto [24] introduced a method to convert an IND-CPA
encryption scheme into an IND-CCA2 scheme. For self-containing, we rehearse their main
idea as follows:

Suppose Π := {K, E ,D} is an IND-CPA secure public-key encryption scheme with
key generation algorithm K(1k), encryption algorithm Epk(X, S) and decryption algorithm
Dsk(y), where pk and sk are a public key and the corresponding private key, X a message
with k +k0 bits, S a random string with l bits and y a ciphertext. The converted public-key
encryption scheme Π̄ := {K̄, Ē , D̄} is defined by

K̄(1k) := K(1k+k0),
Ēpk(x, r) := Epk(x ‖ r, H(x ‖ r)),

D̄sk(y) :=
{

[Dsk(y)]k, if y = Epk(Dsk(y),H(Dsk(y)))
⊥, otherwise

where H is a random function of {0, 1}k+k0 → {0, 1}l, x is a message with k bits, r a random
string with k0 bits and ‖ denotes concatenation.

Theorem 4 (Fujisaki-Okamoto Theorem [24]). Suppose that Π(1k+k0) is the original
IND-CPA secure scheme and Π̄ is the converted scheme. If there exists a (t, qH , qD, ε)-
breaker A for Π̄(1k) in the sense of IND-CCA2 in the random oracle model, there exist
constant c and a (t′, 0, 0, ε′)-breaker A′ for Π(1k+k0) where

ε′ = (ε− qH · 2−(k0−1)) · (1− 2−l0)qD and
t′ = t + qH · (TE(k) + c · k).



Here, (t, qH , qD, ε)-breaker A, informally, means that A stops within t steps, succeeds with
probability at least ε, makes at most qH queries to random oracle H, and makes at most qD

queries to decryption oracle Dsk. TE(k) denotes the computational time of the encryption
algorithm Epk(·), and l0 := log2(minx∈{0,1}k+k0 [#{Epk(x, r)|r ∈ {0, 1}l}]).

Proof. See Theorem 3 of [24].

According to Fujisaki-Okamoto[24], with sacrificing of k0 bits plaintext, we can convert
our basic encryption scheme into an enhanced one, which reaches IND-CCA2 security. In
the enhanced scheme, system parameters < R, m, n,M > are as same as those in the
basic scheme. The cryptographic hash function H in basic scheme is replaced with two new
cryptographic hash functions H1 : {0, 1}k+k0 → Z>0[x] and H2 : R → {0, 1}k+k0 , where k
is the standard length of a message, i.e.,M = {0, 1}k, while k0 is the length of random salt
that should not be determined by binary search method (for example, we set k0 = 128).

Now, the enhanced encryption scheme which achieves IND-CCA2 security, is described
as follows.
[Enhanced Scheme]

– Initial setup: System public parameters include R,m, n,M and k0,H1,H2.
– Key generation: Identical to the Key Generation step in the basic scheme.
– Encryption: Given a message M ∈M and receiver’s key (p, q, y = f(p)m · q · f(p)n) ∈

R3, the sender chooses a random salt r ∈ {0, 1}k0 and extracts6 a polynomial h(x) =
H1(M ‖ r) ∈ Z>0[x] such that h(p) 6= 0 and then computes

c = h(p)m · q · h(p)n, d = H2(h(p)m · pk · h(p)n)⊕ (M ‖ r),

and finally outputs the ciphertext (c, d) ∈ R× {0, 1}k+k0 .
– Decryption: Upon receiving a ciphertext (c, d) ∈ R×{0, 1}k+k0 , the receiver, by using

his private key f(p), computes

M ′ = H2(f(p)m · c · f(p)n)⊕ d.

Finally, extracts g(x) = H1(M ′) ∈ Z>0[x] and checks whether c = g(p)m ·q ·g(p)n holds.
If so, outputs the beginning k bits of M ′; otherwise, outputs empty string, which means
that the given ciphertext is invalid.

Analogously, the enhanced scheme is the result of applying the Fujisaki-Okamoto [24]
transformation to the basic scheme. Based on Theorem 3 and Theorem 4, we have

Theorem 5 (IND-CCA2 of Enhanced Scheme). Let H1 and H2 be random oracles.
Then the enhanced scheme is an adaptively chosen ciphertext secure encryption (IND-CCA2)
assuming PDH over the non-commutative ring R is hard. More specifically, suppose there
is an IND-CCA2 adversary A that has advantage ε against the enhanced scheme within t
steps. Suppose A makes at most qD decryption queries, and at most qH1 , qH2 queries to the
hash functions H1, H2 respectively. Then there is an algorithm B which can solve PDH with
the probability at least ε′ within t′ steps, where

ε′ =
2

qH1

[
ε

(1− 2−l0)qD
+ qH2 · 2−(k0−1)

]
, and

t′ = O (t− qH2 · (TE(k) + c · k))
6 See Remark 4 for further discussion.



where c is a constant and TE(k) denotes the computational time of the encryption algorithm
Epk(·) in our basic scheme, and l0 := log2(minx∈{0,1}k+k0 [#{Epk(x, r)|r ∈ {0, 1}l}]).

Proof. At first, from Theorem 3 and Theorem 4, it immediately concludes that our enhanced
encryption scheme reaches IND-CCA2 security in the random oracle model assuming that
PDH is hard. Then, by combining the results of both the IND-CPA theorem and Fujisaki-
Okamoto theorem, we obtain the above bounds. ut

Remark 4. It is worth noting the elaborations on implementing a cryptographic hash that
maps a binary string to a polynomial, such as H1 : {0, 1}k+k0 → Z>0[x]. In particular,
the resulting polynomials should satisfy further constraints, such as the condition h(p) 6= 0
and so on. We employ the so-called divide-and-conquer strategy to solve this problem: At
first, we extract a polynomial h(x) ∈ Z>0[x] from a binary string in {0, 1}k+k0 ; Then, we
adopt a unique, deterministic way to rectify h(x) to h̃(x) such that h̃(x) satisfies the desired
condition C. In other words, we have to consider the following issues in designing the desired
hash:

– Extracting. In practice, we prefer to choose polynomials with low degrees and large
coefficients. Let us assume that the highest degree is dH and the maximal coefficient is
cM , then dH · cM should be large enough to resist brute force attack. Thus, there is a
trivial solution to implement H1: Suppose that we already have a cryptographic hash
function H ′ which maps {0, 1}k+k0 to ZdH+1

cM
. Then, for any given image of H1, i.e., a

vector (z0, z1, · · · , zdH
) ∈ ZdH+1

cM
, we can map it to a goal polynomial h(x) by a natural

way:
h(x) = z0 + z1x + · · ·+ zdH

xdH . (6)

– Rectifying. Suppose we adopt an additive rectifying strategy. Then, for resulting poly-
nomial h(x), it can be rectified to h̃(x) = h(x) + ∆ while

∆ = min{δ ∈ Z≥0 : h(x) + δ · 1R ∈ Z>0[x] ∩ C},

where Z>0[x] ∩ C is the set of polynomials in Z>0[x] satisfying the given condition C.
– Collision-Resisting. The above rectifying strategy should not violate the property of

collision resistance. In fact, the collision resistance of H1 is rooted in the one-wayness
of H ′.

4.5 Concrete Examples: Public Key Cryptosystems Using Matrix Rings

Let us illustrate our method by using a special matrix ring: M2(ZN ), where N = p · q
while p and q are two large secure primes. We have solid reason to believe that SDP over
M2(ZN ) is intractable, since it is infeasible to extract

A =
(

a 0
0 0

)
∈M2(ZN ), a ∈ ZN

from

A2 =
(

a2 mod N 0
0 0

)
∈M2(ZN )

without knowing the factoring of N .



Example 1. Diffie-Hellman-Like Key Agreement Using Matrix Rings

Let N = 7 · 11 for simplicity7. Suppose that Alice chooses

m = 3, n = 5, A =
(

2 5
7 4

)
, B =

(
1 9
3 2

)
, and f(x) = 3x3 + 4x2 + 5x + 6.

She computes

f(A) = 3 ·
(

2 5
7 4

)3

+ 4 ·
(

2 5
7 4

)2

+ 5 ·
(

2 5
7 4

)
+ 6 · I =

(
35 12
63 9

)
,

and

rA =
(

35 12
63 9

)3(1 9
3 2

)(
35 12
63 9

)5

=
(

49 53
42 31

)
.

Then, she sends m,n,A,B and rA to Bob.
Now, suppose that Bob, upon receiving m,n,A,B and rA from Alice, chooses another

polynomial h(x) = x5 + 5x + 1 and computes

h(A) =
(

2 5
7 4

)5

+ 5 ·
(

2 5
7 4

)
+ I =

(
64 13
49 23

)
,

and

rB =
(

64 13
49 23

)3(1 9
3 2

)(
64 13
49 23

)5

=
(

29 40
52 6

)
.

Then, he sends rB to Alice.
Finally, Alice extracts the session key

KA =
(

35 12
63 9

)3(29 40
52 6

)(
35 12
63 9

)5

=
(

28 37
14 40

)
,

while Bob extracts the session key

KB =
(

64 13
49 23

)3(49 53
42 31

)(
64 13
49 23

)5

=
(

28 37
14 40

)
.

Apparently, KA = KB holds, i.e., the key agreement is successful.

Example 2. Encryption/Decryption Using Matrix Rings

At first, we have to define the message spaceM as well as cryptographic hash functions
H for the basic scheme and H1,H2 for the enhanced scheme (note that in this subsection
we always define R , M2(ZN )). For simplicity, we assume thatM , M2(ZN ) for the basic

scheme andM ,

{(
a b
c 0

)
: a, b, c ∈ ZN

}
for the enhanced scheme, while

H : M2(ZN )→M = M2(ZN ),mij 7→ 2mij mod N,

7 Although the modular N in our toy examples is too small, it is enough to illustrate our method.



and

H1 :M× ZN → Z>0[x],
((

a b
c 0

)
, r

)
7→ 2r + 2ax + 2bx2 + 2cx3,

where all coefficients 2r, 2a, 2b and 2c should be regarded as elements in ZN . For more
simplicity, we define

(M ‖ r) ,

(
a b
c 0

)
+
(

0 0
0 r

)
=
(

a b
c r

)
.

Then, H2 : M2(ZN )→M× ZN can be defined as(
a b

c d

)
7→ (M ‖ r), where M =

(
2a 2b

2c 0

)
mod N, r = 2d mod N.

Next, let N = 7 · 11 for example. Suppose that the left system parameters are

m = 3, n = 5, p =
(

2 5
7 4

)
, q =

(
1 9
3 2

)
.

[Encryption/Decryption with Basic Scheme]
Suppose that the polynomial f(x) picked by Alice is just that of in example 1. Then,

Alice’ private key is f(p) =
(

35 12
63 9

)
, just as f(A) in Example 1. Then, the corresponding

public key would be pk , f(p)3qf(p)5 =
(

49 53
42 31

)
, just as rA in Example 1.

Let us pick a message M randomly, say M =
(

27 19
34 8

)
. Suppose the salt polynomial we

picked randomly is coincide to h(x) in Example 1. Then, the salt matrix h(p) =
(

64 13
49 23

)
,

just as h(A) in Example 1. Now, let us compute the ciphertext (c, d) as follows:

c = h(p)3qh(p)5 =
(

64 13
49 23

)3(1 9
3 2

)(
64 13
49 23

)5

=
(

29 40
52 6

)
,

and

d = H(h(p)3 · pk · h(p)5)⊕M

= H

((
64 13
49 23

)3(49 53
42 31

)(
64 13
49 23

)5
)
⊕
(

27 19
34 8

)
= H

((
28 37
14 40

))
⊕
(

27 19
34 8

)
=
((

228 237

214 240

)
mod N

)
⊕
(

27 19
34 8

)
=
(

58 51
60 23

)
⊕
(

27 19
34 8

)
=
(

33 32
30 31

)
.



Now, let us check the decryption process:

M ′ = H(f(p)3 · c · f(p)5)⊕ d

= H

((
35 12
63 9

)3(29 40
52 6

)(
35 12
63 9

)5
)
⊕
(

33 32
30 31

)
= H

((
28 37
14 40

))
⊕
(

33 32
30 31

)
=
((

228 237

214 240

)
mod N

)
⊕
(

33 32
30 31

)
=
(

58 51
60 23

)
⊕
(

33 32
30 31

)
=
(

27 19
34 8

)
= M.

[Encryption/Decryption with Enhanced Scheme]
Suppose that the private/public keys are unchanged. Let us pick a message M randomly,

say M =
(

27 19
34 0

)
. Suppose the salt number we picked randomly is r = 35. Then, we

extract a polynomial as follows:

h(x) = (235 mod N) + (227 mod N)x + (219 mod N)x2 + (234 mod N)x3

= 32 + 29x + 72x2 + 16x3.

Thus,

h(p) = 32 · I + 29 ·
(

2 5
7 4

)
+ 72 ·

(
2 5
7 4

)2

+ 16 ·
(

2 5
7 4

)3

=
(

37 30
42 49

)
6= 0.

(Note that if h(x) does not satisfy the condition of h(p) 6= 0, we should at first rectify h(x)
to h̃(x) = h(x) + ∆, where

∆ = min
{

δ ∈ Z≥0 : h(p) + δ ·
(

1 0
0 1

)
6= 0

}
.

Fortunately, in this example. The above extracted h(x) meets the requirement of h(p) 6= 0,
i.e., ∆ = 0.)

Then, then cipertext pair is

c = h(p)3qh(p)5 =
(

37 30
42 49

)3(1 9
3 2

)(
37 30
42 49

)5

=
(

65 37
35 7

)
,



and

d = H(h(p)3 · pk · h(p)5)⊕ (M ‖ r)

= H

((
37 30
42 49

)3(49 53
42 31

)(
37 30
42 49

)5
)
⊕
(

27 19
34 35

)
= H

((
21 14
21 7

))
⊕
(

27 19
34 35

)
=
((

221 214

221 27

)
mod N

)
⊕
(

27 19
34 35

)
=
(

57 60
57 51

)
⊕
(

27 19
34 35

)
=
(

34 47
27 16

)
.

Now, let us check the enhanced decryption process:

M ′ = H(f(p)3 · c · f(p)5)⊕ d

= H

((
35 12
63 9

)3(65 37
35 7

)(
35 12
63 9

)5
)
⊕
(

34 47
27 16

)
= H

((
21 14
21 7

))
⊕
(

34 47
27 16

)
=
((

221 214

221 27

)
mod N

)
⊕
(

34 47
27 16

)
=
(

57 60
57 51

)
⊕
(

34 47
27 16

)
=
(

27 19
34 35

)
=
(

27 19
34 0

)
+
(

0 0
0 35

)
= M ‖ r.

5 Public Key Cryptosystems Using Non-commutative Groups
and Semi-groups

The method described in the above section is suite for general non-commutative rings.
A natural question is: Can we transfer these results to general non-commutative groups and
non-commutative semi-groups by similar ways?

5.1 Extension of Non-commutative Groups

Now, given a non-commutative group (G, ·, 1G). Suppose that there is a ring (R,+, ·, 1R)
and a monomorphism τ : (G, ·, 1G) → (R, ·, 1R). Then, the inverse map τ−1 : τ(G) → G is



also a well-defined monomorphism and for a, b ∈ G, if τ(a) + τ(b) ∈ τ(G), we can assign a
new element c ∈ G as

c , τ−1(τ(a) + τ(b)), (7)

and call c as the quasi-sum of a and b, denoted by c = a� b. Similarly, for k ∈ R and a ∈ G,
if k · τ(a) ∈ τ(G), then we can assign a new element d ∈ G as

d , τ−1(k · τ(a)), (8)

and call d as the k quasi-multiple of a, denoted by d = k � a.
Then, we can see that the monomorphism τ is linear in sense of that the following

equalities hold

τ(k � a � b) = τ((k � a) � b)
d←k�a= τ(d � b)

= τ(τ−1(τ(d) + τ(b)))
= τ(τ−1(τ(τ−1(k · τ(a))) + τ(b)))
= τ(τ−1(k · τ(a) + τ(b)))
= k · τ(a) + τ(b).

for a, b ∈ G and k · τ(a) + τ(b) ∈ τ(G).
Further, for f(x) = z0 + z1x + · · · + znxn ∈ Z[x] and a ∈ G, if f(τ(a)) = z0 · 1R + z1 ·

τ(a) + · · ·+ zn · τ(a)n ∈ τ(G), then we can assign a new element e ∈ G as

e , τ−1(f(τ(a))) = τ−1(z0 · 1R + z1 · τ(a) + · · ·+ zn · τ(a)n), (9)

and call e as the quasi-polynomial of f on a, denoted by e = f(a).
Clearly, for arbitrary a, b ∈ G, k ∈ R and f(x) ∈ Z[x], a � b, k � a and f(a) are not

always well-defined. But, we can prove that the following theorem holds.

Theorem 6. For some a ∈ G and some f(x), h(x) ∈ Z[x], if f(a) and h(a) are well-defined,
then

(i) τ(f(a)) = f(τ(a));
(ii) f(a) · h(a) = h(a) · f(a).

Proof. At first, (i) is apparent according to the definition of quasi-polynomial. Next, we
have,

f(a) · h(a) = τ(τ−1(f(a))) · τ(τ−1(h(a))) (∵ τ(τ−1(g)) = g, g ∈ G.)
= τ(τ−1(f(a)) · τ−1(h(a))) (∵ τ is monomorphism.)
= τ(τ−1(f(a) · h(a))) (∵ τ−1 is monomorphism.)
= τ(τ−1(h(a) · f(a))) (∵ Theorem 1)
= τ(τ−1(h(a)) · τ−1(f(a)))
= τ(τ−1(h(a))) · τ(τ−1(f(a)))
= h(a) · f(a).

ut



5.2 Further Assumptions on Non-commutative Groups

Similar to polynomial version assumptions over a non-commutative ring in Section 4.2,
we now consider polynomial version assumption over the non-commutative group G. For
any randomly picked element a ∈ G, we define a set Pa ⊆ G by

Pa , {f(a) ∈ τ(G) : f(x) ∈ Z[x]}.

Then, we can define the PSD and PDH problems over (G, ·) by a similar way:

– Polynomial Symmetrical Decomposition (PSD) Problem over Non-commutative
Group G: Given (a, x, y) ∈ G3 and m,n ∈ Z, find z ∈ Pa such that y = zmxzn.

– Polynomial Diffie-Hellman (PDH) Problem over Non-commutative Group
G: Compute xz1z2 (or xz2z1) for given a, x, xz1 and xz2 , where a, x ∈ G, z1, z2 ∈ Pa.

Accordingly, the PSD (PDH, respectively) cryptographic assumptions over (G, ·) says
that PSD (PDH, respectively) problems over (G, ·) is intractable, i.e., there does not exist
probabilistic polynomial time algorithm which can solve PSD (PDH, respectively) problems
over (G, ·) with non-negligible accuracy with respect to problem scale.

5.3 Public Key Cryptosystems From Non-commutative Groups

Now, let us take a non-commutative group G with intractable SDP as the underlying
work fundamental infrastructure and then restate the Diffie-Hellman-like key exchange pro-
tocol in Section 4.3, by a very similar way:

(0) One of the entities (say, Alice) sends two random small, positive integers (say, less than
10) m,n ∈ Z and two random elements a, b ∈ G to another entity (say, Bob) as the
signal of launching the protocol.

(1) Alice chooses f(x) ∈ Z[x] at random such that f(a) is well-defined, i.e., f(τ(a)) ∈ τ(G).
Then, Alice takes f(a) as her private key.

(2) Bob chooses h(x) ∈ Z[x] at random such that h(a) is well-defined, i.e., h(τ(a)) ∈ τ(G).
Then, Bob takes h(a) as his private key.

(3) Alice computes rA = f(a)m · b · f(a)n and sends rA to Bob.
(4) Bob computes rB = h(a)m · b · h(a)n and sends rB to Alice.

Pass Alice Bob

Chooses m, n ∈ Z at random
Chooses a, b ∈ G at random
Chooses f(x) ∈ Z[x] randomly
s.t. f(τ(a)) ∈ τ(G)

1
m,n,a,b,f(a)mbf(a)n

−−−−−−−−−−−−−−−−−−→
Chooses h(g) ∈ Z[x] randomly

s.t. h(τ(a)) ∈ τ(G)

2
h(a)mbh(a)n

←−−−−−−−−−−−−
KA = f(a)mh(a)mbh(a)nf(a)n = KB = h(a)mf(a)mbf(a)nh(a)n

Fig. 2. Diffie-Hellman-Like Key Agreement Based on Non-commutative Groups



(5) Alice computes KA = f(a)m · rB · f(a)n as the shared session key.
(6) Bob computes KB = h(a)m · rA · h(a)n as the shared session key.

In practice, the steps (0), (1) and (3) can be finished simultaneously and require only
one pass communication from Alice to Bob. After that, the steps (2) and (4) can be finished
simultaneously and require another pass communication from Bob to Alice. Finally, Alice
and Bob can execute the steps (5) and (6) respectively, needless further communication.
Thus, we can depict the protocol in Figure 2.

Similarly, it is easy to describe ElGamal-like encryption schemes, including the basic
scheme and the enhanced scheme as well, by using non-commutative groups as the underlying
algebraic basis.

[Basic Scheme]

– Initial setup: Given the non-commutative group (G, ·), we assume that SDP on G
is intractable. Pick two small positive integers m,n ∈ Z and two elements p, q ∈ G
at random. Let H : G → M be a cryptographic hash function which maps G to the
message spaceM. Then, set the tuple < G,m, n, p, q,M,H > as the public parameters
of the system.

– Key generation: Each user chooses a random polynomial f(x) ∈ Z[x] such that
f(τ(p)) ∈ τ(G) and takes sk , f(p) as his private key, then computes and publishes his
public key pk , f(p)m · q · f(p)n ∈ G.

– Encryption: Given a message M ∈ M and receiver’s key pk ∈ G, the sender chooses
a random polynomial h(x) ∈ Z[x] such that h(τ(p)) ∈ τ(G) and takes h(p) as salt, then
computes

c = h(p)m · q · h(p)n, d = H(h(p)m · pk · h(p)n)⊕M,

and finally outputs the ciphertext (c, d) ∈ G×M.
– Decryption: Upon receiving a ciphertext (c, d) ∈ R ×M, the receiver, by using his

private key f(p), computes the plaintext

M = H(f(p)m · c · f(p)n)⊕ d

[Enhanced Scheme]

– Initial setup: System public parameters include G, m, n, p, q,M and k0,H1,H2, where
G, m, n, p, q and M are as same as those in the basic scheme, while the cryptographic
hash function H in basic scheme is replaced with two new introduced cryptographic hash
functions H1 : {0, 1}k+k0 → Z>0[x] and H2 : G → {0, 1}k+k0 , where k is the standard
length of a message, i.e.,M = {0, 1}k, while k0 is the length of random salt that should
not be determined by binary search method (for example, we set k0 = 128).

– Key generation: Identical to the Key Generation step in the basic scheme.
– Encryption: Given a message M ∈ M and receiver’s key pk ∈ G, the sender chooses

a random salt r ∈ {0, 1}k0 and extracts8 a polynomial h(x) ∈ Z[x] such that h(τ(p)) ∈
τ(G) and then computes

c = h(p)m · q · h(p)n, d = H2(h(p)m · pk · h(p)n)⊕ (M ‖ r),

and finally outputs the ciphertext (c, d) ∈ R× {0, 1}k+k0 .
8 See Remark 4 for further explanation.



– Decryption: Upon receiving a ciphertext (c, d) ∈ R×{0, 1}k+k0 , the receiver, by using
his private key f(p), computes

M ′ = H2(f(p)m · c · f(p)n)⊕ d.

Finally, extracts g(x) = H1(M ′) ∈ Z[x] and checks whether c = g(p)m · q · g(p)n holds.
If so, outputs the beginning k bits of M ′; otherwise, outputs empty string, which means
that the given ciphertext is invalid.

The securities and related proofs of the above cryptosystems are very similar to that of
those schemes in Section 4, except replacing the PDH assumption over non-commutative
ring R with the PDH assumption over non-commutative group G.

5.4 For Non-commutative Semi-groups

The same construction from Section 5.1 to Section 5.3 can also be considered for the
case when G is a non-commutative semi-group, except replacing all appearances of Z and
Z[x] with Z>0 and Z>0[x] respectively.

The main differences between the protocols and schemes on non-commutative rings and
semi-groups and those on non-commutative groups lie in two aspects:

(1) m,n ∈ Z>0 on rings and semi-groups while m,n ∈ Z on groups;
(2) f, h ∈ Z>0[x] on rings and semi-groups while f, h ∈ {g ∈ Z[x] : g(τ(a)) ∈ τ(G)} ⊆ Z[x]

on groups.

5.5 More Examples: Public Key Cryptosystems Using Symmetric Groups

Let us illustrate our method by using the group S3, i.e., the minimal non-commutative
group. 9

At first, we should choose a non-commutative ring as the bridge for definition addable
relation over S3. We choose M2(Z2) for convenience.

Next, we should find a monomorphism from S3 to M2(Z2). Let us define τ : S3 →M2(Z2)
as follows:(

1 2 3
1 2 3

)
7→
(

1 0
0 1

)
,

(
1 2 3
1 3 2

)
7→
(

1 1
0 1

)
,

(
1 2 3
2 1 3

)
7→
(

0 1
1 0

)
,(

1 2 3
2 3 1

)
7→
(

0 1
1 1

)
,

(
1 2 3
3 1 2

)
7→
(

1 1
1 0

)
,

(
1 2 3
3 2 1

)
7→
(

1 0
1 1

)
.

It is not difficult to verify that τ is a monomorphism from S3 to M2(Z2).

Example 3. Diffie-Hellman-Like Key Agreement Using S3

9 In practical applications, we should use symmetric groups Sn for some larger n such that the
complexity level O(n!) overwhelms any adversary’s computational capability. Here, S3 and the
following employed M2(Z2) are too simple to be secure. But here it is enough to use these toy
examples to demonstrate our method.



Suppose that Alice chooses

m = 3, n = 5, A =
(

1 2 3
2 3 1

)
, B =

(
1 2 3
2 1 3

)
,

and picks a random polynomial f(x) such that f(A) ∈ τ(S3), assuming that one of such
polynomial is

f(x) = 4x2 + x + 2.

Then, Alice computes

f(A) = τ−1(f(τ(A)))

= τ−1

(
4 ·
(

0 1
1 1

)2

+
(

0 1
1 1

)
+ 2 ∗ I

)

= τ−1

((
0 1
1 1

))
=
(

1 2 3
2 3 1

)
and

rA =
(

1 2 3
2 3 1

)3

◦
(

1 2 3
2 1 3

)
◦
(

1 2 3
2 3 1

)5

=
(

1 2 3
3 2 1

)
.

Then, she sends m,n,A,B and rA to Bob.
Upon receiving m,n,A,B and f(A) from Alice, Bob chooses another random polynomial

h(x) such that h(A) ∈ τ(S3), assuming that one of such polynomial is

h(x) = 4x4 + x3 + 4x2 + 3x + 4.

Then, Bob computes

h(A) = τ−1(h(τ(A)))

= τ−1

(
4 ·
(

0 1
1 1

)4

+
(

0 1
1 1

)3

+ 4 ·
(

0 1
1 1

)2

+ 3 ·
(

0 1
1 1

)
+ 4 ∗ I

)

= τ−1

((
1 1
1 0

))
=
(

1 2 3
3 1 2

)
and

rB =
(

1 2 3
3 1 2

)3

◦
(

1 2 3
2 1 3

)
◦
(

1 2 3
3 1 2

)5

=
(

1 2 3
1 3 2

)
.

Then, he sends rB to Alice.
Finally, Alice extracts the session key

KA =
(

1 2 3
2 3 1

)3

◦
(

1 2 3
1 3 2

)
◦
(

1 2 3
2 3 1

)5

=
(

1 2 3
2 1 3

)
,



while Bob extracts the session key

KB =
(

1 2 3
3 1 2

)3

◦
(

1 2 3
3 2 1

)
◦
(

1 2 3
3 1 2

)5

=
(

1 2 3
2 1 3

)
.

Apparently, KA = KB holds, i.e., the key agreement is successful.

Example 4. Encryption/Decryption Using S3

We can implement encryption/decryption by ways which are very similar to those of
in Example 2, i.e., to encrypt/decrypt step by step according to the basic scheme and the
enhanced scheme defined in Section 5.3.

At first, let us choose two prime p and q such that q|p − 1 and set Zp as the message
space M. Also, we assume that g is a generator of order q. Then, we define

H : S3 →M,

(
1 2 3
σ1 σ2 σ3

)
7→ gσ1+2·σ2+22·σ3 mod p

and
H1 :M× ZN → Z>0[x], (M, r) 7→ r0 + r1x + r2x

2 + · · ·+ rnxn,

where all coefficients ri, 0 ≤ i ≤ k, is determined by the following process: 10:

M = rk0 + r0, 0 < r0 < r,

r = r0k1 + r1, 0 < r1 < r0,

r0 = r1k2 + r2, 0 < r2 < r1,

· · · · · · · · · · · · · · · · · · · · ·
rl−2 = rl−1kl + rl, 0 < rl < rl−1,

· · · · · · · · · · · · · · · · · · · · ·
rn−1 = rnkn+1 + rn+1, 0 < rn+1 = 0.

For simplicity, we define 11

M ‖ r , r · p + M ∈ Z

and can extract M from M ‖ r by

M = (M ‖ r) mod p.

Another required hash H2 : S3 →M× ZN can be defined as

H2 : S3 →M× Zp,

(
1 2 3
σ1 σ2 σ3

)
7→ (gσ1+2·σ2+22·σ3 mod p, gσ3+2·σ1+22·σ2 mod p).

10 Here, we assume that gcd(M, r) 6= r; Otherwise, we set r = gr mod p and then resume the
process. Also, we assume that M > r; Otherwise, we can swap them in advance.

11 Of course, this leads to minor expanding of ciphertext.



Next, let p = 23, q = 11 and g = 2 for simplifying computation and verification. Suppose
that the left system parameters are

m = 3, n = 5, p =
(

1 2 3
2 3 1

)
, q =

(
1 2 3
2 1 3

)
.

[Encryption/Decryption with Basic Scheme]
Suppose that the polynomial f(x) picked by Alice is just that of in example 3. Then,

Alice’ private key is f(p) =
(

1 2 3
2 3 1

)
, just as f(A) in Example 3. Then, the corresponding

public key would be

pk , f(p)3qf(p)5 =
(

1 2 3
2 3 1

)3

◦
(

1 2 3
2 1 3

)
◦
(

1 2 3
2 3 1

)5

=
(

1 2 3
3 2 1

)
,

just as rA in Example 1.
Let us pick a message M randomly, say M = 17. Suppose the salt polynomial we picked

randomly is coincide to h(x) in Example 3. Then, the salt permutation

h(p) =
(

1 2 3
3 1 2

)
,

just as h(A) in Example 3. Now, let us compute the ciphertext (c, d) as follows:

c = h(p)3qh(p)5 =
(

1 2 3
3 1 2

)3

◦
(

1 2 3
2 1 3

)
◦
(

1 2 3
3 1 2

)5

=
(

1 2 3
1 3 2

)
,

and

d = H(h(p)3 · pk · h(p)5)⊕M

= H

((
1 2 3
3 1 2

)3

◦
(

1 2 3
3 2 1

)
◦
(

1 2 3
3 1 2

)5
)
⊕ 17

= H

((
1 2 3
2 1 3

))
⊕ 17

=
(
22 + 22·1 + 222·3 mod 23

)
⊕ 17

= 18⊕ 17
= 3.

Now, let us check the decryption process:

M ′ = H(f(p)3 · c · f(p)5)⊕ d

= H

((
1 2 3
2 3 1

)3

◦
(

1 2 3
1 3 2

)
◦
(

1 2 3
2 3 1

)5
)
⊕ 3

= H

((
1 2 3
2 1 3

))
⊕ 3

=
(
22 + 22·1 + 222·3 mod 23

)
⊕ 3

= 18⊕ 3
= 17
= M.



[Encryption/Decryption with Enhanced Scheme]
Suppose that the private/public keys are unchanged. Let us pick a message M randomly,

say M = 19. Suppose the salt number we picked randomly is r = 7. Then, we extract a
polynomial as follows:

∵ 19 = 7 · 2 + 5
7 = 5 · 1 + 2
5 = 2 · 2 + 1
2 = 2 · 1 + 0

∴ h(x) = 5 + 2x + x2 + x3.

Note that if h(x) does not satisfy the condition of h(τ(p)) ∈ τ(S3), we should at first rectify
h(x) to h̃(x) = h(x) + ∆, where

∆ = min
{

δ ∈ Z≥0 : h(τ(p)) + δ ·
(

1 0
0 1

)
∈ τ(S3)

}
.

Fortunately, in this example. The above extracted h(x) meets the requirement of h(τ(p)) ∈
τ(S3), i.e., ∆ = 0. Thus,

h(p) = τ−1(h(τ(p)))

= τ−1

(
5 ·
(

1 0
0 1

)
+ 2 ·

(
0 1
1 1

)
+
(

0 1
1 1

)2

+
(

0 1
1 1

)3
)

= τ−1

((
1 1
0 1

))
=
(

1 2 3
3 1 2

)
.

Consequently, the corresponding ciphertext pair (c, d) would be

c = h(p)3qh(p)5 =
(

1 2 3
3 1 2

)3

◦
(

1 2 3
2 1 3

)
◦
(

1 2 3
3 1 2

)5

=
(

1 2 3
1 3 2

)
and

d = H(h(p)3 · pk · h(p)5)⊕ (M ‖ r)

= H

((
1 2 3
3 1 2

)3

◦
(

1 2 3
3 2 1

)
◦
(

1 2 3
3 1 2

)5
)
⊕ (19 + 5 · 23)

= H

((
1 2 3
2 1 3

))
⊕ 134

=
(
22 + 22·1 + 222·3 mod 23

)
⊕ 134

= 18⊕ 134
= 148.



Now, let us check the enhanced decryption process:

M ′ = H(f(p)3 · c · f(p)5)⊕ d

= H

((
1 2 3
2 3 1

)3

◦
(

1 2 3
1 3 2

)
◦
(

1 2 3
2 3 1

)5
)
⊕ 148

= H

((
1 2 3
2 1 3

))
⊕ 3

=
(
22 + 22·1 + 222·3 mod 23

)
⊕ 148

= 18⊕ 148
= 134.

Then, M = M ′ mod 23 = 19.

6 Conclusions

Recently, some promising build public-key cryptosystems have been constructed on non-
commutative groups, such as braid groups, Thompson’s groups, etc. In this paper, we de-
scribed a totally different method for designing PKC based on general non-commutative
algebraic systems, including non-commutative rings, non-commutative groups and non-
commutative semi-groups as well. The key ideas behind our proposal lies that we take
polynomials over the given non-commutative algebraic systems as the the underlying work
structure for constructing cryptographic schemes. By doing so, we can efficiently obtain
some commutative sub-structures for the given non-commutative algebraic systems. The
security assumption is that the proposed polynomial Diffie-Hellman (PDH) problem over
the given non-commutative algebraic systems is intractable.
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