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Abstract

This work describes a mode of operation, TET, that turns a regular block cipher into a
length-preserving enciphering scheme for messages of (almost) arbitrary length. When using an
n-bit block cipher, the resulting scheme can handle input of any bit-length between n and 2n

and associated data of arbitrary length.
The mode TET is a concrete instantiation of the generic mode of operation that was proposed

by Naor and Reingold, extended to handle tweaks and inputs of arbitrary bit length. The main
technical trick in this mode is a construction of invertible “universal hashing” on wide blocks
which is as efficient to compute and invert as polynomial-evaluation hash.

1 Introductions

Adding secrecy protection to existing (legacy) protocols and applications raises some unique prob-
lems. One of these problems is that existing protocols sometimes require that the encryption be
“transparent”, and in particular preclude length-expansion. One example is encryption of storage
data “at the sector level”, where both the higher-level operating system and the lower-level disk
expect the data to be stored in blocks of 512 bytes, and so any encryption method would have to
accept 512-byte plaintext and produce 512-byte ciphertext.

Clearly, insisting on a length-preserving (and hence deterministic) transformation has many
drawbacks. Indeed, even the weakest common notion of security for “general purpose encryption”
(i.e., semantic security [GM84]) cannot be achieved by deterministic encryption. Still, there may
be cases where length-preservation is a hard requirement (due to technical, economical or even
political constrains), and in such cases one may want to use some encryption scheme that gives
better protection than no encryption at all. The strongest notion of security for a length-preserving
transformation is “strong pseudo-random permutation” (SPRP) as defined by Luby and Rackoff
[LR88], and its extension to “tweakable SPRP” by Liskov et al. [LRW02]. A “tweak” is an
additional input to the enciphering and deciphering procedures that need not be kept secret. This
report uses the terms “tweak” and “associated data” pretty much interchangeably, except that
“associated data” hints that it can be of arbitrary length.

Motivated by the application to “sector level encryption”, many modes of operation that im-
plement tweakable SPRP on wide blocks were described in the literature in the last few years. The
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Figure 1: The Naor-Reingold generic mode: the universal hashing must be invertible, and its job
is to prevent collisions in the ECB layer.

current modes, however, are either rather inefficient (ABL4 [MV04] and PEP [CS06b]) or poten-
tially covered by IP claims (CMC/EME [HR03, HR04, Hal04], XCB [FM04], and variants of XCB
called HCTR [WFW05] and HCH [CS06a]).

The motivation for this work was therefore to present an efficient and patent-free mode. The
result is a mode that I call TET (for linear-Transformation; ECB; linear-Transformation). The
TET mode is a concrete instantiation of the generic Naor-Reingold mode [NR97], extended to
handle tweaks and inputs of arbitrary bit length.

Recall that the Naor-Reingold construction from [NR97] involves a layer of ECB encryption,
sandwiched between two layers of universal hashing, as described in Figure 1. The universal hashing
layers must be invertible (since they need to be inverted upon decryption), and their job is to
ensure that different queries of the attacker will almost never result in “collisions” at the ECB
layer. Namely, for any two plaintext vectors ~p = 〈p1, . . . , pm〉, ~q = 〈q1, . . . , qm〉 and two indexes i, j
(such that (~p, i) 6= (~q, j)) it should hold with high probability (over the hashing key) that the i’th
block of hashing ~p is different from the j’th block of hashing ~q.

From a technical perspective, the main contribution of this note is a construction of an invert-
ible universal hashing on wide blocks, which is as efficient to compute and invert as polynomial-
evaluation hash. In a nutshell, the hashing family works on vectors in GF(2n)m, and it is keyed by
a single random element τ ∈R GF(2n), which defines the following m×m matrix:

Aτ
def=




τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm




Set σ
def= 1⊕ τ ⊕ τ2 ⊕ . . . ⊕ τm, we observe that if σ 6= 0 then the matrix Mτ = Aτ ⊕ I is

invertible and its inverse is M−1
τ = (Aτ/σ)⊕ I. Thus multiplying by Mτ for a random τ (subject
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to σ 6= 0) is an invertible universal hashing, and computing and inverting this hash function is
about as efficient as computing polynomial evaluation. This invertible hashing construction may
find uses beyond wide-block tweakable encryption.

The starting point of this work is an implementation of the generic Naor-Reingold mode of
operation using the above for the universal hashing layers. We then extend that mode to handle
associated data and input of arbitrary length, thus getting the TET mode. Specifically, TET takes
a standard cipher with n-bit blocks and turns it into a tweakable enciphering scheme with message
space M = {0, 1}n..2n−1 (i.e., any string of at least n and at most 2n − 1 bits) and tweak space
T = {0, 1}∗. The key for TET consists of two keys of the underlying cipher (roughly one to process
the tweak and another to process the data). Compared to previous modes, TET offers the same
performance characteristics as XCB. Namely, it is significantly more efficient than PEP and ABL4,
and almost as efficient as EME∗.

A word on notations. Throughout this note we use ⊕ to denote addition over a characteristic-
two field (i.e., an exclusive-or), and we use + to denote addition in other fields/rings (e.g., inte-
ger addition). The sum operator

∑
is used to denote characteristic-two addition, so

∑m
i=1 xi =

x1 ⊕ x2 ⊕ · · · ⊕ xm. Also, multiplication and exponentiation are almost always in the finite field
GF(2n) where n is the block size of the underlying cipher, or in vector spaces that are defined over
that field. (One of the few exceptions is the use of 2n to denote the integer two to the n’th power.)

Organization. Some standard definitions are recalled in Appendix A (which is taken almost ver-
batim from [HR04, Hal04]). Section 2 describes the hashing scheme that underlies TET, Section 3
describes the TET mode itself, and Section 4 contains a proof of security for this mode.

Acknowledgments. I would like to thank the participants of the IEEE SISWG working group
for motivating me to write this note. I also thank Doug Whiting and Brian Gladman for some
discussions about this mode.

2 The underlying hashing scheme

The universality property that is needed for the Naor-Reingold mode of operation is defined next.

Definition 1 Let H : K × D → Rm be a hashing family from some domain D to m-vectors over
the range R, with keys chosen uniformly from K. We denote by Hk(x) the output of H (which is
an m-vector over R) on key k ∈ K and input x ∈ D. We also denote by Hk(x)i the i’th element of
that output vector.

For a real number ε ∈ (0, 1), we say that H is “ε-blockwise-universal” if for every x, x′ ∈ D
and integers i, i′ ≤ m such that (x, i) 6= (x′, i′), it holds that Prk[Hk(x)i = Hk(x′)i′ ] ≤ ε, where the
probability is taken over the uniform choice of k ∈ K.

We say that H is “ε-xor-blockwise-universal” if in addition for all fixed ∆ ∈ GF(2n) it holds
that Prk[Hk(x)i ⊕Hk(x′)i′ = ∆] ≤ ε.

It was proven in [NR99] that the construction from Figure 1 is a strong PRP on wide blocks
provided that the hashing layers are blockwise universal and invertible, and the underlying cipher E
is a strong PRP on narrow blocks.
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2.1 BPE: A blockwise universal hashing scheme

To get an invertible blockwise universal hash function, Naor and Reingold proposed in [NR97] to
use an unbalanced Feistel network with standard universal hashing. For example, use polynomial-
evaluation hash function applied to the first m−1 blocks, xor the result to the last block, and then
derive m−1 “pairwise independent” values from the last block and xor them back to the first m−1
blocks. This solution, however, is somewhat unsatisfying in that it entails inherent asymmetry
(which is likely to raise problems with implementations).

Below we propose a somewhat more elegant blockwise universal hashing based on a simple
algebraic trick. As described in the introduction, we consider the m×m matrix Mτ

def= Aτ ⊕ I for
an element τ ∈ GF(2n), where

Aτ
def=




τ τ2 τm

τ τ2 τm

. . .
τ τ2 τm


 (1)

It is easy to check that the determinant of Mτ (over a characteristic-2 field) is σ
def=

∑m
i=0 τ i, and

so Mτ is invertible if and only if σ 6= 0. We observe that when it is invertible, the structure of M−1
τ

is very similar to the structure of Mτ itself.

Observation 1 Let τ ∈ GF(2n) be such that σ
def=

∑m
i=0 τ i 6= 0, let Aτ be an m ×m matrix with

Ai,j = τ j, and let Mτ
def= Aτ ⊕ I. Then M−1

τ = (Aτ/σ)⊕ I.

Proof We first note that A2 = A(1⊕ σ) (over a characteristic-2 field), since for all i, j we have

(A2)i,j =
m∑

k=1

τk+j = τ j

(
1⊕

m∑

k=0

τk

)
= Ai,j · (1⊕ σ)

Therefore, assuming σ 6= 0 we get

(A⊕ I) · (A
σ
⊕ I) =

A2

σ
⊕A⊕ A

σ
⊕ I =

A(1⊕ σ)⊕A · σ ⊕A

σ
⊕ I = I

It follows that computing y = Mτx and x = M−1
τ y can be done as efficiently as computing

polynomial-evaluation hash. Namely, to compute y = Mτx we first compute s =
∑m

i=1 xiτ
i and

set yi = xi ⊕ s, and to invert x = M−1
τ y we re-compute s as s =

∑m
i=1 yi(τ i/σ) and set xi = yi ⊕ s.

Moreover, since τ and σ depend only the hashing key, one can speed up the multiplication by τ
and τ/σ by pre-computing some tables (cf. [Sho96]).

The blockwise-universal family BPE. Given the observation from above, we define the hashing
family BPE (for Blockwise Polynomial-Evaluation) and its inverse BPE−1 as follows:

Input: An m-vector of elements from GF(2n), x = 〈x1, . . . , xm〉 ∈ GF(2n)m.
Keys: Two elements τ, β ∈ GF(2n), such that

∑m
i=0 τm 6= 0.
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Output: Let α be some fixed primitive element of GF(2n), and denote by b def=
〈
β, αβ, . . . , αm−1β

〉
the m-vector over GF(2n) whose i’th entry is αi−1β. The two hash functions BPEτ,β(x) and
BPE−1

τ,β(x) are defined as

BPEτ,β(x) def= Mτx⊕ b and BPE−1
τ,β(x) def= M−1

τ (x⊕ b) (2)

By construction if follows that BPE−1
τ,β(BPEτ,β(x)) = x for all x and all τ, β (provided that∑m

i=0 τm 6= 0). We now prove that these two families (BPE and its inverse) are indeed “blockwise
universal”.

Claim 1 Both the family BPE and the family BPE−1 are ε-xor-blockwise universal with ε ≤ m
2n−g

where g = GCD(m + 1, 2n − 1) when m is odd and g = GCD(m + 1, 2n − 1)− 1 when m is even.

Proof Fix some m ≤ 2n − 3 and x,x′ ∈ GF(2n)m and indexes i, i′ ≤ m such that (x, i) 6= (x′, i′).
We distinguish between the case where i 6= i′ and the case where i = i′ but x 6= x′.
Case 1, i 6= i′. In this case we have [BPEτ,β(x)]i ⊕ [BPEτ,β(x′)]i′ = (αi−1 ⊕ αi′−1)β ⊕ (Mτx)i ⊕ (Mτx′)i′

which is equal to any fixed ∆ with probability exactly 2−n over the choice of β ∈R GF(2n) (since
α is primitive and 0 < i 6= i′ < 2n so αi−1 6= αi′−1). Similarly

[BPE−1
τ,β(x)]i ⊕ [BPE−1

τ,β(x′)]i′ =
(

(
Aτ

σ
⊕ I)(x⊕ b)

)

i

⊕
(

(
Aτ

σ
⊕ I)(x′ ⊕ b)

)

i′

= (
Aτ

σ
b)i ⊕ bi ⊕ (

Aτ

σ
b)i′ ⊕ bi′ ⊕

(
(
Aτ

σ
⊕ I)x

)

i

⊕
(

(
Aτ

σ
⊕ I)x′

)

i′

= (αi−1 ⊕ αi′−1)β ⊕
(

(
Aτ

σ
⊕ I)x

)

i

⊕
(

(
Aτ

σ
⊕ I)x′

)

i′

where the last equality follows since (Aτb)i = (Aτb)i′ (because all the rows of Aτ are the same).
Again, this sum equals ∆ with probability exactly 2−n.
Case 2, i = i′ and x 6= x′. In this case we have [BPEτ,β(x)]i ⊕ [BPEτ,β(x′)]i ⊕∆ = (xi ⊕ x′i ⊕∆)
⊕ ∑m

j=1(xj ⊕ x′j)τ
j , which is zero only when τ is a root of this specific non-zero degree-m polyno-

mial. Similarly for BPE−1
τ,β we have

[BPE−1
τ,β(x)]i ⊕ [BPE−1

τ,β(x′)]i ⊕∆ =
(

(
Aτ

σ
⊕ I)(x⊕ b)

)

i

⊕
(

(
Aτ

σ
⊕ I)(x′ ⊕ b)

)

i

⊕∆

=
(

(
Aτ

σ
⊕ I)x

)

i

⊕
(

(
Aτ

σ
⊕ I)x′

)

i

⊕∆ = (xi ⊕ x′i ⊕∆)⊕
m∑

j=1

τ j

σ
(xj ⊕ x′j)

∗=
1
σ


(xi ⊕ x′i ⊕∆)(

m∑

j=0

τ j)⊕
m∑

j=1

τ j(xj ⊕ x′j)




=
1
σ


(xi ⊕ x′i ⊕∆)⊕

m∑

j=1

τ j(xj ⊕ x′j ⊕ xi ⊕ x′i ⊕∆)




where the equality ∗= holds since σ =
∑m

i=0 τ j . The last expression is zero when τ is a root of
the parenthesized polynomial. That polynomial is non-zero since (a) if xi ⊕ x′i 6= ∆ then it has
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non-zero constant term, and (b) if xi ⊕ x′i = ∆ then there is some index j such that xj 6= x′j , and
in this case the coefficient xj ⊕ x′j ⊕ xi ⊕ x′i ⊕∆ of τ j is non-zero.

We conclude that for both BPEτ,β and BPE−1
τ,β , a collision in this case implies that τ must be

a root of some fixed non-zero degree-m polynomial. Such polynomials have at most m roots, and
τ is chosen at random in GF(2n) subject to the constraint that σ 6= 0. Since σ itself is a non-zero
degree-m polynomial, then there are at least 2n −m elements τ ∈ GF(2n) for which σ 6= 0, and so
the collision probability is at most m/(2n −m).

Moreover, for most values of m we can actually show that there are fewer than m values of τ
for which σ = 0. Specifically, we note that σ = (1⊕ τm+1)/(1⊕ τ), so σ = 0 implies that also
1⊕ τm+1 = 0, which means that τ is an m + 1’st root of unity in GF(2n). We know that the
number of m+1’st roots of unity in GF(2n) is exactly GCD(m+1, 2n− 1), and one of them is the
trivial root τ = 1. The trivial root τ = 1 is also a root of σ if and only if m is odd (since there are
m + 1 terms in the sum that defines σ), and all the other m + 1’st roots of unity are also root of
σ. Hence τ is chosen at random from a set of size 2n − g, where g = GCD(m + 1, 2n − 1) when m
is odd and g = GCD(m + 1, 2n − 1)− 1 otherwise.

A variant of BPE. It is easy to see that the same claim can be proven also for the variant of
BPE that adds the vector b before multiplying by Mτ , namely if we define

B̃PEτ,β(x) def= Mτ (x⊕ b) and B̃PE
−1

τ,β(x) def= M−1
τ x⊕ b (3)

then also the hash families B̃PE and B̃PE
−1

are ε-blockwise universal for the same ε.

3 The TET mode of operation

The BPE hashing scheme immediately implies a mode of operation for implementing a fixed-input-
length, non-tweakable enciphering scheme for block-sizes that are a multiple of n bits: namely the
Naor-Reingold construction from [NR97] with BPE for the hashing layers. In this section I describe
how to extend this construction to get a tweakable scheme that supports arbitrary input lengths
(and remains secure also when using the same key for different input lengths).

3.1 Tweaks and variable input length

Incorporating a tweak into the basic mode turns out to be almost trivial: Instead of having the
element β be part of the key, we derive it from the tweak using the underlying cipher. For example,
if we are content with n-bit tweaks then we can just set β ← Ek(T ) where k is the cipher key
and T is the tweak. Intuitively, this is enough since the multiples of β will be used to mask the
input values before they arrive at the ECB layer, so using different pseudo-random values of β for
different tweak values means that the ECB layer will be applied on different blocks.

To handle longer tweaks we can replace the simple application of the underlying cipher E with a
variable-input-length cipher-based pseudo-random function (e.g., CBC-MAC, PMAC, etc.), using a
key which is independent of the cipher key that is used for the ECB layer.1 In Section 3.3 I describe

1It is likely that using the same key for the PRF and the ECB layer would still remain secure. However trying
to prove it would make the analysis more complicated, and it is not clear that using less key material provides any
practical advantage in this context.
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a particular CBC-MAC-like implementation that suits our needs.
The same fix can be applied also to handle variable input length: namely we derive β from

both the tweak and the input length. If we are content with input length of no more than 2` and
tweaks of size n − ` bits, then we can use β ← Ek(L, T ) where T is the tweak value and L is the
input length, or else we can use β ← PRFK(L, T ) for some variable-input-length pseudo-random
function. Another issue with using BPE for variable-length input is that the hashing key τ must
satisfy σm = 1⊕ τ ⊕ . . . ⊕ τm 6= 0 for every possible input length m. One way to ensure this is to
choose τ as a random primitive element in GF(2n), and then we know that τ is not an m + 1’st
root of unity and therefore also not a root of σm (for any m < 2n − 2).

3.2 Odd-size input

It appears harder to extend the mode to handle input whose bit length is not a multiple of n (which
I refer to as “odd-size input”). Ideally, we would have liked an elegant way of extending BPE to
handle lengths that are not a multiple of n-bits, and then use ciphertext-stealing to handle the odd
size at the ECB layer. Unfortunately, I did not see any way of extending BPE to handle odd-size
input while maintaining invertibility (except going back to the unbalanced Feistel idea).

Instead, I borrowed a technique that was used in EME∗ to handle odd-size input: When pro-
cessing an odd-size input, one of the block cipher applications in the ECB layer is replaced with
two consecutive applications of the cipher, and the middle value (between the two calls to the
underlying cipher) is xor-ed to the partial block. (In addition, the partial block is added to the
polynomial-evaluation, so that its value effects all the other blocks.)

In more details, let x = 〈x1, . . . , xm〉 be all the full input blocks and let xm+1 be a partial
block, ` = |xm+1|, 0 < ` < n. Instead of just computing y = BPE(x), we set the i’th full block
to yi ← BPE(x)i ⊕ (xm+110..0), while leaving xm+1 itself unchanged. Then we apply the ECB
layer, computing zi ← Ek(yi) for the first m − 1 full blocks, and computing u ← Ek(ym) and
zm ← Ek(u) for the last full block. The first bits of u are then xor-ed into the partial block, setting
wm+1 = xm+1 ⊕ u|1..` . Then we do the final BPE layer (adding (wm+110..0) to each full block),
thus getting wi ← BPE(z)i ⊕ (wm+110..0) and the TET output is the vector w1, . . . , wm, wm+1.

3.3 The PRF function

It is clear that any secure pseudo-random function can be used to derive the element β. We describe
now a specific PRF, which is a slight adaptation of the OMAC construction of Iwata and Korasawa
[IK03], that seems well suited for our application. We assume that the input length is less than
2n bits, and we denote by L the input length in bits encoded as an n-bit integer. Also denote the
tweak by T = 〈T1, . . . , Tm′〉 where |T1| = · · · = |Tm′−1| = n and 1 ≤ |Tm′+1| ≤ n.

To compute β ← PRFK(L, T ) we first compute X ← EK(L), then compute β as a CBC-MAC
of T , but before the last block-cipher application we xor either the value αX or the value α2X
(depending on whether the last block is a full block or a partial block). In more details, we set
V0 = 0 and then Vi ← EK(Vi−1 ⊕ Ti) for i = 1, . . . , m′ − 1. Then, if the last block is a full
block (|Tm′ | = n) then we set β ← EK(αX ⊕ Vm′−1 ⊕ Tm′), and if the last block is a partial block
(|Tm′ | < n) then we set β ← EK(α2X ⊕ Vm′−1 ⊕ (Tm′10..0)).

Notice that the only difference between this function and the OMAC construction is that OMAC
does not have the additional input L and it sets X ← EK(0). Proving that this is a secure pseudo-
random function is similar to the proof of OMAC [IK03], and is omitted here.
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If the input length is then these elements are bad values for τ Bad key probability
512 bytes α(2128−1)/3, α2·(2128−1)/3 2−127

1024 bytes αi·(2128−1)/5 for i = 1, 2, 3, 4 2−126

4096 bytes αi·(2128−1)/257 for i = 1, 2, . . . , 256 2−120

65536 bytes αi·(2128−1)/17 for i = 1, 2, . . . , 16 2−124

Table 1: Bad τ values for various input lengths, assuming n = 128

We point out that on one hand, the input length L is needed only before processing the last
tweak block, so this pseudo-random function is suited for streaming applications where the length
of messages is not known in advance.2 On the other hand, if used with a fixed input length (where L
is known ahead of time) then the computation of X can be done off line, in which case we save one
block-cipher application during the on-line phase.

3.4 Some other details

To get a fully-specified mode of operation one needs to set many other small details. Below I
explain my choices for the details that I set, and describe those that are still left unspecified.

The element α ∈ GF(2n). Recall that BPE uses a fixed primitive element α ∈ GF(2n). If the
field GF(2n) is represented with a primitive polynomial, then this fixed element should be set
as the polynomial x (or 1/x), in which case a multiplication by α can be implemented with
an n-bit shift and a conditional xor.3

The two hashing layers. I chose to use the same hashing keys τ, β for both hashing layers. The
security of the mode does not seem to be effected by this (and in particular this has no effect
on the proof in Section 4.1). On the other hand, having different keys for the two hashing
layers adds a considerable burden to an implementation, especially it if optimizes the GF
multiplications by preparing some tables off line.

The hashing key τ . I also chose to derive the hashing key τ from the same cipher key as the
hashing key β, rather than being a separate key. (This decision is rather arbitrary, I made
it because I could not see any reason to keep τ as a separate key.) Specifically, it can be set
as τ ← PRFK(0, 0n) = EK(α ·EK(0)). Note that this is not a duplicate of any PRFK(L, T ),
since the input length L is always at least n bits.4

Of course, τ must be chosen so that for any message length m it holds that σm 6= 0 (where
σm =

∑m
i=0 τm). Hence if setting τ ← PRFK(0, 0) results in a bad value for τ then we can keep

trying PRFK(0, 1), PRFK(0, 2), etc. When using TET with fixed input length (containing m
complete blocks), we can just include a list of all the “bad τ values” for which σm = 0 with

2As explained in Section 3.5, TET is not a very good fit for such cases, but this PRF functions can perhaps be
used in applications other than TET.

3The choice between setting α = x or α = 1/x depends on the endianess of the field representation, and it should
be made so that multiplication by α requires left shift and not right shift.

4Setting τ ← EK(0) would work just as well in this context, but the effort in proving it is too big for the minuscule
saving in running time.
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the implementation. This list is fairly easy to construct: Denoting g = GCD(m + 1, 2n − 1),
when m is even the lists consists of αi·(2n−1)/g for i = 1, 2, . . . , g − 1 (where α is a primitive
element). When m is odd it consists of the same elements and also of the element α0 = 1. In
Table 1 we list the “bad τ values” for various input lengths assuming n = 128.

The approach of having a fixed list of “bad τ values” may not work as well when using TET
with variable-input length. One way to handle this case is to insist on τ being a primitive
element in GF(2n), in which case we know that σm 6= 0 for all length m. (We can efficiently
test is τ is a primitive element given the prime factorization of 2n − 1). But a better way of
handling variable length is to allow different τ ’s for different input lengths. Specifically, when
handling a message of with m full blocks, we try PRFK(0, 0), PRFK(0, 1), . . . and set τ to
the first value for which σm 6= 0. It is not hard to see that this is just as secure as insisting
on the same τ for all lengths (since we only use τ to argue about collisions between messages
of the same length, cf. item 1 in the list on page 17 in the proof of Theorem 1).

Ordering the blocks for polynomial-evaluation. I chose to order the blocks at the input of
BPE in “reverse order”, evaluating the polynomial as

∑m
i=1 xiτ

m−i+1. The reason is to allow
processing to start as soon as possible in the case where the input arrives one block at a
time. We would like to use Horner’s rule when computing BPE(x), processing the blocks in
sequence as

s = (. . . ((x1τ ⊕ x2)τ ⊕ x3)τ . . . ⊕ xm)τ

which means that x1 is multiplied by τm, x2 is multiplied by τm−1, etc. Similarly when
computing BPE−1(y) we would implement the polynomial-evaluation as

s = (. . . ((y1τ ⊕ y2)τ ⊕ y3)τ . . . ⊕ ym)(τ/σ)

which means that y1 is multiplied by τm/σ, y2 is multiplied by τm−1/σ, etc.

The hashing direction. For each of the two hashing layers, one can use either of BPE, BPE−1,
B̃PE, or B̃PE

−1
. For the encryption direction, I chose to use B̃PE

−1
for the first hashing

layer and BPE−1 for the second layer. This means that on decryption we use BPE as the
first hashing layer and B̃PE for the second layer.

I chose the inverse hash function on encryption and the functions themselves on decryption
because inverting the functions may be less efficient than computing them in the forward
direction (since one needs to multiply also by τ/σ). In a typical implementation for storage,
one would use encryption when writing to storage and decryption when reading back from
storage. As most storage is optimized for read (at the expense of the less-frequent write
operations), it makes sense to allocate the faster operations for read in this case too.

As for the choice between BPE and B̃PE, I chose to add the vector b in the middle, right
before and after the ECB layer. The rationale here is that it is possible to do the computation
β ← PRFK(L, T ) concurrently with the multiplication by Mτ (or its inverse).

Given the choices above, the specification of the TET mode is given in Figure 2. Other details
that are not specified here are the choice of the underlying cipher and the block-size n, and the
representation of the field GF(2n) (including endianess issues).
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function PRFK(L, T1 · · ·Tm′) // |L| = |T1| = · · · = |Tm′−1| = n, 1 ≤ |Tm′ | ≤ n

001 V0 ← 0, X ← EK(L)
002 for i ← 1 to m′ − 1 do Vi ← EK(Vi−1 ⊕ Ti)
003 if |Tm′ | = n then return EK(Vm′−1 ⊕ Tm′ ⊕ αX)
004 else return EK(Vm′−1 ⊕ Tm′ ⊕ α2X)

Algorithm TETK1,K2(T ; P1 · · ·PmPm+1)

// |P1| = · · · = |Pm| = n, 0 ≤ |Pm+1| < n

101 L ← mn + |Pm+1| // input size (bits)
102 i = 0
103 τ ← PRFK1(0, i), σ ← 1⊕ τ ⊕ . . . ⊕ τm

104 if σ = 0 then i ← i + 1, goto 103
105 β ← PRFK1(L, T ), SP ← 0, SC ← 0

110 for i ← 1 to m do SP ← (SP ⊕ Pi) · τ
111 SP ← SP/σ
112 if |Pm+1| > 0 then
113 SP ← SP ⊕ Pm+1 padded with 10..0

120 for i ← 1 to m do
121 PP i ← Pi ⊕ SP
122 PPP i ← PP i ⊕ αi−1β
123 for i ← 1 to m− 1 do
124 CCC i ← EK2(PPP i)
125 if |Pm+1| > 0 then
126 MM ← EK2(PPPm)
127 CCCm ← EK2(MM )
128 Cm+1 ← Pm+1 ⊕ (MM truncated)
129 else CCCm ← EK2(PPPm)

130 for i ← 1 to m do
131 CC i ← CCC i ⊕ αi−1β
132 SC ← (SC ⊕ CC i) · τ
133 SC ← SC/σ
134 if |Pm+1| > 0 then
135 SC ← SC ⊕ Cm+1 padded with 10..0

140 for i ← 1 to m do
141 Ci ← CC i ⊕ SC

150 return C1 . . . CmCm+1

Algorithm TET−1
K1,K2

(T ; C1 · · ·CmCm+1)

// |C1| = · · · = |Cm| = n, 0 ≤ |Cm+1| < n

201 L ← mn + |Cm+1| // input size (bits)
202 i = 0
203 τ ← PRFK1(0, i), σ ← 1⊕ τ ⊕ . . . ⊕ τm

204 if σ = 0 then i ← i + 1, goto 203
205 β ← PRFK1(L, T ), SP ← 0, SC ← 0

210 for i ← 1 to m do SC ← (SC ⊕ Ci) · τ
212 if |Cm+1| > 0 then
213 SC ← SC ⊕ Cm+1 padded with 10..0

220 for i ← 1 to m do
221 CC i ← Ci ⊕ SC
222 CCC i ← CC i ⊕ αi−1β
223 for i ← 1 to m− 1 do
224 PPP i ← E−1

K2
(CCC i)

225 if |Cm+1| > 0 then
226 MM ← E−1

K2
(CCCm)

227 PPPm ← E−1
K2

(MM )
228 Pm+1 ← Cm+1 ⊕ (MM truncated)
229 else PPPm ← E−1

K2
(CCCm)

230 for i ← 1 to m do
231 PP i ← PPP i ⊕ αi−1β
232 SP ← (SP ⊕ PP i) · τ
234 if |Cm+1| > 0 then
235 SP ← SP ⊕ Pm+1 padded with 10..0

240 for i ← 1 to m do
241 Pi ← PP i ⊕ SP

250 return P1 . . . PmPm+1

Figure 2: Enciphering and deciphering under TET, with plaintext P = P1 . . . PmPm+1, ciphertext
C = C1 · · ·CmCm+1, and tweak T . The element α ∈ GF(2n) is a fixed primitive element.
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Mode Block-cipher calls GF multiplies Passes over input
EME∗ m′ + 2m + dm/ne – 2
XCB m + 1 2(m + m′ + 2) 3
TET m′ + m 2m or 2m− 2 3

Table 2: Comparison between tweakable wide-block enciphering modes on m-block input and m′-
block associated-data.

3.5 Performance of TET

As specified above, the TET mode can be used with variable input length, and in Section 4 we
prove that it is secure when used in this manner. However, its efficiency (at least in software)
depends crucially on pre-processing that is only possible when used with fixed input length (or
at least with a small number of possible lengths). The reason is that on encryption one needs to
multiply by τ/σ, which depends on the message length (since σ =

∑m
i=0 τ i). When used with fixed

input length, the value τ/σ can be computed off line, and some tables can be derived to speed up
the multiplication by τ/σ. When used with variable input length, however, the value τ/σ must be
computed on-line, which at least for software implies a considerable cost. Hence, TET is not very
appealing as a variable-input-length mode.

We stress, however, that the motivating application for TET, namely “sector-level encryption”,
is indeed a fixed-input-length application. Also, there are some limited settings where one can use
variable input length without suffering much from the drawback above. For example, a “write once
/ read many times” application, where the data is encrypted once and then decrypted many times,
would only need to worry about computing σ in the initial encryption phase (since σ is not used
during decryption). Also, the same value of σ is used for every bit-length from mn to (m+1)n−1,
so length variability within this limited range in not effected.5

Below we analyze the performance characteristics of TET only for fixed input length. With this
assumption, the computation of the PRF function from above takes exactly m′ applications of the
cipher, where m′ is the number of blocks of associated data (full or partial). (This is because the
computation of the mask value X ← EK(L) can be done off line.) Then we need either m or m− 1
GF-multiplies for the polynomial evaluation (depending if we have m or m−1 full blocks), followed
by m block-cipher applications for the ECB layer, and again m or m−1 GF multiplies. Altogether,
we need m + m′ block-cipher applications and either 2m or 2m− 2 GF multiplies. (The shift and
xor operations that are also needed are ignored in this description, since they are insignificant in
comparison.)

Table 2 contains a brief comparison of efficiency parameters in EME∗, XCB and TET. It
should be noted that in the application to “sector-level encryption” we typically have m′ = 1, so
the numbers for TET and XCB are almost the same.

3.6 Roads not taken

Before moving to the security analysis, I would like to explicitly discuss some alternatives to the
design choices that I made in TET.

5For example, an implementation can handle both 512-byte blocks and 520-byte blocks with a single value of σ
(assuming block length of n = 128 bits).
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Unbalanced Feistel. As mentioned above, the original note of Naor and Reingold [NR97] pro-
posed using unbalanced Feistel to get an invertible blockwise-universal hashing. This is also
somewhat similar to the approach that was taken in XCB [FM04]. The main reason that I
did not choose this approach was that BPE looks more elegant to me, but it is clear that one
can devise a workable mode using the unbalanced Feistel idea.

Using BPE also for the tweak. Rather than processing the tweak with the PRF function, one
could also process it via the polynomial evaluation, similarly to the way this is done in XCB.
Namely, instead of computing s ← ∑m−1

i=0 xi+1τ
m−i, we can set s′ ← s⊕ ∑`−1

i=0 ti+1τ
m+`−i,

where T = 〈t1, . . . t`〉 is the tweak. (It should be clear that this has no effect on the invertibility
of the hash function.)

An advantage of using this alternative approach is that we do away with the need to specify
also a PRF function. Some drawbacks of this approach, however, is that it leads to slightly
weaker security bounds (since the polynomial is of higher degree and so it may have more
roots), and more importantly it is no longer possible to process the tweak and the input
concurrently.

4 Security of TET

We relate the security of TET to the security of the underlying primitives from which it is built as
follows:

Theorem 1 [TET security] Fix n, s ∈ N. Consider an adversary attacking the TET mode with
a truly random permutation over {0, 1}n in place of the block cipher and a truly random function
instead of PRF, such that the total length of all the queries that the attacker makes is at most s
blocks altogether.

The advantage of this attacker in distinguishing TET from a truly random tweakable length-
preserving permutation is at most 1.5s2/φ(2n − 1) (where φ is Euler’s totient function). Using the
notations from Appendix A, we have

Adv±p̃rp
TET (s) ≤ 3s2

2φ(2n − 1)

A minor comment. Note that the value φ(2n−1) in the denominator can be improved somewhat.
The quoted value assumes that the hashing key τ is chosen as a primitive element in GF(2n) (there
are φ(2n − 1) such elements), and therefore is not a “bad value” for any input length. But as we
explained in Section 3.4, if the τ value that was chosen happens to be bad for some input length,
it is better to just allow using a different value of τ for that length. Hence we choose τ from a
set larger than the primitive elements, and the denominator improves accordingly. (Note that for
n = 128 we have φ(2128 − 1) ≈ 2−127, so using the weaker bound costs us only about a factor of
two in the probability.)

Corollary 1 With the same setting as in Theorem 1, consider an attacker against TET with a
specific cipher E and a specific PRF F , where the attack uses at most total of s′ blocks of associated
data. Then

Adv±p̃rp
TET[E](t, s, s

′) ≤ 3s2

2φ(2n − 1)
+ 2( Adv±prp

E

(
t′, s

)
+ Advprf

PRF

(
t′, s′

)
)
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where t′ = t + O(n(s + s′)). 2

4.1 Proof of Theorem 1

The intuition for the proof is that as long as there are no block collisions in the hash function,
then the random permutation in the ECB layer will be applied to new blocks, so it will will output
random blocks and the answer that the attacker will see is therefore random. To make this formal,
we go through the usual “game hopping” argument as follows:

A random process. Fix the parameters n, s ∈ N and an attacker A that makes queries of total
length at most s blocks altogether (full and partial). Assume (wlog) that the attacker A never
makes a query for which it already knows the answer (such as a duplicate of previous query, a
decryption of some value that it got from the encryption oracle with the same tweak, etc.).

Given this assumption, consider a random process in which all the queries of the attacker are
answered with just random and independent bits. Clearly this experiment differs from a truly
random tweakable permutation only in that it can return the same output on different queries,
which happens rarely (we will account for this difference at the end of the proof). For the rest of
the proof we show that interacting with TET is indistinguishable from interacting with this random
process (upto the specified error).

We first describe a specific implementation of the random process. Namely, we choose at random
some element τ ∈ GF(2n) subject to the condition that 1⊕ τ ⊕ . . . ⊕ τm 6= 0 for all valid input-
lengths m (this can be done, e.g., by choosing τ as a primitive element). Then for any encryption
query (of length L and with tweak T ), we choose at random βL,T (or use a previous value if these
T,L where used before) and then simulate the “second half” of the TET mode as follows: We
choose at random all the blocks that are supposed to be the output of the underlying block cipher
(i.e., the CCC blocks on encryption or the PPP blocks on decryption, and in addition the MM
block if there is a partial block). Given these random bits and the values of τ and βL,T we compute
the output just as it is done by the TET mode itself. Note that for any fixed τ (such that σ 6= 0)
and any βL,T , the transformation from the cipher-outputs to the output of the mode is bijective. It
follows that since the “cipher outputs” are all chosen at random then the output that is returned
to the adversary is just L random bits, so this is indeed an implementation of the random process.

Next we add to this implementation of the random process a notion of a “bad event”. To define
this event, we add to the implementation as described above also the “first half” of TET. Namely,
after setting τ and βL,T , we also compute the PPP blocks on encryption or the CCC blocks on
decryption. Note that these blocks are uniquely determined by all the choices that we did before,
and that at this point we do not modify any of the other values (so in particular this is still an
implementation of the random process). Roughly, we define the “bad event” to be the case where
any of the block values already appeared earlier in the execution. Specifically we consider the
following conditions:

• One of the PPP blocks equals any previous PPP or MM block.

• One of the CCC blocks equals any previous CCC or MM block.

• The MM block equals any previous PPP , CCC or MM block.

13



Subroutine Choose-π(X):

010 Y
$←{0, 1}n; if Y ∈ Range then bad ← true , Y

$← Range

011 if X ∈ Domain then bad ← true , Y ← π(X)
012 π(X) ← Y , Domain ← Domain ∪ {X}, Range ← Range ∪ {Y }; return Y

Subroutine Choose-π−1(Y ):

020 X
$←{0, 1}n; if X ∈ Domain then bad ← true , X

$←Domain

021 if Y ∈ Range then bad ← true , X ← π−1(Y )
022 π(X) ← Y , Domain ← Domain ∪ {X}, Range ← Range ∪ {Y }; return X

Figure 3: The procedures for choosing π values in the random and TET processes. The shaded
statements are executed in TET but not in the random process.

The TET process. We now modify the random process, starting by just re-arranging the com-
putation of the various blocks to match the order in which they are assigned values by the TET
mode. Namely, on encryption we first compute the PPP blocks, then choose the MM block (if
needed) and then choose the CCC blocks. Similarly, on decryption we first compute the CCC
blocks, then choose the MM block (if needed) and then choose the PPP blocks.

Also, we introduce a table π (which is meant to eventually hold a “random permutation”, but
for now does yet not have any semantics): When processing a query, we fill the entry corresponding
to π(PPP i) with the value of CCC i for all i < m, and for i = m we do as above if there is no
partial block and otherwise we set π(PPPm) ← MM and π(MM ) ← CCCm. Note that so far π
may not correspond to any well-defined function (since we may reset entries of π), and also there
may be duplicate entries in it. However, both of these cases only happen if the “bad event” from
above occurs.

So far we still did not change the random process at all. Next we modify this process, so that
when the “bad event” happens it ensures that π is consistent with a well-defined permutation.
Specifically, we do the following changes:

• On encryption, whenever we pick a new value for any CCC i, i < m, we check if the entry
π(PPP i) is already defined, and if it is we use that value for the value CCC i rather than
choosing a new random value. We do a similar test before picking a value for CCCm and for
MM (if applicable) by checking either π(PPPm) or π(MM ), as appropriate.

• Still on encryption, if the entry of π is not defined yet, then we pick a new random value for
the CCC or MM block, and then we check to see if this value already exists in the table. If
if does, we try again, this time choosing it at random from the co-range (i.e., from the set of
values that are not yet in the table π).

• On decryption, whenever we pick a new value for any PPP or MM block, i < m, we check if
the corresponding entry π(PPP) or π(MM ) is already defined, and if it is we reset our choice,
this time choosing at random from the co-domain (i.e., , from the set of values X for which
π(X) is not defined yet).

• Still on decryption, after choosing PPP i for i < m we check if the value of CCC i already
appears in the table π, and if it does we reset the value of PPP i to π−1(CCC i) (i.e, the
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Initialization:
010 Domain ← Range ← ∅; bad ← false
011 for all X ∈ {0, 1}n do π(X) ← undef
012 for all T, L ∈ {0, 1}∗ do βL,T ← undef

013 τ
$←{0, 1}n subject to 1⊕ τ ⊕ . . . ⊕ τm 6= 0 for all m

Respond to the j-th adversary query as follows:

Encryption query (T j ;P j
1 · · ·P j

mj P
j
mj+1)

100 Lj ← mjn + |P j
mj+1| // input size (bits)

101 if βLj ,T j = undef then βLj ,T j
$←{0, 1}n

102 σj ← 1⊕ τ ⊕ . . . ⊕ τmj

103 SP j ← 0, SCj ← 0

110 for i ← 1 to mj do SP j ← (SP j ⊕ P j
i ) · τ

111 SP j ← SP j/σj

112 if |P j
mj+1| > 0 then

113 SP j ← SP j ⊕ P j
mj+1 padded with 10..0

120 for i ← 1 to mj do
121 PP j

i ← P j
i ⊕ SP j

122 PPP j
i ← PP j

i ⊕ αi−1βLj ,T j

123 for i ← 1 to mj − 1 do
124 CCC j

i ← Choose-π(PPP j
i )

125 if |P j
mj+1| > 0 then

126 MM j ← Choose-π(PPP j
mj )

127 CCC j
mj ← Choose-π(MM j)

128 Cj
mj+1 ← P j

mj+1 ⊕ (MM j truncated)
129 else CCC j

mj ← Choose-π(PPP j
mj )

130 for i ← 1 to mj do
131 CC j

i ← CCC j
i ⊕ αi−1βLj ,T j

132 SCj ← (SCj ⊕ CC j
i ) · τ

133 SCj ← SCj/σj

134 if |P j
mj+1| > 0 then

135 SCj ← SCj ⊕ Cj
mj+1 padded with 10..0

140 for i ← 1 to mj do
141 Cj

i ← CC j
i ⊕ SCj

150 return Cj
1 . . . Cj

mj C
j
mj+1

Decryption query (T j ; Cj
1 · · ·Cj

mj C
j
mj+1)

200 Lj ← mjn + |Cj
mj+1| // input size (bits)

201 if βLj ,T j = undef then βLj ,T j
$←{0, 1}n

203 SP j ← 0, SCj ← 0

210 for i ← 1 to mj do SCj ← (SCj ⊕ Cj
i ) · τ

212 if |Cj
mj+1| > 0 then

213 SCj ← SCj ⊕ Cj
mj+1 padded with 10..0

220 for i ← 1 to mj do
221 CC j

i ← Cj
i ⊕ SCj

222 CCC j
i ← CC j

i ⊕ αi−1βLj ,T j

223 for i ← 1 to mj − 1 do
224 PPP j

i ← Choose-π−1(CCC j
i )

225 if |Cj
mj+1| > 0 then

226 MM j ← Choose-π−1(CCC j
mj )

227 PPP j
mj ← Choose-π−1(MM j)

228 P j
mj+1 ← Cj

mj+1 ⊕ (MM j truncated)
229 else PPP j

mj ← Choose-π−1(CCC j
mj )

230 for i ← 1 to mj do
231 PP j

i ← PPP j
i ⊕ αi−1βLj ,T j

232 SP j ← (SP j ⊕ PP j
i ) · τ

234 if |Cj
mj+1| > 0 then

235 SP j ← SP j ⊕ P j
mj+1 padded with 10..0

240 for i ← 1 to mj do
241 P j

i ← PP j
i ⊕ SP j

250 return P j
1 . . . P j

mj P
j
mj+1

Figure 4: The random TET processes. The only differences between them is in the implementation
of Choose-π and Choose-π−1 procedures from Figure 3.
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unique value such that π(PPP i) = CCC i). We similarly check after choosing the value for
the MM block (if appropriate) and for PPPm.

If any of these checks forces us to reset our choices, then we record that the “bad event” occurred.
Also, we always update the table π with the new values that were chosen.

The resulting process proceeds just like the TET mode (with the cipher replaced by a random
permutation), so we call it the TET process. Figure 3 contains a pseudo-code describing the way the
random and TET processes pick values for π. In that figure, the shaded statements are executed
in the TET process but not the random process. Figure 4 include pseudo-code for the random
and TET processes (which are identical except for the differences in choosing values of π). In
this pseudo-code, all the quantities that correspond to processing the j’th query of the adversary
are marked with superscript j. (For example, the query contains mj full blocks, the plaintext is
P j

1 , . . . , P j
mj , P

j
mj+1

, etc.)
Since the random and TET processes differ only when the bad event occurs, then the attacker A

can only distinguish between them when that event occurs. Namely we have
∣∣∣∣ Pr
random

[A ⇒ 1]− Pr
TET

[A ⇒ 1]
∣∣∣∣ ≤ Pr

random
[bad = true] (4)

The rest of the proof is therefore devoted to bounding the probability that the bad event occurs
(in the random process).

Bounding the bad-event probability. We partition the bad event into two sub-events: one is
where we choose a block at random and discover that the same value was already used before (cf.
lines 010 and 020 in Figure 3), and the other where it turns out that the point for which we intend
to define π or its inverse is already defined (cf. lines 011 and 021 in Figure 3). In more details, we
have the following two events:

Bad1. A value of CCC or MM that we choose on encryption is equal to some previous CCC or
MM value, or a value of PPP or MM that we choose on decryption is equal to some previous
PPP or MM value.

Bad2. On encryption, some values of PPP that are computed are equal to a previous PPP or
MM value, or the MM value is equal to a previous PPP value. On decryption, some values
of CCC that are computed are equal to a previous CCC or MM value, or the MM value is
equal to a previous CCC value.

Bounding the probability of the Bad1 sub-event is easy. Over the course of the attack we choose
at random at most s blocks, and when choosing the i’th block there are at most i− 1 values that
it can collide with under Bad1, and these blocks are all n-bit long. Hence

Pr
random

[Bad1] ≤
(
s
2

)

2n
(5)

To bound the probability of the Bad2 sub-event we use the blockwise-universality of the BPE
function. Before we can do that, however, we must address the problem that the input to the BPE
hash function may not appear to be independent of the hashing key. (This is because the input
to the next query is chosen by the adversary after seeing the output from the previous one, which
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depends on the hashing key.) We observe that in fact the input to the hash function is independent
of its key, since even when the hashing keys are all fixed, the random process still returns uniformly
random bits to the adversary.

We can make this even more explicit by switching back to the implementation of the random
process in which the answers to the attacker are chosen at random and the other quantities are
computed from them (and from the hashing keys). In this alternative implementation we can
choose all the random bits that the attacker sees ahead of time (thus fixing also the queries of the
attacker) and only then choose the hashing keys.6 Once we are back in this implementation of the
random process, we observe the following:

1. Two blocks that correspond to queries of different lengths or with different tweaks collide
with probability 2−n, since in this case we use different random values for the βL,T hashing
key.

2. Collisions of the form MM j = PPP j′
i or MM j = CCC j′

i also have probability 2−n, since the
PPP or CCC block depends on the βL,T that was used in query j′ while MM j does not.

3. Collisions of the form PPP j
i = PPP j′

i′ where i 6= i′ have probability 2−n, even for the same
query length and the same tweak (this is Case 1 in the proof of Claim 1). The same holds
for CCC j

i = CCC j′
i′ with i 6= i′.

4. Collisions of the form PPP j
i = PPP j′

i where queries j, j′ have the same length (with m full
blocks) and the same tweak, occur with probability at most m/φ(2n − 1) (this is Case 2 in
the proof of Claim 1). The same holds for CCC j

i = CCC j′
i .

Note that last two items above actually use the fact that the hash functions are xor-universal (not
just universal), since when partial blocks are present then the attacker by selecting partial block
P j

m+1 P j′
m+1 can add the constant ∆ = (P j

m+110..0)⊕ (P j′
m+110..0) to the sum PPP j

i ⊕ PPP j′
i′ .

We therefore have bounds for all the possible collision events in Bad2, and the only thing left
is to sum them up using the union bound. Clearly, we have exactly

(
s
2

)
potential collision events,

but now some of these events have probability of upto m/φ(2n − 1) (where m is the length of the
relevant query), while the others are still bounded by 2−n.

Denote by M the set of message lengths that the attacker used in the attack (expressed in
number of full blocks in the query). For any m ∈ M, let qm be the number of queries that have
exactly m full blocks, and denote sm = m · qm. (That is, sm is the total number of full blocks
in all the queries that have m full blocks.) Then we know that

∑
m∈M sm ≤ s. The number of

potential collision events corresponding to item 4 above for messages with m full blocks is at most
m · (qm

2

)
= m · ((sm/m)

2

) ≤ (
sm

2

)
/m, and the probability of all these events sums up to at most

(sm
2 )
m · m

φ(2n−1) = (sm
2 )

φ(2n−1) . Recalling that
∑

m sm ≤ s we get that the sum over all the potential
collision events corresponding to item 4 (over all message lengths) is at most

∑
m∈M

(
sm

2

)

φ(2n − 1)
≤

(
s
2

)

φ(2n − 1)
6See the comment after the proof for some further discussion of this argument.
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Clearly, the sum over all the other potential collision events in Bad2 is at most
(
s
2

)
/2n, so the total

probability of the event Bad2 is bounded by

Pr
random

[Bad2] ≤
(
s
2

)

2n
+

(
s
2

)

φ(2n − 1)
(6)

Putting this all together we get that the advantage of the adversary in distinguishing between the

TET process and the random process is at most 2 · (s
2)

2n + (s
2)

2n−φ(2n−1) .
We still need to account for the distinguishing probability between the random process and

a random tweakable permutation, but we note that the distinguishing event (where the random
process returns the same answer on two different queries) implies that the bad event occurred in
the random process, so we do not need to count it again. Thus, the total advantage of the attacker
can be bounded by

2 ·
(
s
2

)

2n
+

(
s
2

)

φ(2n − 1)
<

3s2

2φ(2n − 1)

A comment. At a first glance, one may feel uneasy about the argument that switches back to the
view of the random process as choosing the answers to the attacker at random and computing the
relevant CCC , PPP and MM blocks from that output (after Eq. (5)), since in this implementation
it is not clear that our bound on the probability of Bad1 holds. Indeed, the various blocks are now
computed using a hash function that is only ε-blockwise-universal for some ε > 2−n, so how can
we claim that the previous bound that we derived by assigning 2−n probability for each collision
event still holds in this case?

A formalistic answer is that because these hash functions are bijective, then the two implemen-
tations induce identical probability spaces over their variables, so the bound that we proved with
respect to one implementation must hold also for the other. A more informative answer is that in
this case we do not need to look at the collision probability for any two messages, but rather than
collision between one fixed message and another message which is chosen at random. Indeed, it is
not hard to see that in this case the “collision probability” that we get is exactly 2−n (and this
indeed follows just from the fact that the hash function is bijective, regardless of its “universality”).
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A Preliminaries

A tweakable enciphering scheme is a function E : K× T ×M→M where M =
⋃

i∈I{0, 1}i is the
message space (for some nonempty index set I ⊆ N) and K 6= ∅ is the key space and T 6= ∅ is the
tweak space. We require that for every K ∈ K and T ∈ T we have that E(K, T, ·) = ET

K(·) is a
length-preserving permutation on M. The inverse of an enciphering scheme E is the enciphering
scheme D = E−1 where X = DT

K(Y ) if and only if ET
K(X) = Y . A block cipher is the special
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case of a tweakable enciphering scheme where the message space is M = {0, 1}n (for some n ≥ 1)
and the tweak space is the singleton set containing the empty string. The number n is called the
blocksize. By Perm(n) we mean the set of all permutations on {0, 1}n. By PermT (M) we mean
the set of all functions π : T ×M→M where π(T, ·) is a length-preserving permutation.

An adversary A is a (possibly probabilistic) algorithm with access to some oracles. Oracles are
written as superscripts. By convention, the running time of an algorithm includes its description
size. The notation A ⇒ 1 describes the event that the adversary A outputs the bit one.

Security measure. For a tweakable enciphering scheme E : K × T ×M →M we consider the
advantage that the adversary A has in distinguishing E and its inverse from a random tweakable
permutation and its inverse: Adv±p̃rp

E (A) =

Pr
[
K

$←K : AEK(·,·) E−1
K (·,·) ⇒ 1

]
− Pr

[
π

$← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1
]

The notation shows, in the brackets, an experiment to the left of the colon and an event to the
right of the colon. We are looking at the probability of the indicated event after performing the
specified experiment. By X

$←X we mean to choose X at random from the finite set X . In writing
±p̃rp the tilde serves as a reminder that the PRP is tweakable and the ± symbol is a reminder that
this is the “strong” (chosen plaintext/ciphertext attack) notion of security. For a block cipher, we
omit the tilde.

Without loss of generality we assume that an adversary never repeats an encipher query, never
repeats a decipher query, never queries its deciphering oracle with (T,C) if it got C in response to
some (T,M) encipher query, and never queries its enciphering oracle with (T, M) if it earlier got M
in response to some (T, C) decipher query. We call such queries pointless because the adversary
“knows” the answer that it should receive.

When R is a list of resources and Advxxx
Π (A) has been defined, we write Advxxx

Π (R) for the
maximal value of Advxxx

Π (A) over all adversaries A that use resources at most R. Resources of
interest are the running time t, the number of oracle queries q, and the total number of n-bit blocks
in all the queries s. The name of an argument (e.g., t, q, s) will be enough to make clear what
resource it refers to.

Finite fields. We interchangeably view an n-bit string as: a string; a nonnegative integer less
than 2n; a formal polynomial over GF(2); and an abstract point in the finite field GF(2n). To do
addition on field points, one xors their string representations. To do multiplication on field points,
one must fix a degree-n irreducible polynomial. We choose to use the lexicographically first primitive
polynomial of minimum weight. For n = 128 this is the polynomial x128+x7+x2+x+1. We note that
with this choice of field-point representations, the point x = 0n−210 = 2 will always have order 2n−1
in the multiplicative group of GF(2n), meaning that 2, 22, 23, . . . , 22n−1 are all distinct. Finally, we
note that given L = Ln−1 · · ·L1L0 ∈ {0, 1}n it is easy to compute 2L. We illustrate the procedure for
n = 128, in which case 2L = L<<1 if firstbit(L) = 0, and 2L = (L<<1)⊕ Const87 if firstbit(L) = 1.
Here Const87 = 012010413 and firstbit(L) means Ln−1 and L<<1 means Ln−2Ln−3 · · ·L1L00.
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