
Universally Composable Key-evolving Signature
Jin Zhou 1, TingMao Chang 1, YaJuan Zhang1,2, YueFei Zhu1

1 Network Engineering Department Information Engineering University, Zhengzhou 450002,

Henan, China
2 Key Laboratory of Information Engineering, Guangzhou University, Guangzhou 510006,

Henan, China
(Jin Zhou, zhoujin820916.jojo@yahoo.com.cn)

Abstract. The standard digital signature scheme can be easily subject to key
exposure problem In order to overcome this problem; a feasible and effective
approach is employed by key-evolving signature scheme. In this paper, we
study key- evolving signature within the UC framework and propose an
appropriate ideal functionality that captures the basic security requirements of
key-evolving signature. Then, we present a generic way to transform a key-
evolving signature scheme into a real-life protocol. Finally, we show that UC
definition of security is equivalent to previous definition of security which is
termed as EU-CMA security.

Keywords: Digital signature, Universally composable, Ideal functionality,
Forward secure, Key-evolving, EU-CMA

1 Introduction

Digital signature, which was firstly proposed by Diffie and Hellman in [1], plays a
very important role in the modern cryptography. An intuitive and widely accepted
formalization of the security requirements of signature scheme, called EU-CMA
security, was first put forth in [1]. EU-CMA, namely existential unforgeability against
chosen message attacks, is also an accepted definition of security of other non-
standard digital signature schemes, such as key-evolving signature scheme described
below.

The standard digital signature scheme can be easily suffered from key exposure
problem, which has been classified as one of the biggest problems for a security
system. The system security is completely compromised once the key is exposed. To
address this problem, several different approaches have been suggested. Many of
them try to minimize exposure of the secret by splitting it and storing the parts in
different places, usually via secret sharing [2, 3]. However, as indicated in [4], those
approaches can be quite costly and not a viable option for the user.

A feasible approach is employed by forward-secure digital signature scheme,
which was firstly formalized by Bellare and Miner in [4]. Following the initial work
by [4], a sequence of other deviations of the forward-secure signatures was proposed
[5, 6, 7, 8]. All these forward-secure signature schemes involve updating the secret

http://compose.mail.yahoo.com/?To=zhoujin820916.jojo%40yahoo.com.cn

key periodically. Therefore, a forward-secure signature scheme is, first, a key-
evolving signature scheme. Forward security results from the fact that the update
algorithm is a one-way function and it is very difficult for an adversary to recover
previous secret keys even if the secret key in the current time-period is known.

A general framework for representing cryptographic protocols and analyzing their
security is presented by R.Canetti [9, 10]. This framework allows defining the
security properties of practically cryptographic tasks. Most importantly, in this
framework security of protocols is preserved under a very general composition
operation with an unbounded number of copies of arbitrary protocols running
concurrently in the system. This composition operation is called universal
composition. Similarly, definitions of security formulated in this framework are called
universally composable (UC) security.

The definitions in the UC framework follow a definitional approach which is
referred to as “security by emulation of an ideal process”. In the last few years,
research on the relation between emulation-based definition of security and
conventional definition of security has become one of the significant topics in
cryptography [11]. One case where the conventional definition and emulation-based
definition of security were shown to be equivalent is semantically secure encryption
against adaptive chosen ciphertext attack [10].

In this paper, we study and formulate an appropriate ideal functionality, which
captures the basic idea and security requirements of key-evolving signature. Then, we
propose that how to convert a generic key-evolving signature scheme ∑ into a real-
life protocolπ∑ . Finally, we prove that ∑ is EU-CMA if and only if π∑ UC-
securely realizes our proposed ideal functionality.

2 Preliminary

We sketch a key-evolving digital signature scheme in section 2.1, and recall some
useful notions within the UC framework in section 2.2.

2.1 Key-evolving Digital Signature Schemes

A generic key-evolving digital signature scheme ∑ is an algorithm with the
quadruple, ∑ = (Gen,Upd,Sig,Ver), such that:

1. Gen: the key generation algorithm is a probabilistic algorithm that inputs a
security parameter k∈N (given in unary as 1k) and the total number of time-periods T,
and returns a public key PK and the initial secret key SK0.

2. Upd: the secret key update algorithm, accepts as input the secret key SKi for
the current time-period, and returns the new secret key SKi+1 for the next time-period.
This algorithm is usually deterministic.

3. Sig: the signing algorithm, accepts as input the secret key SKi in the current
time period and a message m. It returns a pair (i,sign), that represents the signature of
m and time-period index i. This algorithm may be probabilistic.

4. Ver: the verification algorithm, accepts as input the public key PK, a
message m and a candidate signature (i,sign), and returns 1 if the signature of m is
valid and returns 0 otherwise. This algorithm is typically deterministic.

The verification algorithm is required to verify that whether a signature of m
generated via Sig(SKi, m) is valid for period i. For convenience, it is also assumed that
the secret key SKi for time-period i∈{0,…,T−1} , always contains both the value i
and the total number of periods T . For the last time period T−1, Upd(SKT-1) returns
the empty string SKT.

2.2 Some Useful Notions in the UC Framework

Recall that there are three types of messages, which are input message, output
message and incoming message, transmitted in the UC framework. (The detail of
these three types of messages is in [10].)

Dummy adversary. Dummy adversary, denote D , is a special type of

adversaries. It proceeds as follows:
1. When activated with an input x which contains identity of some party from Z, it

delivers this message to relevant party.
2. When activated with an incoming message m from some party, it passes m as

output to Z.
3. It corrupts parties when instructed by Z, and passes all gathered messages to Z.

Note that a real-life protocol UC-securely realizes the ideal functionality if and
only if it UC-securely realizes the ideal functionality with respect to dummy
adversary [10].

Party corruptions. Adaptive party corruptions, namely corruptions that occur

as the computation proceeds, based on the information gathered by the adversary so
far. Arguably, adaptive corruption of parties is a realistic threat in existing networks.
Nonetheless, it is sometimes useful to consider also a weaker threat model, called
non-adaptive party corruptions, where the identities of the adversarially controlled
parties are fixed before the computation starts.

Active party corruptions mean that adversary obtains total control over the
behavior of corrupted parties. Another standard corruption model assumes that even
corrupted parties continue to follow their prescribed protocol. Here the only
advantage the adversary gains from corrupting parties is in learning the internal states
of those parties. Such party corruption is called passive party corruption.

3 Definition of Ideal Functionality

In this section, we formulate UC definition of security for key-evolving signature.
The basic idea of FKE-SIG is to provide a “registry service”. The signer S can register

(message, signature) pairs. Any party that provides the correct verification algorithm
can check whether a given pair is registered.

Functionality FKE-SIG is presented in Figure 1. As expected, it begins with
KeyGeneration phase. Upon receiving KeyGeneration message from party S, FKE-SIG
asks the ideal process adversary to provide the tuple (u,s,v,SK0): a polytime
deterministic updating algorithm u, a polytime probabilistic signing algorithm s, a
polytime deterministic verification algorithm v and private signing key SK0.

FKE-SIG lets the adversary determine the values of the verification algorithm and the
legitimate signature. This reflects the fact that the intuitive notion of security of
signature schemes does not make any requirements on these values.

Then FKE-SIG outputs verification algorithm v to all the parties. In addition, FKE-SIG
initializes variable i=0 to record current time-period and sets a variable f0 to record
whether the signer S is corrupted in the time-period 0.

FKE-SIG

KeyGeneration: Upon receiving a query (KeyGen, sid,S,T) with total time-period
T from party S, send this query to the adversary. Upon receiving (Algorithms,sid,
S,u,s,v, SK0) from the adversary, where s are descriptions of PPT ITM, u and v are
descriptions of a deterministic polytime ITM, output (VerificationAlgorithm,sid,S,v)
to all the parties and adversary. In addition, set i=0 and f0=fresh. If S is corrupted at
this period, output SK0 and reset f0=corrupt.

Update: Upon receiving a query (Update,sid,S) from party S (for party S only),
let SKi+1=u(SKi), erase SKi, set i← i+1, output i and set fi=fresh. If the signer S is
corrupted in the period i, output SKi and reset fi=corrupt.

Signature: Upon receiving a query (Sign,sid,S,m) from party S (for party S only),
let σ =(i,sign)=s(SKi,m), and verify that v(m,σ)=1. If so, output (Signature,sid
S,m,σ) to S and record the pair (m,σ). Else, output error message and halt.

Verification: Upon any party V receiving a query (Verify,sid,m’, 'σ ,v’) with
'σ =(i’,sign’) from any party V, then do: if v’=v, v’(m’, 'σ)=1, fi’=fresh and no pair

(m’, "σ) for any "σ is recorded, then output an error message to V and halt. Else,
output (Verified,sid,S, m’, 'σ ,v’(m’, 'σ) to S.

Fig 1: The key-evolving signature ideal functionality FKE-SIG

Upon receiving Update message from party S (and for party S only), FKE-SIG

“enters” the next time-period by computing the new private signing key SKi+1, erasing
the old private signing key SKi ,and updating variable i← i+1 and setting new
variable fi to record whether the signer S is corrupted in the time-period i.

Upon receiving a query from party S (and for party S only) to sign a message m,
FKE-SIG first obtains a σ by running the algorithm s. It then verifies that v(m,σ)=1.
If so, it outputs the signatureσ to S and records the pair (m,σ); Else, FKE-SIG outputs

an error message and halt. Verifying that v(m,σ)=1 in the Signature phase
guarantees Completeness, namely that if a signature was generated “honestly” (i.e.
via FKE-SIG) then it will be correctly verified.

In the Verification phase, FKE-SIG checks if the input (m’, 'σ =(i’,sign’), v’)

consists of a forgery, namely if v’=v, v’(m’, 'σ)=1, fi’=fresh and no pair (m’, "σ) for

any "σ is recorded. If so, FKE-SIG outputs an error message and halt. So

Unforgeability is guaranteed. Else, it outputs v’(m’, 'σ). If the verification algorithm
v’ presented by the verifier is not the registered one (i.e. v), FKE-SIG provides no
guarantee regarding the result of the verification phase. This captures the fact that the
basic notion of signature scheme only binds messages and signatures to verification
algorithms, rather than the party identities. It’s the responsibility of the protocol that
invokes FKE-SIG to make sure that the verification algorithm is correct.

4 EU-CMA Security and Real-life Protocol

In this section we state the security definition of EU-CMA for key-evolving signature
scheme in section 4.1 and how to transform a key-evolving signature scheme into a
real-life protocol in section 4.2.

4.1 The definition of EU-CMA Security

The definition of EU-CMA security, which is a security requirement for standard
signature scheme, was first proposed by in [1]. In this section, we state a little
modified variant of definition of EU-CMA security for key-evolving signature
scheme.

Definition 1 A key-evolving signature scheme ∑ = (Gen,Upd,Sig,Ver) is
called EU-CMA if the following properties hold for any negligible function p(), and
all large enough values of security parameter k:

Completeness: For any message m and any period i, Pr[(PK,SK0) Gen(1← k);
σ ←Sig(SKi,m); Ver(PK,m,0 ← σ)]< p(k).

Consistency: For any message m and any period i, the probability that Gen(1k)
generates (PK,SK0) and Ver(PK,m,σ) generates two different outputs in two
independent invocations is smaller than p(k).

Unforgeability: For any PPT adversary G (called forger), the probability that G
wins the “EU” game is smaller than p(k). The full description of “EU” game
described as follows:

In the “EU” game, a forger G knows public key PK, the total number of time-
periods T and the current time-period. For a key-evolving signature scheme = ∑

(Gen,Upd,Sig,Ver), G is functioning in three stages: the chosen-message attack
(CMA) phase, the break-in phase, and the forgery phase.

In the CMA phase, G has access to the signing oracle, and can obtain the signature
of any message it selects under the current secret key. The break-in phase is used to
model the possible key exposure caused by an adversary break-in. In such a case, G is
given the current secret key SKi. In the final forgery phase, G outputs its forgery, i.e.
a signature message pair.

The adversary G is said to win the game if it forges the signature of some “new”
message for some time-period prior to the break-in. Here, the term “new” message is
used to indicate some message that has never been queried for the signature by the
adversary.

4.2 Transform generic scheme into real-life protocol

We describe how to convert a generic key-evolving scheme ∑ = (Gen,Upd,Sig,Ver)
into a real-life protocol π∑ . The protocol π∑ proceeds as follows:

Protocol π∑
 Generation: When party S (signer) receives a query (KeyGen,sid,S,T), it runs

algorithm Gen(1k), obtains pair (PK,SK0), keeps the signing key SK0 secretly and
outputs (VerificationAlgorithm,sid,S,v=ver(PK, ⋅)) to the adversary and all the parties.
In addition, S sets i=0.

 Update: When party S receives a query (Update,sid,S), it computes
SKt+1=Upd(SKi), erase SKi, set i← i+1 and output i to all the parties and adversary.

 Signature: When party S receives a query (Sign,sid,S,m), it computes
σ =(i,sign)=sig(SKi,m) and outputs (Signature,sid, S,m,σ).

 Verification: When any party receives a query (Verify,sid,m’, 'σ ,v’), it outputs
(Verified,sid,S,m’, 'σ , v’(m’, 'σ)).

 When a party is corrupted, it reveals its internal state, which includes all past
signing and verification requests and answers. If signer S is corrupted, it also reveals
the current private signing key SKi.

Fig 2: The generic key-evolving signature protocol π∑

5 Proof of Security

In this section, we will prove that the definition of EU-CMA security is equivalent to
definition of UC security.

Theorem 1 let ∑ = (Gen,Upd,Sig,Ver) be a key-evolving signature scheme,
then π∑ securely realizes FKE-SIG with respect to active and adaptive party

corruption if and only if is EU-CMA. ∑
Proof: Assume that "⇒ " ∑ is not EU-CMA, we show that π∑ doesn’t

realize FKE-SIG under the active and adaptive party corruption. Recall that the
definition of UC security with respect to dummy adversary. We should construct an
environment Z such that for any ideal process adversary J, Z can distinguish whether
it interacts with dummy adversary and protocolD π∑ in the real world or interacts
with ideal process adversary J and ideal functionality FKE-SIG in the ideal process.

In following case 1 and case 2, Z outputs 1 if it receives an error message, while in
following case 3, Z outputs 0 if it receives an error message. The full construction of
Z is described as follows:

1. Assume that is not complete, i.e., there exists i∑ ∈N and a message m, such
that Prob[(PK,SK0) Gen(1← k);σ ← Sig(SKi,m);1← Ver(PK,m,σ)] 1-p(k)
for infinitely many k’s. Then Z simply activates party S with (KeyGen,sid,S,T),
followed by inputs (Update,sid,S) i times and input (Sign,sid,S,m), obtains
verification algorithm v and signature

<

σ . Next Z activates some party V with
input (Verify,sid,m,σ ,v) and outputs the returned verification value. Then, Z
always outputs 1 if it interacts with ideal process, while output 0 with non-
negligible probability if it interacts with real world.

2. Assume that is complete but not consistent. Then Z operates similarly
except that it actives V twice with (Verify,sid,m,

∑
σ ,v)and outputs 1 iff the two

answers are the identical. Then again, if it interacts with FKE-SIG in the ideal
process, Z always outputs 1 since Z receives a deterministic polytime ITM.
However, Z output 0 with non-negligible probability if it interacts with π∑ in
the real world.

3. Assume that is both complete and consistent but not unforgeable. In the
other words, there exists a forger G such that G wins the “EU” game with non-
negligible probability. Then Z proceeds as above except that Z internally runs an
instance of G and hands it the verification algorithm v obtained from S. From
now on, whenever G asks its signing oracle to signed a message m, Z activates
signer S with input (Sign,sid,S,m) and sends the respond signature

∑

σ to G. When
G asks break-in, Z corrupts signer S and sends the current private signing key
SKi to G. When G finally generates a pair (m’, 'σ), Z proceeds as follows. If m’
was signed before, then Z outputs 0 and halts. Else, Z activates some party with
input (Verify,sid,m’, 'σ ,v) and outputs the verification result. It can be easily
seen that, when Z interacts with π∑ in the real world, the G’s views be exactly

an “EU” game on , thus Z outputs 1 with non-negligible probability. However,
Z never output 1 if it interacts with F

∑
KE-SIG in the ideal process.

'' '⇐ Assume that π∑ does not UC-securely realize FKE-SIG, we will show

that is not EU-CMA Using the equivalent notion of security with respect to the
dummy adversary, we have that for any ideal process adversary J, there exists an
environment Z that can distinguish whether it interacting with dummy adversary
and protocol

∑

D
π∑ in the real world or interacts with ideal process adversary J and ideal

functionality FKE-SIG in the ideal process.
Since Z succeeds for any J, it also succeeds for following “generic” J. Then J does

not interact with Z at all, except to corrupt parties. J runs (PK,SK0)←Gen(1k), and
sends (u=Upd(⋅),s=Sig(⋅),v=Ver(PK, ⋅),SK0) to FKE-SIG. When Z instructs to corrupt
party, J sends to FKE-SIG a corruption message, and forwards to Z the information
provided by FKE-SIG.

Assume that scheme is both complete and consistent (otherwise, the theorem
is proven). We argue that it is not unforgeable, by constructing a successful forger G.
This is done as follows.

∑

G sets i=0 and runs a simulated instance of Z, and simulates for the instance of Z
the interaction with parties:
1. When Z activates some party S with input (KeyGen,sid,S,T), G returns its

verification algorithm v on be half of S.
2. When Z asks signer S to enter the next time-period, G sets i← i+1 and sends i to

Z on be half of S.
3. When Z asks signer S to sign some message m, G asks its signing oracle for a

signatureσ on m, and returnsσ to Z on be half of S.
4. When Z instructs to corrupt some party, G returns all signing and verification

message request made by such party, and if be the signer, G asks break-in to
obtain current private signing key SKi and sends it to Z.

5. Whenever Z activates some party with input (Verify,sid,m’, 'σ ,v), G checks
whether (m’, 'σ) a success forgery for “EU” game. If yes, G outputs that pair
and halt. Else it continues the simulation.

We analyze the success probability of G. let B denote the event that, in the
execution of π∑ some party is activated with a verification request (Verify,sid,

m’, 'σ ,v), where the pair (m’, 'σ) is a success forgery for “EU” game.
Since is both complete and consistent, we have that as long as B does not occur,

Z’s view of an interaction with real world is statistically close to its view of an
interaction with ideal process. However, Z can distinguish real world and ideal
process with non-negligible probability. Thus it is guaranteed that, when Z interacts
with dummy adversary and protocol

∑

D π∑ in the real world, event B occurs with
non-negligible probability.

It’s easy to see that, from the views of simulated Z, the interaction with the forger
G looks the same as an interaction withπ∑ . This means that G wins the “EU” game
with non-negligible probability. #

References

1. Needham, R. M., Schroeder, M. D.: Using encryption for authentication in large networks of
computers. Communications of the Association for Computing Machinery, 21(21):993–
999, Dec. 1978

2. Blakley, G. R.: Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National
Computer Conference, Vol. 48, pp. 313–317, 1979

3. Shamir, A.: How to share a secret. Communications of ACM, 22(11), pp. 612–613, 1979
4. Bellare, M., Miner, S.: A forward-secure digital signature scheme. Advance in Cryptology –

CRYPTO 99 proceedings, Vol. 1666 of Lecture Notes in Computer Science, M. Wiener ed.,
pp.431–448. Springer- Verlag, 15-19 August 1999

5. Krawczyk, H.: Simple forward-secure signatures for any signature scheme. Proceedings of
the7th ACM Conference on Computer and Communications Security, pp. 108–115, ACM
Press2000.

6. Itkis, G., Reyzin L.: Forward-secure signatures with optimal signing and verifying. Advances
in Cryptology-CRYPTO 2001, Vol. 2139 of Lecture Notes in Computer Science, J.Kilian,
ed., pp. 332–354, Springer-Verlag, 2001.

7. Maklin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures with an
unbounded number of time periods. Advances in Cryptology – Eurocrypt 2002, Vol. 2332 of
Lecture Notes in Computer Science, L. Knudsen ed., pp. 400–417, Springer-Verlag, 2002

8 Fei Hu, Chwan-Hwa Wu, Irwin, J. D.: A New Forward-security Signature Scheme using
Bilinear Maps. http://eprint.iacr.org/2003/188

9. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols.
42nd IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, pp. 136–145,
2001.

10 Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols 2005. Revision 3 of ECCC Report TR01-016

11 Canetti. R., Rabin, T.: Universal Composition with Joint State. Advances in Cryptology
Crypto 2003, LNCS vol. 2729, Springer–Verlag, pp. 265–281, 2003

	2.2 Some Useful Notions in the UC Framework

