
Security under Key-Dependent Inputs

Abstract

In this work we re-visit the question of how to build cryptographic primitives that remain
secure even when queried on inputs that depend on the secret key. This was investigated by
Black et al. in the context of randomized encryption schemes (in the random oracle model),
and we extend the investigation to deterministic schemes (such as PRFs and block ciphers) and
to the standard model. We term this notion “security against key-dependent-input attack”, or
KDI-security for short. Our motivation for studying KDI security is the existence of significant
real-world implementations of “deterministic encryption” (in the context of storage encryption)
that actually rely on their building blocks to be KDI secure.

We consider many natural constructions for PRFs, ciphers, tweakable ciphers and even
randomized encryption, and examine them with respect to their KDI security. We exhibit
limitation of this notion by demonstrating that many natural constructions fail to be KDI
secure, and also study the limited cases where some measure of KDI security can be provably
achieved.

1 Introduction

Does it make sense for an application to self-encrypt an encryption key? That is, if Es represents
an encryption function with key s, would it ever be the case that an application needs to store or
transmit Es(s)? Cryptographers typically see this as a dangerous abuse of an encryption scheme,
and standard security criteria for encryption scheme do not take this possibility into account. Still,
there are applications where such form of security is helpful. This security concern was defined
and studied by Black et al. [4] under the name KDM-security (for Key-Dependent-Messages). It
was shown in [4] that KDM-security can be achieved in the random-oracle model, and later Boneh
and Ostrovsky observed that the Cramer-Shoup cryptosystem can be proven KDM-secure in the
standard model [6].

If “encrypting your own key” is somewhat abusive for randomized encryption, using this practice
with deterministic constructions (such as pseudorandom functions and permutations) seems even
more dangerous. The present work was motivated by a significant real-world application that
turned out to be doing just that: An IEEE standard group was developing a standard for “sector
level encryption” [10], which must be length-preserving and hence deterministic. The group was
considering a transformation based on the tweakable cipher of Liskov et al. [11], but some members
objected, citing an attack that can be mounted when the proposed transformation is used to
transform its own secret key. An argument ensued as to whether or not this is a real problem or
just a curiosity that would never happen in the real world. The argument was decided when the
group was informed that the implementation of disk encryption in Windows Vista

TM
can store to

the disk an encryption of its own secret keys in some situations. Consequently, the group switched
to a different transformation, based on Rogaway’s work [14], for which the particular attack in
question does not seem to apply (see more details in Section 4 and [1]).

In this work we re-visit KDM security with a focus on deterministic constructions. We rename
the notion to KDI security, to stress that we are not talking just about encryption (and hence the

1

Input is not necessarily a Message). We examine constructions of pseudorandom functions and
(tweakable) pseudorandom permutations with respect to this notion, both in the standard model
and in the “ideal cipher model”.

Not surprisingly, KDI security seems even harder to achieve for deterministic constructions than
for randomized ones. In particular, we observe that KDI-security of deterministic schemes cannot
be achieved even in the “ideal cipher model” without restricting the key-dependent queries that
the attacker can make. Specifically, similarly to the setting of “related key attacks” [3], allowing
the attacker to query a function fs on multiple functions of the key necessarily translates into a
KDI attack that recovers the full key, and this attack works even if the underlying primitive is an
“ideal cipher” or a random oracle! In practical terms this means that an application that allows
processing with a secret key unrestricted multiple forms of the same key is necessarily insecure.

For this reason, we parametrize KDI security by the set of functions of the key that the attacker
can use in its queries. Given the impossibility mentioned above when the set of functions is too
rich, it makes sense to investigate the modest notion of KDI-security with respect to just a single
function, as we may at least hope that even an abusive implementation that “encrypts its own key”
will only do so in one form, rather than “encrypting” many copies of the key in many different
forms.

In this light, we study the question of a deterministic scheme that is KDI-secure with respect
all efficient functions of the key, as long as the attacker is restricted to query a single function of
its choice in the attack. We show that even this modest goal cannot be achieve, since for each PRF
we can construct a function of the key for which the given PRF breaks. This last result, however,
uses functions of the key that depend on the construction in question. (Indeed, we show that in
the “ideal cipher model” it is possible to get constructions which are KDI secure with respect to
any function that does not depend on the ideal cipher itself, e.g., one can query the cipher Es on
the key s itself or on some of its bits, but not on the function g(s) = Es(0).)

Seeing that we cannot have a single construction that is secure against any function of the key,
we consider the very minimalistic goal of having a different secure construction for each function of
the key. That is, can we at least describe a transformation that given a function g produces a PRF
F (g) which is KDI secure with respect to g (i.e., remains secure when the attacker learns F

(g)

s (g(s)))?
It turns out that even this goal is not easy to achieve in the standard model, and we only exhibit
a partial positive answer. Specifically, we describe two (somewhat contrived) constructions, one
that works for functions g where g(s) has high min-entropy (for a random s), and another that
works when g(s) has low Shannon entropy. Exhibiting a construction that works for functions
where neither condition holds (or a construction in the case where we do not know if g is one or
the other) remains an open problem. On the positive side, we also show an arguably non-contrived
construction that is KDI-secure with respect to the identity function (i.e., remains secure even
when the attacker sees fs(s)).

Additional results. Having demonstrated that KDI security for deterministic constructions can
only be achieved in a very partial manner in the standard model, we return to the “ideal cipher
model” to study the KDI security of tweakable ciphers (which were the initial motivation of this
work). We establish a definition of KDI security for tweakable cipher, describe the attack on the
scheme from [11] thus demonstrating that it is not KDI-secure (even in the “ideal cipher model”),
and then show that some other schemes (including the one from [14]) are KDI-secure in this model.

Finally, we take another look at randomized encryption, and consider the scheme that was
proven secure by Black et al. in the random-oracle model. Specifically, they analyzed the encryption

2

scheme Encs(x) = (r, fs(r)⊕ x) where f is implemented using the random oracle fs(x) = H(s|x),
whereas we want to study this scheme in the standard model when fs is modeled as a PRF. We
show that this constructions is not necessarily secure in the standard model even with respect to
the identity function, and more surprisingly it fails even for “natural” choices of the PRF fs, such
as when instantiated using the Davies-Meyer construction.

The moral. The multiple negative results in this work lend strong support to the “common
cryptographic wisdom” that the practice of self encryption of a key is a dangerous abuse of a cryp-
tosystem. We demonstrate that many security goals that can be stated with respect to this practice
inherently cannot be achieved, and even more damaging the failures are sometimes manifested even
in the idealized models or with respect to very natural constructions. Our counter-example for the
case of randomized encryption is particularly troubling, as we show a failure of a textbook construc-
tion for symmetric encryption with respect to a very natural implementation of its components.

We have also a few positive results, showing that some constructions can achieve some notion
of KDI security (and sometimes this is doable even in the standard model). Two interesting open
questions that remain are to (a) find a fast randomized symmetric encryption scheme (that does
not use “public key tools”), which is KDI-secure for “interesting” functions of the key (at least
the identity function); and (b) find, for every deterministic function g(s) a PRF/PRP that is
KDI-secure with respect to the function g.

2 Definitional approach and some intrinsic limitations

Roughly, to define security with respect to key-dependent input attacks we modify the standard
attack scenarios for the various primitives that we study by allowing the attacker to query its
oracles not only on explicit (i.e., key-independent) strings, but also on functions of the secret key.
That is, where the original notion provided the attacker access to an oracle O(·), we add an oracle
O′(·) that gets as input a description of a function g (e.g., in the form of a circuit that computes
the function) and outputs O(g(s)) where s is the secret key of the construction in question. We
will refer to the queries to O′ as functional queries. We extend this definitional approach to the
“ideal cipher model” by allowing oracle access to keyed random permutations (and their inverses)
and by possibly allowing the functional queries to depend on these oracles.

Ideally, we would like to find constructions that remain secure even when the attacker can query
the primitive on any efficient function of the key. There are, however, some inherent limitations to
this approach. For example, letting the attacker query a cipher Es on input g(s) = E−1

s (s), the
key would be obviously exposed. A more general limitation arises in the context of deterministic
primitives, as we show next.

KDI-insecurity against unrestricted key-dependent queries. The idea of this argument is
that an attacker can try to apply many different functions to the key s, and use collisions of the form
g(s) = g′(s) to do a binary search for the key s. That is, the attacker uses two different functional
queries g, g′, and checks if it gets the same answer on both. This (in essence) tells the attacker
whether g(s) = g′(s), which cuts the key-space by two. Here we describe a simple example of this
argument, which is essentially the same as the one described in [3] in the context of related-key
attacks.

Let Ψ be any deterministic construction that has a secret key (such that the disclosure of s
compromises the security of Ψ). For simplicity (this is not essential for the general argument),

3

assume that both the key space and the input space of Ψ is {0, 1}n, and that for every fixed
key s ∈ {0, 1}n the function Ψs(·) is injective. Consider now a set of functions {gi, g′i : 1 ≤ i ≤ n}
with the property that for every i and every s we have gi(s) = g′i(s) if and only if the i’th bit of s
is zero. (An example is a set of functions containing additions of constants modulo 2n as well as
xor with constants from {0, 1}n. For example, for all i < n we set gi to be xor with 0n−i10i−1 and
g′i can be addition of the same constant modulo 2n.)

The attacker then simply queries its oracle Ψ′ on the inputs gi and g′i for all i. If the i’th bit of
the secret key is 0 then gi(s) = g′i(s) and therefore Ψ′(g) = Ψ(gi(s)) = Ψ(g′i(s)) = Ψ′(g′) (because
Ψ is deterministic). On the other hand, if the i’th bit of the secret key is 1 then gi(s) 6= g′i(s) and
since Ψ is injective it follows that also Ψ′(g) = Ψ(gi(s)) 6= Ψ(g′i(s)) = Ψ′(g′). The attacker can
therefore determine all the bits of the secret key s in violation of the security of Ψ.

Parametrized definition. As a consequence of the above observations, and similar to the case
of key-related attacks [3], the definition of KDI-security will be parametrized by a class of function
descriptions C, and all the queries to the O′ oracle will be restricted to functions from C. The
question of whether KDI security with respect to a certain class C provides a meaningful level of
security depends heavily on the application. In some cases anything less than “all polynomial-size
circuits” may be insufficient while in others having C restricted to the identity function only (i.e.,
one is allowed to query the primitive on the key itself but not on other functions of the key) may
suffice.

In many cases, providing security assurance against one function of the key, i.e., the case where
|C| = 1, will be of significant value: we may at least hope that even an abusive implementation that
“encrypts its own key” will only do so in one form, rather than encrypting many copies of the key in
many different forms. Given the limitations discussed above (and more to be shown in the sequel)
we will judge different constructions under the “modest” requirement that they resist singleton
classes |C| = 1. We would like to get a construction that is KDI secure against all singleton classes
(i.e., the attacker is allowed to choose a single function g(s) to query but the function g could be any
efficient function of s). Unfortunately, examples such as the one with the function g(s) = E−1

s (s)
demonstrate that even this modest goal cannot always be achieved. In such a case we will study
the “minimalist” requirement that a construction is KDI secure against one specific function (and
as we show in Section 3.2.1, even this is not easily achievable in the standard model).

3 Pseudorandom Functions

Below we use the convention that for security parameter k, the key for a pseudorandom function
is a random k-bit string, and that the function is from {0, 1}`in(k) to {0, 1}`out(k) where `in and `out

are efficiently computable and polynomially bounded. Then a family of pseudorandom functions is
an ensemble

F =
{
fs : {0, 1}`in(k) → {0, 1}`out(k)

∣∣∣∣ s ∈ {0, 1}k}
k∈N

and we require that there is an efficient evaluation procedure that given any s ∈ {0, 1}k and any
x ∈ {0, 1}`in(k) computes y = fs(x).

The standard security definition for pseudorandom functions as defined in [8] asserts that no
feasible attacker Aφ(1k) (with oracle access to φ) can distinguish with any significant advantage
the case where φ = fs for a random s ∈R {0, 1}k from the case where φ is chosen as a random
function from {0, 1}`in(k) to {0, 1}`out(k).

4

Following the rationale presented in Section 2, in order to capture KDI security of pseudorandom
functions, we augment the standard definition of pseudorandom functions by letting the adversary
also access another oracle φ′ that takes as input a description of a function g and outputs φ(g(s)).

Definition 1 (KDI-secure PRFs) A family F of pseudorandom functions is KDI-secure with
respect to a class C of circuits if no feasible attacker Aφ,φ′(1k) (with oracle access to φ, φ′) can
distinguish with any significant advantage between the following two cases:

1. φ = fs for a random s ∈R {0, 1}k and φ′(g) = φ(g(s)) for any g ∈ C;

2. φ is chosen as a random function φ : {0, 1}`in(k) → {0, 1}`out(k), s is chosen at random in
{0, 1}k, and φ′(g) = φ(g(s)) for any g ∈ C.

On KDI-insecure PRFs. We first observe that secure PRFs (or block ciphers) are not neces-
sarily KDI-secure, not even with respect to the identity function. Indeed, given any secure PRF
family F = {Fs}, one can trivially modify it as follows: F ′

s(x) = s if x = s and F ′
s(x) = Fs(x)

otherwise. Clearly, the family F ′ = {F ′
s} is still a secure PRF, but it is not KDI-secure with respect

to the identity function. Similarly, if we start with a secure cipher E (a strong pseudorandom per-
mutation) we can build another secure cipher E′ that is not KDI-secure with respect to the identity
function:

E′
s(x) =

s if x = s
Es(s) if x = E−1

s (s)
Es(x) otherwise

3.1 Constructions in the “ideal-cipher model”

We saw above that the construction fs(x) = Es(x) where E is a secure block cipher is not necessarily
KDI-secure. Here we show that this construction is at least KDI secure in the “ideal-cipher model”.
We begin by adapting our definition of KDI security to Shannon’s “ideal cipher model”.

Recall that in the ideal-cipher model, all the parties (including the attacker) are given black-box
access to two tables Π(·, ·) and Π−1(·, ·). These tables are chosen at random subject to the condition
that for every “key” s, Π(s, ·) is a permutation and Π−1(s, ·) is its inverse (and all these permutations
are over the same domain). For simplicity of presentation we assume that on security parameter k,
the key that selects the permutation is of length k bits and the permutations themselves are over
{0, 1}k. Namely, for each s ∈ {0, 1}k, Π(s, ·) is a random permutation over {0, 1}k , and Π−1(s, ·)
is the inverse permutation.

We augment the definition of KDI-security to the ideal-cipher model by providing the attacker
with oracle-access to Π,Π−1, and more importantly by potentially allowing the class of function-
descriptions in C to depend on Π and/or Π−1. Specifically, in this case we allow the circuits in C
to include also Π-gates that on input (s, x) return Π(s, x) (and similarly also Π−1-gates). When
stating a result in this paper in the context of the ideal cipher model we will specify whether we
assume the functional queries g(s) to depend or not in the oracles Π and Π−1.

Note that when adapting Definition 1 to the “ideal cipher model”, the attacker’s advantage is
measured with respect to the probability distribution where for each s ∈ {0, 1}k, Π(s, ·) is a random
permutation over {0, 1}k and Π−1(s, ·) is the inverse permutation.
Remark. The distinction between circuits that include Π and Π−1 gates and circuits that do not
is one of the main reasons for using the “ideal cipher model” in the KDI context. Indeed, in some

5

cases we would like to argue that a cipher is KDI-secure with respect to any function g that “does
not depend on the cipher itself”. This restriction is generally not well defined in the standard model
but can be captured in the “ideal cipher model” by specifying that the function g is described by
a circuit that does not include Π or Π−1 gates.

KDI-security of fs(x) = Πs(x). It is easy to see that even in the “ideal cipher model”, we can
find functions g that depend on Π such that the construction fs(x) = Π(s, x) is not KDI-secure
with respect to g. For example, if we set g(s) = Π−1(s, s) then fs(g(s)) = Π(s,Π−1(s, s)) = s.
However, we can show that this construction is KDI secure with respect to every function g that
does not depend on Π, specifically:

Theorem 1 Let g be any Boolean circuit with no Π-gates or Π−1-gates. Then the construction
fs(x) = Πs(x) is a KDI-secure pseudorandom function in the “ideal cipher model” with respect to
the singleton class C = {g}.

A sketch of the proof is in the appendix. Similar claims can be made for many of the pub-
lished PRP-to-PRF constructions in the literature, e.g., the truncation construction [9], the XOR
construction [13], etc.1

3.2 Constructions in the standard model

We have shown that an ideal cipher is also KDI secure with respect to any function g that does
not depend on the cipher itself. On the other hand, we saw, in the examples following Definition 1,
that in the standard model a secure cipher (or PRF) does not have to be KDI-secure, not even with
respect to simple functions such as the identity function. Here, we investigate to what extent one
can build KDI-secure schemes in the standard model. As we will see, one obstacle is the fact that
in the standard model one cannot impose independence between a PRF (or cipher) scheme and the
function g as we did in Theorem 1. Indeed, we show that in the standard model one cannot get a
single construction that is KDI secure with respect to every singleton class {g}.

Theorem 2 (No single construction for all g.) There exists no pseudorandom function family
that is KDI-secure with respect to {g} for all functions g.

Proof Let F = {Fs} be a pseudorandom family. Define gF (s) = Fs(0), and we show that F is
not KDI-secure with respect to {gF }. An attacker A queries its key-dependent oracle to obtain
a = Fs(gF (s)) = Fs(Fs(0)); then it queries the F -oracle on 0 to obtain b = Fs(0); finally, it queries
the F -oracle on b to obtain c = Fs(b). A outputs 1 if a = c and 0 otherwise. Clearly, when
the oracle F is answered with the pseudorandom function Fs then a = c and A outputs 1 with
probability 1, while if the F -oracle is random then a and c are independent random values and
hence A outputs 1 only with small probability.

1For these constructions one gets KDI security in the “ideal cipher mode” but not necessarily KDI security “beyond
the birthday bound”. (Getting PRF security beyond the birthday bound has been the initial motivation for these
constructions.)

6

3.2.1 A tailored construction for every function g

Since we cannot have a single construction that is KDI secure against every function g, it is natural
to ask whether we can at least have for every g a tailored construction that is KDI secure against
only this function g. Below we provide a partial positive answer to this question.

First try. We begin with a simple construction that at first glance looks as if it should work.
Let f = {fs} be a pseudorandom function (with keys and inputs that are n-bit long), fix some
function g : {0, 1}n → {0, 1}n, and define a family F

(g)
= {F (g)

s } with n-bit keys and (n − 1)-bit
input:

F
(g)

s (x) =

{
fs(1|x) if x 6= g(s)
fs(0) if x = g(s)

(1)

Perhaps surprisingly, we show that this construction does not always work:

Lemma 1 There are functions g s.t. F (g) from Eq. (1) is not KDI-secure with respect to {g}.

Proof Define g(s) = fs(0). We show a KDI-attacker A that distinguishes between F (g) and a
random function. The attacker A queries its key-dependent oracle to receive a = F (g(s)), then
queries the oracle F on a to get b = F (a) and outputs 1 if a = b and 0 otherwise.

When the F -oracle is a real one (i.e., instantiated with F
(g)
s) then we have a = F

(g)
s (g(s)) =

fs(0) = g(s), and therefore also b = F
(g)
s (a) = F

(g)
s (g(s)) = fs(0), thus A outputs 1 with proba-

bility 1. On the other hand, if the F oracle is a random function then a is a random value and
b = F (a) is an independent random value, hence a = b happens only with small probability.

The reason for this counter-example was that the attacker was able to compute g(s) given access
to F . Indeed, we show that when this is impossible then the construction is secure.

Lemma 2 The construction F (g) is a KDI-secure PRF with respect to the singleton class C = {g},
provided that the family f is a secure PRF and has the property that for a random s, g(s) is
unpredictable even given oracle access to fs(·).

The proof is sketched in the appendix.

High-entropy g’s. Given Lemma 2, we may try to first design a PRF f (g) such that g(s)
is unpredictable given oracle access to f

(g)
s , and then use f (g) in the construction from Eq. (1).

Indeed, if g is a permutation then the construction f (g)
s (x) = fg(s)(x) has the needed properties.

If g is not a permutation but g(s) still has enough min-entropy, then we can use a strong
extractor ext and fix some public random seed, r, for it. Then extr(g(s)) is close to random (even
given r), so we can almost use it as the key for f . The only problem is that it is shorter than n bits,
so we use a pseudorandom generator to expand it to n bits. This gives us the following randomized
construction:

f (g,r)
s (x) = fG(extr(g(s)))(x), and F1(g,r)

s (x) =

{
f

(g,r)
s (1|x) if x 6= g(s)
f

(g,r)
s (0) if x = g(s)

(2)

Lemma 3 If fs is a PRF, ext : R×{0, 1}n → {0, 1}m a strong entropy extractor and G : {0, 1}m →
{0, 1}n a PRG, and if the distribution of g(s) has at least m + ω(log n) bits of min-entropy, then
with high probability over the choice of r, the construction F1(g,r) is KDI-secure with respect to g.

7

Proof Sketch The proof follows from Lemma 2 and since g(s) is unpredictable even given r and
access to f (g,r)

s .

Low-entropy g’s. The construction from Eq. (2) works for functions g such that g(s) has high
min entropy. On the other end of the scale, if g(s) has only little entropy then we can use a different
construction. Specifically, if g(s) has very many pre-images, then we can extract entropy from s
itself, so that extr(s) is close to random even given g(s) and r. Namely, we have the following
construction:

F2(r)
s (x) = fG(extr(s))(x) (3)

Lemma 4 If fs is a PRF, ext : R×{0, 1}n → {0, 1}m a strong entropy extractor and G : {0, 1}m →
{0, 1}n a PRG, and if g has the property that g(s) for a random s has at least 2m+ω(logn) pre-
images (except perhaps with negligible probability), then with high probability over the choice of r,
the construction F2(r) is KDI-secure with respect to g.

Proof Sketch The proof follows from the fact that F2(r)
s is pseudorandom even when the attacker

is given g(s) and r (since extr(s) is close to random given both of these values).

Putting it together. Unfortunately, the “high entropy” condition in Lemma 3 is not the
complement of the “low entropy” condition in Lemma 4. (One talks about min-entropy and the
other about a notion similar to Shannon entropy.) Still, if g is a regular function then these two
conditions complement each other. (Recall that a function g is regular if for all s, s′, g(s) and g(s′)
have the same number of pre-images.) Hence we get

Theorem 3 If PRFs exist, then for any regular function g, there is a randomized PRF F g that is
KDI secure with respect to {g} with high probability.

Proof Sketch If the pre-images of g are larger than 2n/2 then we use the construction from
Eq. (2), and if they are smaller than 2n/2 then we use the construction from Eq. (3).

3.2.2 A more “natural” construction with respect to the identity function

We end this section by describing a somewhat more “natural” construction of KDI-secure PRF with
respect to the identity function. This construction is reminiscent of an unpublished “symmetric
PRF” construction due to Barak [2].2 Assume that we have a pseudorandom generatorG : {0, 1}n →
{0, 1}2m, and denote the first m bits of output of G on seed s by G1(s) and the last m bits by
G2(s). Assume further that G has the extra property that it is hard to find two different seeds
s1, s2 such that G2(s1) = G2(s2).

We call a generator with this extra property a collision-resistant generator. For example,
one can verify that such a pseudorandom generator (with m = n) can be constructed from any
one-way permutation ρ over m bits using the Blum-Micali construction [5]:

G(s) = b(s) b(ρ(s)) b(ρ2(s)) . . . b(ρm−1(s)) | ρm(s) (4)

where b(·) is a hard-core predicate for ρ(·). It is also plausible that ad-hoc constructions such as
G(s) = AESs(0)|AESs(1)|AESs(2) · · · have this property, since we can make m sufficiently larger

2A “symmetric PRF” is a function f(x, y), which is a PRF both when x is viewed as the key and y as the input,
as well as when y is viewed as the key and x as the input.

8

than n. Given a collision-resistant pseudorandom generator G(·) and a pseudorandom function
fs(·), we construct another pseudorandom function Fs(·) by setting

Fs(x) = fG1(s) (G2(x)) . (5)

Lemma 5 The construction F is KDI-secure with respect to the singleton class containing the
identity function C = {ID}, assuming that f is a pseudorandom function and G is a collision-
resistant pseudorandom generator.

Proof Sketch We first note that because of the collision-resistance of G it is unlikely that the
attacker will ever query F on two inputs x, x′ such that G2(x) = G2(x′). Assuming that this does
not happen, we consider a “hybrid game” where the attacker’s query of the identity function (i.e.,
its query of Fs(s)) is answered by fG1(s)(r) for a random r instead of by fG1(s)(G2(s)). Then we
show that the advantage of the attacker in the hybrid game is close to its advantage in the real
game (since G is a PRG), and at the same time this advantage must be insignificant (since f is a
PRF).

We remark that although the identity function does not appear to be “hard wired” in the
definition of F from above, this construction is not secure in general against any other function.
For example, consider the function g(s) = s + 1, and we show a PRF f and a collision-resistant
PRG G such that the resulting F is not KDI-secure with respect to C = {g}.

Assume that we have a PRG G(s) = G1(s)|G2(s) which is collision resistant with respect to
both G1 and G2. (Again, it is plausible that an ad-hoc construction such as G(s) = AESs(0)|
AESs(1)|AESs(2) · · · has this property, since we can have |G1(s)| = |G2(s)| � |s|.) We then define
a new PRG

G̃(s|b) = G̃1(s|b) | G̃2(s|b), where

{
if b = 0 then G̃1(s|b) = G1(s), G̃2(s|b) = G2(s)|b
if b = 1 then G̃1(s|b) = G2(s), G̃2(s|b) = G1(s)|b

It is clear that G̃ is a collision-resistant PRG. Also, let f be a PRF with input which is one-bit
longer than the key, and we modify it as follows:

f ′s(x|b) =

{
0 if x = s
fs(x|b) otherwise

Again, clearly f ′ is still a PRF. However the construction F from Eq. (5) is NOT KDI-secure with
respect to g(s) = s+ 1, since for any key whose last bit is zero, s′ = s|0, we get

Fs′(s′ + 1) = Fs|0(s|1) = f ′
G̃1(s|0)(G̃2(s|1)) = f ′G1(s)(G1(s)|1) = 0

4 Tweakable Pseudorandom Permutations

Recall that a tweakable cipher (or tweakable pseudorandom permutation) [11] has a key and two
inputs: a plaintext and a tweak. Below we use the convention that for security parameter k, both
the plaintext and the tweak are k-bit strings, and that the cipher key is of length {0, 1}`(k) where
` is some polynomially bounded function (we often use `(k) = k or `(k) = 2k). Formally a family
of tweakable pseudorandom permutations is an ensemble

P =
{
ps,t ∈ S

(
{0, 1}k

) ∣∣∣∣ s ∈ {0, 1}`(k), t ∈ {0, 1}k}
k∈N

9

where S denotes the symmetric group, and we require that there are efficient evaluation and in-
version procedures that given any s, t ∈ {0, 1}k and any x ∈ {0, 1}`(k) compute y = ps,t(x) and
z = p−1

s,t (x), respectively.
The standard security definition for strong tweakable pseudorandom permutations as defined

in [12, 11] asserts that no feasible attacker Aπ,π′(1k) (with oracle access to π, π−1) can distinguish
with any significant advantage the case where for a random s ∈R {0, 1}k we set π(t, x) ≡ ps,t(x)
and π−1(t, x) ≡ p−1

s,t (x), from the case where for every t ∈ {0, 1}k, π(t, ·) is chosen as a random
permutation over {0, 1}`(k) and π−1(t, ·) is set to the inverse permutation.

Adding KDI-security to this definition requires some choices. The attacker in this model has
two oracles, each with two inputs (namely π(·, ·) and π−1(·, ·)) and we need to decide what input
to what oracle can depend on the key. In this work we only consider the variant where the
plaintext/ciphertext inputs to both π and π−1 can depend on the key, but not the tweaks. The
reason that we do not consider key-dependent tweaks is that tweaks typically represent some context
information or label that comes from a higher layer (e.g., in the storage application that motivated
this paper the tweak represents the physical position where the data is to be stored), and so it may
be reasonable to assume that it does not depend on the key.

With these choices, we modify the standard definition of tweakable PRPs by giving the adversary
access to two additional oracles ψ,ψ−1 that take as input a tweak t and a description of a function
g and output π(t, g(s)) and π−1(t, g(s)), respectively.

Definition 2 (KDI-secure tweakable strong PRPs) A family P of tweakable pseudorandom
permutations is KDI-secure with respect to a class C of circuits if no feasible attacker Aπ,π−1,ψ,ψ−1

(1k)
can distinguish with any significant advantage between the following two cases:

1. The key s ∈R {0, 1}k is chosen at random, and for any t, x, g the oracles are set as, π(t, x) ≡
ps,t(x), π−1(t, x) ≡ p−1

s,t (x), ψ(t, g) ≡ ps,t(g(s)), and ψ−1(t, g) ≡ p−1
s,t (g(s));

2. The key s ∈R {0, 1}k is chosen at random, for every t ∈ {0, 1}k we set π(t, ·) to a ran-
dom permutation over {0, 1}` and π−1(t, ·) to its inverse, and then ψ(t, g) ≡ π(t, g(s)), and
ψ−1(t, g) ≡ π−1(t, g(s)).

As before, Definition 2 is adapted to the “ideal cipher model” by giving oracle access to the ideal
cipher Π,Π−1 to the construction itself, the attacker A, and potentially also the circuits in C.

Below we demonstrate that some constructions of tweakable ciphers in the literature are KDI
insecure against simple functions of the key, while others can be proven secure in the ideal cipher
model.

KDI-insecurity of the LRW constructions. Consider the following instantiation of the second
construction of Liskov et al. from [11]. This instantiation has two keys, denoted s1, s2, where s1 is
used as a key for an underlying block cipher E and s2 is treated as an element of GF (2k) with k
the block-size of E. This construction then defines the following tweakable cipher, with both the
block size and the tweak size equals to k bits:

Ẽs1,s2(t, x) = Es1((t · s2)⊕ x)⊕ (t · s2) (6)

where t · s2 is a multiplication in GF (2k)). In [11] it is shown that the generic construction
Es1(hs2(t) ⊕ x) ⊕ hs2(t) is a secure tweakable cipher when E is a secure cipher and h is a “xor-
universal” hash function, which implies the security of Eq. (6) since hs2(t) = t · s2 is indeed
xor-universal.

10

However, as pointed out when this construction was considered for the IEEE 1619 standard, this
construction is not KDI-secure with respect to the function g(s1, s2) = s2 (i.e., when “encrypting”
the element s2 from the secret key). The attacker can query ψ(0, g) (i.e., using tweak value 0 and
“plaintext” s2) and also π(1, 0) (i.e., tweak value 1 and “plaintext” 0), thus getting

c1 = Ẽs1,s2(0, s2) = Es1(s2) and c2 = Ẽs1,s2(1, 0) = Es1(s2)⊕ s2

Next the attacker can compute s2 = c1⊕ c2 and then verify this value (e.g., by asking to “decrypt”
the value of c1 ⊕ 2s2 with respect to the tweak value 2).

KDI-security of the “trivial construction”. Alternatively, consider the “trivial” construction
of tweakable SPRP from a block cipher

Ẽs(t, x) = EEs(t)(x) (7)

It is easy to see that if E is a secure cipher then this construction is a secure tweakable cipher.
Although there are functions g for which this construction is not KDI-secure (for example the
function g(s) = E−1

Es(t)
(0), we can show, however, that Ẽ from Eq. (7) is KDI-secure in the “ideal

cipher model” with respect to any function that does not depend on the cipher itself.

Lemma 6 Let g be any Boolean circuit with no Π-gates or Π−1-gates. Then the construction
Ẽ from Eq. (7) is a KDI-secure tweakable strong pseudorandom permutation in the “ideal cipher
model” with respect to the singleton class C = {g}.

Proof Sketch Again, the proof is straightforward. Recall that the adversary in this game has
six oracles: Π(·, ·) and Π−1(·, ·) that represent the ideal cipher, Ẽ(·, ·) and Ẽ−1(·, ·) that represent
either the construction with a fixed random key s or a random tweakable permutation (independent
of Π), and ψ(·) and ψ−1(·) that allow key-dependent queries3 with ψ(t) = Ẽ(t, g(s)) and ψ−1(t) =
Ẽ−1(t, g(s)) (where s is the secret key in case one and just a random string in case two).

Similarly to the proof of Theorem 1, the proof goes by arguing that the attacker is very unlikely
to ever query its Π or Π−1 oracles on the right “key” s, and without such queries the view of the
attacker is the same in both cases.

Other constructions. We comment that a similar lemma can be proven also for Rogaway’s XEX
construction from [14], where on input x and tweak (i, j) one computes:

Ẽs((i, j), x) = Es((2i · Es(j))⊕ x)⊕ (2i · Es(j)) (8)

Namely, this construction too can be proven KDI-secure in the “ideal cipher model” with respect
to any function g that does not depend on the ideal cipher. The proof itself is very similar to
Rogaways’s proof of security for XEX [14]. The key-dependent queries are handled using the fact
that in the “ideal cipher model” the quantity Es(j) is independent of s for all j, and therefore the
attacker is unlikely to be able to issue two queries for which (2i · Es(j)) ⊕ x = (2i

′ · Es(j′)) ⊕ x′

(even if x, x′ can be set as functions of the secret key s).
3Compared to Definition 2 we slightly simplify notations here by having ψ,ψ−1 as single-input oracles. We can

do this because the function g is always the same, since we are interested in the singleton class C = {g}.

11

5 Symmetric Encryption

The question of KDI-security for encryption was studied by Black et al. [4] (under the name KDM-
security). They presented a definition of security (which follows the same rationale as we discussed
in Section 2), and proved that it can be easily met in the random-oracle model.

One thing that makes encryption schemes an easier case for KDI security than PRFs and tweak-
able ciphers is that they are randomized. Indeed, as opposed to the situation with deterministic
constructions, for randomized encryption there exist fully KDI-secure constructions based on stan-
dard number-theoretic assumptions. Specifically, it was shown by Boneh and Ostrovsky [6] that the
Cramer-Shoup encryption scheme [7] is “circularly secure” assuming the hardness of the decision
Diffie-Hellman problem. Using our terminology this means that Cramer-Shoup is KDI-CCA-secure
with respect to the class C of all deterministic poly-size circuits. (Indeed, [6] observed that the
original proof of security from [7] proves also this stronger statement, since the simulator in that
proof knows the secret key.) However, we do not know of a construction that achieves similar level
of KDI security in the standard model without using “public key tools” (and in particular we do
not know of a construction that can be implemented in speeds comparable to AES).

Below we confider a very natural PRF-based symmetric encryption scheme, which is (a slight
simplification of) the scheme that was proven secure in the random-oracle model by Black et
al. Specifically, We show that not only this construction fails to be KDI secure in the standard
model, but this failure is manifested even for a natural instantiations of the PRF (specifically when
instantiated with a Davies-Meyer PRF). We refer to [4] for formal definitions of KDI-security for
encryption.

Consider the “canonical” construction of symmetric encryption from PRF. Namely, given a
PRF fs(·) we define

Encs(x) = (r, x⊕ fs(r)) (9)

where r is chosen at random with each encryption. This encryption scheme is CPA-secure (up to
the birthday bound on |r|) if fs(·) is a secure PRF, and, intuitively, it appears that it “should” also
be KDI-secure. In particular, the scheme in Eq. (9) can be shown to be KDI-secure with respect
to all functions of the key s in the ideal-cipher model or when f is modeled as a family of random
functions. (The proof is a simplified variant of Theorem 5.1 from [4] ,where a related construction
was shown to be KDI-secure against chosen-ciphertext attacks.)

We demonstrate, however, that this construction is not KDI-secure in general in the standard
model. Moreover, and perhaps more surprising it even fails for practical PRFs. Specifically, we
show that when the underlying PRF is itself implemented from a block cipher via the Davies-Meyer
construction, the resulting encryption scheme is not KDI-secure, even with respect to the identity
function. Recall the Davies-Meyer construction

fs(x) = Ex(s)⊕ s (10)

This construction was meant as a component of a collision-resistant hash function, but for contem-
porary block ciphers one can expect it to also be a good PRF (in particular, this is an assumption
underlying the analysis of HMAC and it holds when E is modeled as an “ideal cipher”). Plugging the
Davies-Meyer construction in Eq. (9) we obtain the encryption scheme Encs(x) = (r, x⊕(Er(s)⊕s)).
An attacker that asks to encrypt the secret key will get Encs(s) = (r, s⊕ (Er(s)⊕ s)) = (r, Er(s)),
from which it can recover s (using the decryption routine E−1 with r as a key). Note also that this
construction fails even if E is an ideal cipher!

12

References

[1] IEEE P1619.* email archive. http://grouper.ieee.org/groups/1619/email/.

[2] B. Barak. Symmetric PRFs. Personal communications, 2001.

[3] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In Advances in Cryptology – EUROCRYPT ’03, volume 2656 of
LNCS, pages 491–506. Springer, 2003.

[4] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-
dependent messages. In Selected Areas in Cryptography, volume 2595 of Lecture Notes in
Computer Science, pages 62–75. Springer, 2002.

[5] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM Journal on Computing, 13:850–864, 1984.

[6] D. Boneh and R. Ostrovsky. Circular encryption. Unpublished, 2003.

[7] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.
Preliminary version in Crypto’98.

[8] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of
the ACM, 33(4):210–217, 1986.

[9] C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. In Advances in
Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 370–389.
Springer, 1998.

[10] IEEE P1619. Standard for cryptographic protection of data on block-
oriented storage devices. Draft standard, availabe temporarily from
http://ieee-p1619.wetpaint.com/page/IEEE+Project+1619+Home, 2007.

[11] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In Advances in Cryptology
– CRYPTO ’02, volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer,
2002.

[12] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal of Computing, 17(2), Apr. 1988.

[13] S. Lucks. The sum of PRPs is a secure PRF. In Advances in Cryptology - EUROCRYPT’00,
volume 1807, pages 470–484. Springer, 2000.

[14] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB
and PMAC. In Advances in Cryptology - ASIACRYPT’04, volume 3329 of Lecture Notes in
Computer Science, pages 16–31. Springer, 2004.

13

A Proof sketches

Theorem 1 Let g be any Boolean circuit with no Π-gates or Π−1-gates. Then the construction
fs(x) = Πs(x) is a KDI-secure pseudorandom function in the “ideal cipher model” with respect to
the singleton class C = {g}.
Proof Sketch The attacker A has access to three oracles: Π(·, ·), and Π−1(·, ·) that represent
the ideal cipher and f(·) which is either Π(s, ·) for a random s (the “real case”), or an independent
random function (the “random case”). In addition, the attacker is given the value f(g(s)), where
s is the key in the “real case” and just a random string in the “random case”.

We consider a “hybrid case” which is just like the “random case”, except that f is chosen as
a random permutation rather than a random function. Clearly, the “hybrid” and the “random”
cases cannot be distinguished upto the birthday bound. The heart of the proof is in showing that
the attacker cannot distinguish the “hybrid” from the “real” case.

Next we argue that the attacker has only a negligible probability to ever query its Π or Π−1

oracles with the correct key s: since g is independent of Π,Π−1 then all the values that the
attacker sees are entries of Π,Π−1 that by themselves are independent of s. (This is where the
counterexample g(s) = Π−1(s, s) comes in, dependent on Π−1 allows the attacker to ask for “the
value in the entry in which s is written”.) As long as the attacker still did not query Π or Π−1 with
the right key s, then the answer that it got so far can be completely simulated by the attacker itself,
save for cases where a query f(x) on some string x happened to return the same value as f(g(s)).
This last event either happens with negligible probability (if the pre-image of g(s) is smaller than
2n/2) or they still leave exponentially many possibilities for s (if the pre-image of g(s) is larger).
Hence the attacker only has an exponentially small probability of hitting the right key s in the next
query that it makes.

But short of querying Π,Π−1 on the right s (and since g is independent of Π,Π−1), the answers
that the attacker gets in both the “hybrid” and the “real” cases are drawn from the same probability
distribution. Namely the initial value of f(g(s)) and the answers to all the queries to f are computed
using a random permutation which is independent of the queries that the attacker makes to Π,Π−1.

Lemma 2 The construction F (g) from Eq. (1) is a KDI-secure PRF with respect to the singleton
class C = {g}, provided that the family f is a secure PRF and has the property that for a random s,
g(s) is unpredictable even given oracle access to fs(·).
Proof Sketch Given a KDI-attacker A(g) against F (g) with respect to C = {g}, we construct
a distinguisher B against the underlying f . B uses its oracle access to f to answer A(g)’s queries
to F and the functional query g(s) to F ′: When A(g) queries F (x) then B queries f(1|x), and when
A(g) queries F ′(g) then B queries f(0).

What happens, however, if A(g) queries the value x = g(s) from the function oracle F? In this
case, B, as described, responds with f(1|x) while it should have answered f(0). But due to the
unpredictability requirement the probability that A(g) will query F on g(s) is negligible. Thus, B’s
advantage against f is the same as A(g)’s advantage against F except for a negligible prediction
probability.

14

