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Abstract

We present group encryption, a new cryptographic primitive which is the encryption analogue
of a group signature. It possesses similar verifiability, security and privacy properties, but whereas
a group signature is useful whenever we need to conceal the source (signer) within a group of
legitimate users, a group encryption is useful whenever we need to conceal a recipient (decryptor)
within a group of legitimate receivers.

We introduce and model the new primitive and present sufficient as well as necessary conditions
for its generic implementation. We then develop an efficient novel number theoretic construction
for group encryption of discrete logarithms whose complexity is independent of the group size.
To achieve this we construct a new public-key encryption for discrete logarithms that satisfies
CCA2-key-privacy and CCA2-security in the standard model. Applications of group encryption
include settings where a user wishes to hide her preferred trusted third party or even impose a
hidden hierarchy of trusted parties, or settings where verifiable well-formed ciphertexts are kept
in a untrusted storage server that must be prevented from both learning the content of records
as well as analyzing the identities of their retrievers.
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1 Introduction

Group signatures were introduced in [?] and further developed in a line of works, e.g., [?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. In a nutshell a group signature allows a registered member
of a PKI (a.k.a. a group of registered users) to issue a signature on behalf of the group so that the
issuer’s identity is assured to be valid but is hidden from the verifier.

We introduce a novel cryptographic primitive that is the encryption analogue of a group signature;
we call it group encryption (not to be confused with group-oriented cryptography as in [?, ?], which
is essentially threshold cryptosystems). A group encryption scheme allows a sender to prepare a
ciphertext and convince a verifier that it can be decrypted by a member of the PKI group. As in a
group signature, in a group encryption there can be an opening authority that when the appropriate
circumstances are triggered it can reveal the identity of the group member who is the recipient of
the ciphertext. A group encryption provides “receiver anonymity” in the same way that a group
signature provides “sender anonymity.” This primitive was never considered in the group-signature
literature before, even though public-key encryption and signatures are typically dual primitives that
have been developed in parallel in many other settings.

We note that in protocols that attempt to maintain privacy/ anonymity, it has been often advo-
cated as a flexible service to allow a user to choose its recipient trustee (e.g., a trusted third party
for conditionally opening the ciphertext) among a set of available authorized parties. However, the
choice of a third party, while increasing flexibility, might also reveal some preference of the user, thus
reducing privacy. Group encryption is motivated by such applications.

1.1 Contributions

In this work we first contribute the definition, formalization and generic feasibility of group encryp-
tion. We then construct an efficient concrete implementation and investigate its related number
theoretic properties.
– Definition and Model. The group encryption primitive (GE) involves a public-key encryption scheme
with special properties, a group joining protocol (involving public-key certification) and a message
space that may have a required structure. Besides correctness, there are three security properties
that pertain to GE schemes. The first two of these properties, called Security and Anonymity
protect the sender from a hostile environment that tries to either extract information about the
message (security) or to extract information about who the recipient is (anonymity). We require
both properties to have the strongest notion of immunity to attack, namely CCA2 [?, ?]. The
third property, that we call Soundness protects the verifier from a hostile environment in which the
sender, the group manager and the recipients collude against him, so that he accepts a ciphertext
(e.g., an encrypted record to be stored) that either does not have the required structure or cannot
be decrypted by a registered group member.
– Necessary and Sufficient Conditions and Generic Design. We identify the necessary cryptographic
components of a GE scheme that include: a digital signature with adaptive chosen message security,
a public-key encryption scheme that satisfies both CCA2-key-privacy and CCA2-security, and zero-
knowledge proofs for NP statements. Using such appropriate components we demonstrate how a
generic GE scheme can be implemented and how, in turn, the scheme implies these components
(where a signature and encryption are derived directly with a relatively tight reduction).
– Efficient Design. We design a GE scheme for the discrete logarithm relation, which is one of
the most useful relations in cryptography. To this end we instantiate the modular design but with
primitives that algebraically suit its structure, to give a relatively efficient design where the ciphertext
and the proof associated with it has size independent of the size of the group of potential receivers.
– Efficient Encryption of Discrete Logarithm with CCA2-Security and CCA2-key-privacy. As our
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first step in the overall group encryption design, we point out that no existing public-key encryption
scheme is suitable for designing a GE for discrete logarithm relations, since the compound set of the
requirements that include verifiability, CCA2-security and CCA2-key-privacy for anonymity has not
been achieved before and requires special attention. We then design a public-key encryption with
key-privacy suitable for verifiable encryption of discrete-logarithms. The security of the scheme is
based on the Decisional Composite Residuosity (DCR) assumption of Paillier [?] (and its design is
motivated by earlier works of [?], [?] and [?]). We note that our encryption is the first Paillier-based
scheme that satisfies key-privacy, a fact which may be of independent interest.
– Algebraic Structure and Intractability Assumption. A new intractability assumption is required for
proving the key-privacy property of our encryption scheme: Decisional Diffie Hellman assumption
for the subgroup of square (quadratic) n-th residues (DDHSQNR). We explain why this is a natural
variation of DDH over a cyclic subgroup of Z∗

n2 that has order without small prime divisors and more-
over, to strengthen the claim of intractability, we prove that the DCR (which is needed for arguing
the security of the scheme anyway) implies the computational Diffie Hellman (CDH) assumption in
this subgroup. Note that we know of no arithmetic cyclic group without small order divisors where
CDH holds but where DDH does not hold.

1.2 Applications of Group Encryption

The combination of security of ciphertexts, anonymity of receivers and verifiability is a strong one
and supports some enhanced properties of known constructions as well as opens the door for new
applications.
– Anonymous Trusted Third Party Applications. Many protocols such as Fair Encryption, Escrow
Encryption, Group Signatures, Fair Exchange, employ a trustee, namely a trusted third party who is
off-line during the protocol and gets invoked in case something goes wrong. In an actual deployment
of any of the above primitives it is expected that there will be a multitude of these trustees. In
this case the identity of a chosen trustee may reveal certain aspects of the user, whereas the user
prefers to retain her privacy. For example, imagine an “International Key Escrow” scenario where
a user wants to deposit (decrypt) a key with her own national trusted representative. However,
such a choice, if made public, may reveal the user’s nationality (in violation of privacy). The new
group encryption primitive enables the user to trust her own representative, but without revealing
its identity, yet to assure others that indeed a designated trustee has been chosen. Note that two
models are possible for taking keys off escrow: In the first one, each trustee tries to retrieve all the
keys from the available ciphertext repository, and will be successful only when the ciphertext is his to
open. In the second model, there is an opening authority which can open the identity of the trustee
(but not the encrypted key, due to separation of duties). The opening authority, in turn, directs
the ciphertext to the chosen trustee to be decrypted. Another scenario that is similar to the above,
is proxy voting where users deposit their votes encrypted under the public-key of a proxy of their
choice. A proxy is a designated trustee in this case and each user may prefer (or even be required
due to legislation) to hide her choice when depositing her vote. In this manner, the proxies can be
called upon later, in the tallying phase, to recover the votes entrusted to them.
– Secure Oblivious Retriever Storage. In the area of ubiquitous computing, secure and anonymous
credentials may move between computing elements (computer, mobile unit, embedded device, etc.).
A user may want to pass a credential secretly and anonymously between devices (either between her
own devices, or devices of her peers, all belonging to the same group). Asynchronous transfer that
does not require all devices to be present at the same time requires a storage server (similar to a
mail server). We can employ group encryption in implementing such a storage server safely, where
it is guaranteed that (1) the server only stores valid credentials (i.e., well formed ones) that have
a legitimate retriever; (2) the credentials are encrypted and thus the server (or anyone who may
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compromise it) cannot employ them; and (3) the identity of retrievers of credentials is hidden. A
device reading the storage can recover its credentials by scanning the storage sequentially and being
successful in decrypting the credentials directed to it (no opening authority is needed).
– Ad-Hoc Access Structure Group Signature. We may implement the opening authority in group
encryption as a multitude of trustees and use it to encrypt a signing credential. In this way we can
build a group signature where signers can organize the set of trustees to open their signature by
acting on it in a predetermined order following an ad-hoc flexible structure that is only partially
revealed to the verifier. This can be achieved by cascading the group encryption primitive so that
a sequence of hops (identity discoveries and transfers) will be required to recover the identity of
the signer in the signature opening step. This notion generalizes “hierarchical group signatures” a
primitive introduced in [?] where the trustee access structure was determined as a fixed tree.

1.3 Preliminaries

In this section we provide some standard definitions for reference purposes.
Adaptively Chosen Message Secure Digital Signatures. This is the classic security notion for digital
signatures [?] that we reiterate here for completeness. Consider a digital signature 〈Gs,S,Vs〉 and
the following game with a PPT adversary A that is allowed to pose adaptively q signing queries:

1. 〈sik, vek〉 ← Gs(1ν).
2. 〈m∗, σ∗〉 ← AS(sik,·)(1ν , vik).
3. out← Vs(m∗, σ∗) ∧ (m∗ 6∈ {m1, . . . ,mq}).

where the values m1, . . . ,mq correspond to the queries of A to the signing oracle. The digital
signature is adaptive chosen message secure provided that Prob[out = true] = negl(ν).
Commitment Schemes. A commitment scheme is defined by three procedures 〈Zc, C, T 〉 with the
following properties: (hiding) for any given cpk← Gc(1ν) and any x, the procedure C(cpk, x) produces
the commitment ψ and the decommitment information ρ so that ψ reveals no information about x.
(binding) for any x, if 〈ψ, ρ〉 ← C(cpk, x) it is computationally hard to find x′ 6= x and ρ′ so that
T (ρ, x, ψ) = T (ρ′, x′, ψ) = true.
Extractable Commitments. A commitment scheme is called extractable if Zc produces in addition to
cpk a trapdoor τext and there is a procedure Dc such that Dc(τext, C(cpk, x)) = x.
Equivocal Commitments. A commitment scheme is called equivocal if Zc produces in addition to cpk
a string τequ and there is a procedure Qc that given τequ, x, x′ with x 6= x′ and 〈ψ, ρ〉 ← C(cpk, x),
Qc returns ρ′ such that T (ρ, x, ψ) = T (ρ′, x′, ψ) = true. Moreover, the distribution of ρ should be
indistinguishable from that of ρ′.
Public-Key encryption with CCA2-security. Consider a cryptosystem 〈Z,Ge, E ,D〉 and the following
game:

1. param← Z(1ν).
2. 〈pk, sk〉 ← Ge(param).
3. 〈m0,m1, aux, L〉 ← AD(sk,·)(FIND, pk).
4. b←R {0, 1}.
5. if m0 = m1 then abort;
6. ψ ← E(pk,mb, L).
7. b∗ ← AD¬〈ψ,L〉(sk,·)(GUESS, ψ, aux).

The cryptosystem satisfies CCA2-security if it holds that for any PPT A playing the above game,
|Prob[b = b∗]− 1

2 | = negl(ν). We note that CPA-security is defined as above with the difference that
at steps 3 and 7 the adversary has no access to the decryption oracles. Moreover observe that in

5



many cases Z can be simply assumed to be the identity function. In cases though that many users
share the same parameters (for example in the case of ElGamal encryption this can be the prime
number that defines the modular group) it is helpful to consider a Z that is separate from Ge.
Public-Key encryption with CCA2-key-privacy. Consider a cryptosystem 〈Z,Ge, E ,D〉 and the fol-
lowing game:

1. param← Z(1ν).
2. 〈pk0, sk0〉 ← Ge(param); 〈pk1, sk1〉 ← Ge(param).
3. 〈m, aux, L〉 ← AD(sk0,·),D(sk1,·)(FIND, pk0, pk1).
4. b←R {0, 1}.
5. ψ ← E(pkb,m, L).
6. b∗ ← AD¬〈ψ,L〉(sk0,·),D¬〈ψ,L〉(sk1,·)(GUESS, ψ, aux).

The cryptosystem satisfies CCA2-key-privacy if it holds that for any PPT A playing the above
game, |Prob[b = b∗] − 1

2 | = negl(ν). We note that CPA-key-privacy is defined as above with the
difference that at steps 3 and 6 the adversary has no access to the decryption oracles. This notion
was first investigated in [?].

2 Group Encryption: Model and Definitions

The parties involved in a GE scheme are the sender, the verifier, a group manager (GM) that manages
the group of receivers and an opening authority (OA) that is capable of discovering the identity of the
receiver. Formally, a GE scheme that is verifiable for a public-relation R is a collection of procedures
and protocols that are denoted as follows:〈

SETUP, JOIN, 〈Gr,R, sampleR〉, ENC, DEC, OPEN, 〈P,V, recon〉
〉

The functionality of the above procedures is as follows: the SETUP is a set of intialization proce-
dures for the system, one for the GM, one for the OA and one to produce public-parameters (denoted
by SETUPGM, SETUPOA, SETUPinit respectively). Using their respective setup procedures, the GM and
the OA will produce their public/secret-key pairs 〈pkGM, skGM〉 and 〈pkOA, skOA〉; JOIN = 〈Juser, JGM〉
is a protocol between a prospective group member and the GM. After an execution of a JOIN protocol
the group member will output his public/secret-key pair (pk, sk); the new member’s public-key pk
along with a certificate cert will be published in the public directory database by the GM. We will
denote by Lparam

pk the language of all valid public-keys where param is a public parameter produced
by the SETUPinit procedure.

To employ GE in a transaction, it is assumed that the sender (call her Alice) has obtained a pair
(x,w) that is sampled according to the procedure sampleR(pkR, skR), where pkR, skR are produced
by the generation procedure Gr(1ν) that samples the public/secret parameters for the relation R.
We remark that the secret-parameter skR may be empty depending on the relation (e.g., in the case
of discrete logarithm the relation is typically publicly samplable, hence skR is empty – but this is
not be the case in general). The polynomial-time testing procedure R(x,w) returns true iff (x,w)
belongs to the relation based on the public-parameter pkR. We note that given the relation R(·, ·)
it will be useful that it is hard to extract a “witness” w given an instance x; however this is not be
included in the formal requirements for a GE scheme. Note that if verifiability is not desired from
the GE, the relation R will be set to be the trivial relation that includes any string of a fixed size as
a witness (and in such case x will be simply equal to 1|w|).

Alice possessing the pair (x,w), she wishes to encrypt w for her chosen receiver, call him Bob.
She obtains Bob’s certified public-key 〈pk, cert〉 from database, and employing the public-keys pkGM
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and pkOA she encrypts w as ENC(pkGM, pkOA, pk, w, L) to obtain the ciphertext ψ with a certain label
L (L is a public string bound to the ciphertext that may contain some transaction related data or be
empty; we call it the “context” of ψ). Alice will give x, ψ, L to the verifier. Subsequently, Alice and
the verifier will engage in the proof of knowledge 〈P,V〉 that will ensure the following regarding the
ciphertext ψ and label L: there exists a group member whose key is registered in the database (i.e.,
Bob in this case) that is capable of decrypting ψ in context L and obtaining a value w′ for which it
holds that if w ← recon(w′) we have that (x,w) ∈ R. Note that, for P,V, the input to the verifier
will be the values param, pkGM, pkOA, pkR, x, ψ, L, whereas the prover (Alice) will have as additional
input the values pk, cert, w as well as the coin tosses used for the formation of ψ. The function
recon(·) reconstructs a witness based on the decryption of ψ and may be the identity function.

In the remaining of the section we give four definitions, correctness and the three security related
properties of GE, security, anonymity, and soundness. For simulating two-party protocols we use the
following notation: 〈outputA | outputB〉 ← 〈A(inputA), B(inputB)〉(common input).

Definition 2.1 (Correctness) A GE scheme is correct if the following “correctness game” returns 1
with overwhelming probability.

1. param← SETUPinit(1ν); 〈pkR, skR〉 ← Gr(1ν); (x,w)← sampleR(pkR, skR).
2. 〈pkGM, skGM〉 ← SETUPGM(param); 〈pkOA, skOA〉 ← SETUPOA(param);
3. 〈pk, sk, cert | pk, cert〉 ← 〈Juser, JGM(skGM)〉(pkGM). If pk 6∈ Lparam

pk then abort;
4. ψ ← ENC(pkGM, pkOA, pk, cert, w, L).

5. out1 ← w
?= recon(DEC(sk, ψ, L)).

6. out2 ← pk
?= OPEN(skOA, [ψ]oa, L).

7. 〈done | out3〉 ← 〈P(w,ψ, coinsψ),V〉(param, pkGM, pkOA, pkR, x, ψ, L).
8. if (out1 = out2 = out3 = true) return 1.

As shown above the opening procedure OPEN may not operate on the ciphertext ψ but on a
substring of the ciphertext ψ that is denoted by [ψ]oa; we make the distinction explicit as it is
relevant in terms of chosen ciphertext security.

There are three “security notions” for GE schemes: security, anonymity and soundness (that
includes verifiability). Security and anonymity are properties that protect Alice (the prover) against
a system that acts against her.

2.1 Formulation of the Security Property

In our definitions we use a number of oracles: we distinguish between oracles that are stateless (those
that maintain no state across queries) and those that are stateful (those that do maintain state).
Stateful oracles are useful to express the adversarial interactions with the protocols that are used
in our scheme. Next we introduce the decryption oracle, the challenge procedures and the prover
simulator oracle.
DEC(sk, ·): This is a stateless decryption oracle for the GE decryption function DEC. The value sk is
a secret-key that will be clarified from the context. If ψ is some “forbidden” ciphertext with label L
that the oracle must reject we will write DEC¬〈ψ,L〉(sk, ·).
CHbror(1

ν , pk, w, L): This a real-or-random challenge procedure for the GE encryption scheme. It
returns two values denoted as 〈ψ, coinsψ〉 so that if b = 1 then ψ ← ENC(pkGM, pkOA, pk, cert, w, L),
whereas if b = 0, ψ ← ENC(pkGM, pkOA, pk, cert, w′, L) where w′ is a plaintext sampled at random
from the space of all possible plaintexts of length 1ν for the encryption function (it is assumed at
least two plaintexts exist). In either case coinsψ are the random coin tosses that are used for the
computation of ψ.
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PROVEbP,P ′(pkGM, pkOA, pk, cert, pkR, x, w, ψ, L, coinsψ): this is a stateful oracle that if b = 1, it simu-
lates an execution of the prover procedure of P of the GE scheme (i.e., Alice), on pkGM, pkOA, pk, cert,
pkR, x, w, ψ, L, coinsψ. On the other hand, if b = 0, it simulates the protocol P ′ that takes the same
input as P with the exception of the values of w and coinsψ (the design of P ′ is part of proving the
security property).

Based on the above three procedures we are ready to give the security definition, which is rem-
iniscent of a real-or-random attack on the underlying encryption scheme. In the game below the
adversary controls the GM and OA and all group members except the member that Alice chooses as
her recipient, i.e., Bob. In fact, the adversary is the entity that introduces Bob into the group and
issues a certificate for his public-key. Moreover, the adversary has CCA2 access to Bob’s secret-key.
The adversary also selects some public relation R based on pkR as well as a pair (x,w). Subse-
quently a coin is tossed and the adversary either receives the encryption of w and engages with Alice
in the proof of ciphertext validity or the adversary receives an encryption of a random plaintext and
engages in a simulated proof of validity. A GE would satisfy security if the adversary is unable to
tell the difference. More formally (note that negl(ν) is a function that for any c, is less than ν−c for
sufficiently large ν):

Definition 2.2 A GE scheme satisfies security if there exists a protocol P ′ s.t. the “security game”
below when instantiated by any PPT A, returns 1 with probability less or equal to 1/2 + negl(ν).

1. param← SETUPinit(1ν); 〈aux, pkGM, pkOA〉 ← A(param);
2. 〈pk, sk, cert | aux〉 ← 〈Juser,A(aux)〉(pkGM);
3. 〈aux, x, w, L, pkR〉 ← ADEC(sk,·)(aux); if (x,w) 6∈ R then abort;
4. b

r← {0, 1}; 〈ψ, coinsψ〉 ← CHbror(1
ν , pk, w, L);

5. b∗ ← APROVEbP,P′ (pkGM,pkOA,pk,cert,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,·)(aux, ψ)
6. if b = b∗ return 1 else 0.

2.2 Formulation of the Anonymity Property

In the anonymity attack the adversary controls the system except the opening authority. Anonymity
can be thought of as a CCA2 attack against the encryption system of the OA. The adversary registers
the two possible recipients into the PKI database and provides the relation and the witness to Alice.
Alice will encrypt the same witness always as provided by the adversary but will use the key of one
of the two recipients at random. The adversary, who has CCA2 decryption access to both recipients
as well as teh OA, will have to guess which one of the two is Alice’s choice. We define the following
procedures:
CHbanon(pkGM, pkOA, pk0, pk1, w, L): The challenge procedure receives a plaintext w and two public-
keys pk0, pk1, and returns two values, 〈ψ, coinsψ〉 so that ψ ← ENC(pkGM, pkOA, pkb, certb, w, L) and
coinsψ are the random coin tosses that are used for the computation of ψ.
USER(pkGM): this is a stateful oracle that simulates two instantiations of Juser, i.e., it is given pkGM

and simulates two users that wish to become members of the group; the oracle has access to a string
denoted by keys in which USER will write the output of the two Juser instances.
OPEN(skOA, ·): this is a stateless oracle that simulates the OPEN operation of the opening authority;
recall that OPEN may not operate on the whole ciphertext ψ but rather on substring of it that will
be denoted by [ψ]oa.

Definition 2.3 A GE scheme satisfies anonymity if the following game instantiated for any PPT
A, it returns 1 with probability less or equal 1/2 + negl(ν).
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1. param← SETUPinit(1ν); 〈pkOA, skOA〉 ← SETUPOA(param); 〈pkGM, aux〉 ← A(param, pkOA);
2. aux← AUSER(pkGM),OPEN(skOA,·)(aux); if keys 6= 〈pk0, sk0, cert0, pk1, sk1, cert1〉 then abort;
3. 〈aux, x, w, L, pkR〉 ← AOPEN(skOA,·),DEC(sk0,·),DEC(sk1,·)(aux); if (x,w) 6∈ R then abort;
4. b

r← {0, 1}; 〈ψ, coinsψ〉 ← CHbanon(pkGM, pkOA, pk0, pk1, w, L);
5. b∗ ← AP(pkGM,pkOA,pkR,pkb,certb,x,w,ψ,L,coinsψ),OPEN¬〈[ψ]oa,L〉(skOA,·),DEC¬〈ψ,L〉(sk0,·),DEC¬〈ψ,L〉(sk1,·)(aux, ψ);
6. if b = b∗ return 1 else 0;

This completes the security definition as far as Alice is concerned. From the point of view of the
verifier, the goal of a malicious environment in which the verifier operates is to provide him with a
ciphertext that encrypts a witness for a public relation that does not open to a witness even if all
the group members apply their decryption function to it. Immunity to this attack, which we call
soundness, guarantees that at least one group key will open to a valid witness.

2.3 Formulation of the Soundness Property

A soundness attack proceeds as follows: the adversary will create adaptively the group of recipients
communicating with the GM. In this attack game, the adversary wins if, while playing the role of
Alice, she convinces the verifier that a ciphertext is valid with respect to a public-relation R of the
adversary’s choice, but it holds that either (1) if the opening authority applies skOA to the ciphertext
the result is a value that is not equal to a public-key of any group member, or (2) the revealed key
satisfies pk 6∈ Lparam

pk . To formalize soundness we introduce the following group registration oracle:
REG(sik, ·): this is a stateful oracle that simulates JGM, i.e., it is given skGM and registers users in the
group; the oracle has access to a string database that stores the public-keys and their certificates.

Definition 2.4 A GE scheme satisfies soundness if the following “soundness game”, when instanti-
ated with any PPT adversary A, the probability it returns 1 is negligible.

1. param← SETUPinit(1ν); 〈pkOA, skOA〉 ← SETUPOA(param); 〈pkGM, skGM〉 ← SETUPGM(param);
2. 〈pkR, x, ψ, L, aux〉 ← AREG(skGM,·)(param, pkGM, pkOA, skOA);
3. 〈aux, out〉 ← 〈A(aux),V〉(param, pkGM, pkOA, pkR, x, ψ, L);
4. pk← OPEN(skOA, [ψ]oa, L) ;
5. if pk 6∈ database or pk 6∈ Lparam

pk or ψ 6∈ Lx,L,pkR,pkGM,pkOA,pk
ciphertext then return 1 else 0;

Note that Lx,L,pkR,pkGM,pkOA,pk
ciphertext = {ENC(pkGM, pkOA, pk, cert, w, L) | w : (x,w) ∈ R, 〈pk, cert〉 ∈ Valid}.

This means that the soundness adversary wins if the key obtained by OA after opening is either not
in the database, or is invalid, or the ciphertext ψ is not a valid ciphertext under pk encrypting a
witness for x under R.

A GE scheme should satisfy correctness, security, anonymity and soundness. Note that: (1) By
defining the oracles USER and REG one can allow concurrent attacks or force sequential execution
of the group registration process. (2) CPA variants of the security and anonymity definition w.r.t.
either group members or the OA can be obtained by dropping the corresponding DEC oracles.

2.4 Related Primitives

Above we have presented the compound set of requirements for group encryption; we are now ready
to compare it to prior cryptographic primitives which were originally designed to achieve only subsets
of the group encryption’s properties. Key-privacy was given in [?, ?] who showed that there exist
encryption schemes where it is impossible for an adversary to distinguish what public-key has been
used for the message encryption. Verifiable encryption on the other hand allows the sender to prove
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certain properties of the encrypted message (cf. [?] and references there). Finally, for the setting
where users are encrypting with their own public keys (and thus, know the corresponding secret key),
verifiable encryption was composed with key-privacy (called key-obliviousness) in [?].

3 Necessary and Sufficient Conditions for GE schemes

Given that a GE scheme is a complex primitive it would be helpful to break down its construction to
more basic primitives and provide a general methodology for constructing GE schemes. The necessary
components for building a GE scheme will be the following:
1. Adaptively Chosen Message Secure Digital Signature. It will be used to generate the public-key
certificates by the GM during the JOIN procedure.
2. Public-key Encryption with CCA2 Security and Key-Privacy. We will employ an encryption
scheme 〈Ge, E ,D〉 that satisfies (1) CCA2-security and (2) CCA2-Key-privacy. Refer to the appendix
for definitions of these security notions. We note that in public-key encryption with key-privacy
the key-generation has two components, one called Ze that produces public-parameters shared by
all key-holders and the key-generation Ge that given the public-parameter of the system produces a
public/secret-key pair. Note that the inclusion of Ze is mandatory since some agreement between
the receivers is necessary to enable key-privacy (at minimum all users should employ public-keys of
the same length).
3. Proofs of Knowledge. Such protocols in the zero-knowledge setting satisfy three properties:
completeness, soundness with knowledge extraction and zero-knowledge. These proofs exist for
any NP language assuming one-way functions by reduction, e.g., to the graph 3-colorability proof
of knowledge [?]. In certain settings, zero-knowledge proofs can be constructed more efficiently by
starting with a honest-verifier zero-knowledge (HVZK) proof of language membership protocol (i.e., a
protocol that requires no knowledge extraction and it is only zero-knowledge against honest verifiers)
and then coupling such protocol with an extractable commitment scheme (to achieve knowledge
extraction) and with an equivocal commitment (to enforce zero-knowledge against dishonest verifiers,
cf. [?]). See appendix ?? for more detailed definitions of the these standard primitives.

3.1 Modular Design of GE schemes

Consider an arbitrary relation 〈Gr,R, sampleR〉. In the modular construction we will employ: (1)
a digital signature scheme 〈Gs,S,Vs〉 that is adaptively chosen message secure; (2) a public-key en-
cryption scheme 〈Ze,Ge, E ,D〉 that satisfies CCA2 security and Key-privacy; (3) two zero-knowledge
proofs of language membership (defined below); to facilitate knowledge extraction we will em-
ploy also an extractable commitment scheme 〈Zc,1, C1, T1〉. Without loss of generality we will
assume that all employed primitives operate over bitstrings. The construction of a GE scheme
〈SETUP, JOIN, 〈Gr,R, sampleR〉, ENC, DEC, OPEN, 〈P,V〉, recon〉 is as follows:
SETUP. The SETUPinit procedure will select the parameters param by performing a sequential execution
of Ze,Zc,1. The SETUPGM procedure will be the signature-setup Gs and the SETUPOA will be the
encryption-setup Ge.
JOIN. Each prospective user will execute Ge to obtain pk, sk and then engage in a protocol 〈Ppk,Vpk〉
which is proof of language membership with the GM for the language Lparam

pk = {pk | ∃sk, ρ : 〈pk, sk〉 ←
Ge(param; ρ)}. The GM will respond with the signature cert← S(skGM, pk).
ENC. The procedure ENC will perform the following given a witness w for a value x such that
(x,w) ∈ R and a label L: it will return the pair ψ =df 〈ψ1, ψ2, ψ3, ψ4〉 where ψ1 ← E(pk, w, L1),
ψ2 ← E(pkOA, pk, L2), ψ3 ← C1(cpk, pk) ψ4 ← C1(cpk, cert) where L1 = ψ2||ψ3||ψ4||L and L2 =
ψ3||ψ4||L.
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DEC. Given sk, a ciphertext 〈ψ1, ψ2, ψ3, ψ4〉 and a label L, it will return D(sk, ψ1, ψ2||ψ3||ψ4||L).
OPEN. Given skOA, a ciphertext 〈ψ2, ψ3, ψ4〉 =df [ψ]oa and a label L it will returnD(skOA, ψ2, ψ3||ψ4||L).
Finally, the protocol 〈P,V〉 is a zero-knowledge proof of language membership for the language:{
〈param, pkGM, pkOA, pkR, x, ψ1, ψ2, ψ3, ψ4, L〉 | ∃ (coinsψ1 , coinsψ2 , coinsψ3 , coinsψ4 , pk, cert, w) :

∧(C1(cpk, pk; coinsψ3) = ψ3) ∧ (C1(cpk, cert; coinsψ4) = ψ4) ∧ (Vs(pk, cert) = true)

∧(E(pk, w, (ψ2||ψ3||ψ4||L); coinsψ1) = ψ1) ∧ (E(pkOA, pk, (ψ3||ψ4||L); coinsψ2) = ψ2) ∧ ((x,w) ∈ R)
}

Note that the reconstruction procedure recon will be set to simply the identity function.

Theorem 3.1 The GE scheme above satisfies (i) Correctness, given that all involved primitives
are correct and the protocols 〈Ppk,Vpk〉, 〈P,V〉 satisfy completeness. (ii) Anonymity, given that the
encryption scheme for users satisfies CCA2-key-privacy, the encryption scheme for OA satisfies
CCA2-security, the commitment scheme C1 is hiding and the protocols 〈Ppk,Vpk〉 and 〈P,V〉 are
zero-knowledge. (iii) Security, given that the employed encryption scheme for users satisfies CCA2-
security, the commitment scheme C1 is hiding and the protocols 〈Ppk,Vpk〉, 〈P,V〉 are zero-knowledge.
(iv) Soundness, given that the employed digital signature scheme satisfies adaptive chosen message
security, the commitment scheme C1 is binding and extractable and the protocols 〈Ppk,Vpk〉 and 〈P,V〉
satisfy soundness.

Proof. (i) correctness is easy and we omit the proof.
(ii) Let A be an anonymity attacker against the GE scheme. The anonymity game for the GE
construction employed here can be rewritten as follows:

1. param← SETUPinit(1ν);
2. 〈pkOA, skOA〉 ← Ge(param);
3. 〈pk0, sk0〉 ← Ge(param);
4. 〈pk1, sk1〉 ← Ge(param);
5. 〈pkGM, aux〉 ← A(param, pkOA);
6. 〈aux, cert0, cert1〉 ← APpk(pk0,sk0),Ppk(pk1,sk1),OPEN(skOA,·)(aux, pk0, pk1);
7. 〈aux, x, w, L, pkR〉 ← AOPEN(skOA,·),DEC(sk0,·),DEC(sk1,·)(aux); if (x,w) 6∈ R then abort;
8. b

r← {0, 1};
9. 〈ψ1, ψ2, ψ3, ψ4, coinsψ1 , coinsψ2 , coinsψ3 , coinsψ4〉 ← CHbanon(pkGM, pkOA, pk0, pk1, w, L);
10. ψ ← 〈ψ1, ψ2, ψ3, ψ4〉;
11. coinsψ ← 〈coinsψ1 , coinsψ2 , coinsψ3 , coinsψ4〉;
12. b∗ ← AP(pkGM,pkOA,pkR,pkb,certb,x,w,ψ,L,coinsψ),OPEN¬〈[ψ]oa,L〉(skOA,·),DEC¬〈ψ,L〉(sk0,·),DEC¬〈ψ,L〉(sk1,·)(aux, ψ);
13. if b = b∗ return 1 else 0;

Note that Ppk is an interactive prover machine for the language Lparam
pk and P is an interactive

prover machine for the language Lx,L,pkR,pkGM ,pkOA,pk
ciphertext .

The above game will be denoted by G0. We will provide a sequence of modifications to this game
till it is established that the probability the game returns 1 differs from 1/2 only by a negligible
amount.

Consider the modification of the above game to game G1 where the first of the two oracles available
to A at step 6 is substituted with its zero-knowledge simulator. Clearly the distance between S0 and
S1 is bounded by the distance of the best polynomial-time distinguisher between the zero-knowledge
protocol and its simulation. In a similar way we define G2 as the game where the second oracle at
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step 6 is substitued with the zero-knowledge simulator. Game G3 is defined in a similar way with
the zero-knowledge simulator substituting protocol P at step 12. The resulting game G3 has the
following structure in the affected lines:

6. 〈aux, cert0, cert1〉 ← ASpk(pk0),Spk(pk1),OPEN(skOA,·)(aux, pk0, pk1);

12. b∗ ← AS(pkGM,pkOA,pkR,x,ψ,L),OPEN¬〈[ψ]oa,L〉(skOA,·),DEC¬〈ψ,L〉(sk0,·),DEC¬〈ψ,L〉(sk1,·)(aux, ψ);

We proceed next to modify game G3 to game G4 so that the commitment ψ3 is selected at
random and the values ψ1, ψ2, ψ4 are calculated directly (without going through the CHbanon challenge
procedure. In particular,

9. ψ1 ← E(pkb, w, (ψ2||ψ3||ψ4||L), coinsψ1);
10. ψ2 ← E(pkOA, pkb, (ψ3||ψ4||L), coinsψ2);
11. ψ3 ← C1(cpk, r3, coinsψ3); r3

r← {0, 1}l; ψ4 ← C1(cpk, certb, coinsψ4); ψ ← 〈ψ1, ψ2, ψ3, ψ4〉;

where l is the appropriate length employed for inputs to the commitment C1(cpk, ·). It is easy to
show that based on the hiding property of C1 the distance between S3 and S4 is negligible. Next, we
obtain game G5 with a similar modification :

11. ψ3 ← C1(cpk, r3, coinsψ3); ψ4 ← C1(cpk, r4, coinsψ4); r3, r4
r← {0, 1}l; ψ ← 〈ψ1, ψ2, ψ3, ψ4〉;

Again it is easy to show that based on the hiding properties of the commitment the distance S4

and S5 is negligible. Next we perform the following modification to obtain game G6:

10. ψ2 ← E(pkOA, pk0, (ψ3||ψ4||L), coinsψ2);

Observe that games G5 and G6 are defined over the same probability space. Moreover if Z is the
event b = 0 it is obvious that the two games are identical; from this we obtain that Prob[S5|Z] =
Prob[S6|Z]. We consider next the two games conditioned on the event ¬Z. The two games proceed
identically to step 8. Then, G5 executes the following code:

9. ψ1 ← E(pk1, w, (ψ2||ψ3||ψ4||L), coinsψ1);
10. ψ2 ← E(pkOA, pk1, (ψ3||ψ4||L), coinsψ2);
11. ψ3 ← C1(cpk, r3, coinsψ3); ψ4 ← C1(cpk, r4, coinsψ4); r3, r4

r← {0, 1}l; ψ ← 〈ψ1, ψ2, ψ3, ψ4〉;
12. b∗ ← AS(pkGM,pkOA,pkR,x,ψ,L),OPEN¬〈[ψ]oa,L〉(skOA,·),DEC¬〈ψ,L〉(sk0,·),DEC¬〈ψ,L〉(sk1,·)(aux, ψ);
13. if b∗ = 1 return 1 else 0;

The code executed by G6 is identical but with line 10 switched to use the pk0 key in the encryption
of E(pkOA, ·). Consider now the following adversary B that operates as follows: in a stage called FIND,
it takes as input pkOA and param, it runs lines 3, 4, 5, 6, 7, 9, 11 of game G5 simulating the oracles
DEC(ski, ·) internally (it knows both secret-keys) and using OPEN(skOA, ·) as an external oracle. Then
B(FIND, ·) terminates returning two challenge plaintexts pk0, pk1 as well as the auxiliary ifnormation
aux′ = 〈aux, x, w, pkRL,ψ1, ψ3, ψ4〉 and the label L′ = ψ3||ψ4||L. In a second stage, GUESS it receives
a challenge ciphertext ψ2 and using the auxiliary information aux′ it proceeds in the simulation of
lines 11, 12 using OPEN¬〈ψ2,Lψ2

〉 as an external oracle. Observe now that B is a CCA2 attacker
against 〈Ze,Ge, E ,D〉 public-key encryption scheme as employed by the opening authority.
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Consider the CCA2-attack game that is launched by B. Given that the two challenge plaintexts
provided by B at the end of the FIND stage are pk0, pk1, it holds that if at the challenge stage the
plaintext pk0 is selected the output of B is identical to the output of G6 whereas if pk1 is selected,
the output of B is identical to the output of G5. Observe now the following: |Prob[Gcca2(1ν) =
1] − 1

2 ]| = 1
2 |Prob[Gcca2(1ν) = 1 | b = 0] + Prob[Gcca2(1ν) = 1 | b = 1] − 1|. This in turn is equal

to 1
2 |Prob[Gcca2(1ν) = 0 | b = 0] − Prob[Gcca2(1ν) = 1 | b = 1]| = 1

2 |S5 − S6|. It follows that
|S5 − S6| = 2 · Advcca2

sec (ν).
Next, consider an adversary B′ that operates as follows using the code of game G6. In stage FIND it

receives two public-keys pk0, pk1 and param and then executes lines 2, 5, 6, 7, 10, 11 of game G6; during
this stage it queries two external oracles DEC(ski, ·) for i = 1, 2, while it simulates internally the oracle
OPEN(skOA, ·) (it knows the secret-key skOA). It returns the plaintext w as well as the label L′ =
ψ2||ψ3||ψ4||L and the auxiliary information aux′ = 〈aux, x, L, pkR, pk0, pk1, ψ2, ψ3, ψ4, pkOA, pkGM〉.

In a second stage GUESS, B receives a challenge ciphertext ψ1 on context L′ that is encrypted
with one of the two public-keys pk0, pk1 at random. It simulates step 12 of gameG6 and returns b∗.

It is easy to see that B′ as described above is an CCA2-key-privacy attacker for the underlying
cryptosystem Ze,Ge, E ,D. It follows immediately that |S6 − 1

2 | ≤ Advcca2
kp (1ν). This concludes the

proof of anonymity.
(iii). Suppose that A is a security attacker against the GE scheme. The security game for the
encryption scheme as defined in the theorem’s statement is as follows

1. param← SETUPinit(1ν);
2. 〈aux, pkGM, pkOA〉 ← A(param);
3. 〈pk, sk〉 ← Ge(1ν);
4. 〈aux, cert〉 ← APpk(pk,sk)(aux, pk);
5. 〈aux, x, w, L, pkR〉 ← ADEC(sk,·)(aux); if (x,w) 6∈ R then abort;
6. b

r← {0, 1};
7. ψ3 ← C1(cpk, pk);
8. ψ4 ← C1(cpk, cert);
9. ψ2 ← E(pkOA, pk, ψ3||ψ4||L);
10. if b = 1 then ψ1 ← E(pk, w, ψ2||ψ3||ψ4||L) else ψ1 ← E(pk, w′, ψ2||ψ3||ψ4||L); w′ r← {0, 1}l;
11. ψ ← 〈ψ1, ψ2, ψ3, ψ4〉;
12. coinsψ ← 〈coinsψ1 , coinsψ2 , coinsψ3 , coinsψ4〉;
13. if b = 1 then b∗ ← AP(pkGM,pkOA,pkR,pk,cert,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,·)(aux, ψ);

else b∗ ← AS(pkGM,pkOA,pkR,x,ψ,L),DEC¬〈ψ,L〉(sk,·)(aux, ψ);
14. if b = b∗ return 1 else 0;

Note that we use the simulator S as the prover P ′ mandated in the security definition for GE
schemes (clearly S is more than sufficient for the task as not only it does not require w or coinsψ
but also does not require pk, cert). We call this game G0.

We first modify game G0 into a game G1 so that line 13 is modified as follows:

13. b∗ ← AS(pkGM,pkOA,pkR,x,ψ,L),DEC¬〈ψ,L〉(sk,·)(aux, ψ);

Clearly this modification is indistinguishable as long as the event Z defined as b = 0 is happening.
On the other hand, in the conditional space ¬Z it follows easily that the events S0 and S1 will be
statistically close based on the zero-knowledge property of protocol P (and its negligible distance
from the simulator S).

In a similar way we define game G2 so that in step 4 we have the following modification:
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4. 〈aux, cert〉 ← ASpk(pk)(aux, pk);

It is easy to see that the distance between G1 and G2 is bounded by the distance between the
zero-knowledge simulator S from Ppk.

Next consider the following procedure B: in a first stage FIND it takes as input a public-key
param, pk; then it simulates steps 2, 4, 5, 7, 8, 9 using an external oracle DEC(sk, ·) and returns a tuple
〈aux′, w, L′〉. where aux′ = aux||pkGM||pkOA||pkR, L′ = ψ2||ψ3||ψ4||L. Then B receives a challenge
ciphertext ψ1 and executes the steps 11, 13 of game G2 using an external oracle DEC¬〈ψ1,L′〉 (which
can be used to simulate the DEC¬〈ψ,L〉 oracle required from A) and returns b∗.

It is easy to see that B is a real-or-random CCA2 attacker against the public-key encryption
〈G′e, E ,D〉 with G′e being the parallel composition of SETUPinit and Ge. It follows easily from this that
S2 will be bounded by Advcca2

ind (ν) which completes the proof for item (iii).
(iv). Given a soundness attacker for GE we construct an adaptive chosen message attacker B for the
employed digital signature algorithm 〈Gs,S,Vs〉. B is given first pkGM. B samples param for the GE
scheme so that the commitment scheme C1 becomes extractable (i.e., B will possess the trapdoor). B
also samples pkOA, skOA. Then B starts the simulation of A on param and pkOA; in order to simulate
A, the oracle REG needs to be simulated. This is done as follows: first it receives a candidate public-
key pk by A, then A starts the proof of language membership for the public-key pk; B playing the role
of the verifier, if it accepts the proof it forwards pk to its signing oracle S(skGM, ·) otherwise it rejects
the public-key pk. Based on the soundness properties of the proof of knowledge with overwhelming
probability only pk ∈ Lparam

pk will be forwarded to the signing oracle S(skOA, ·).
In this way B obtains from A the tuple 〈pkR, x, ψ, L, aux〉 where ψ = 〈ψ1, ψ2, ψ3, ψ4〉. Subse-

quently B continues the simulation of A that has access to the verifier oracle V. Upon termination
of the simulation, B using the extractability of the commitment scheme it obtains the values pk, cert
from ψ3, ψ4 respectively. Based on the soundness of the proof of ciphertext validity protocol it holds
that Vs(pkGM, pk, cert) = true i.e., the pair (pk, cert) is a valid digital signature for the scheme that
is being attacked by B. Moreover it holds that pk = DEC(skOA, ψ).

Now it holds that based on the soundness property of 〈Ppk,Vpk〉 we have that pk ∈ Lparam
pk ;

moreover based on the soundness of P,V we have that (x, DEC(sk, ψ)) ∈ R. It follows that if the
adversary wins it must be that pk 6∈ database and thus it is a forgery of the underlying digital
signature scheme 〈Gs,S,Vs〉. �

The above theorem has as direct corollary the feasibility of GE in the generic sense.

3.2 Necessity of the basic primitives

Next we deal with the question whether GE by itself would yield a public-key encryption scheme, a
digital signature and in general any of the components we employed for the GE modular design in
the theorem above; we find that these sufficient components are also in fact necessary; in particular
we will show that most GE schemes would imply them. Given that a GE scheme is used to encrypt
witnesses for a relation R it should be the case that the witnesses for statements of the relation R
are unpredictable for an adversary. We formalize this notion below:

Definition 3.2 Given a relation 〈Gr,R, sampleR〉, a deterministic predicate B is called a hard-to-
guess predicate for the relation R if the following holds for any PPT A:

|Prob[A(x) = B(w)]− 1
2
| = negl(ν)

where 〈pkR, skR〉 ← Gr(1ν) and (x,w)← sampleR(pkR, skR).
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While a hard-to-guess predicate coincides with the notion of a hard-core bit of a strong one-
way function (when the relation R is a function), in general it is fairly simple to consruct relations
that have hard-to-guess predicates without relying on any complexity assumption; for example, the
relation R that contains (ν, w) such that |w| = ν; for ν ≥ 1 a random witness of the relation
will satisfy that all its bits are hard-to-guess for any adversary. Moreover, we note that the above
definition, while sufficient for showing that group encryption implies public-key encryption with
key-privacy, it is not necessary and it is possible to weaken the hard-to-guess formulation further
(to become equivalent to a weak one-way function hard bit); in this case, one would need to apply
standard techniques of amplification [?, ?].

We proceed to the statement of the necessity of public-key encryption that is CCA2-secure and
key-private as well as of digital signatures based on a given GE scheme.

Theorem 3.3 The existence of a GE scheme implies (i) public key encryption with CCA2-security
based on the anonymity of the GE scheme, (ii) public-key encryption with CCA2-security and CCA2-
key-privacy based on the security of the GE scheme provided that the relation R possesses a hard-to-
guess predicate B; moreover, (iii) adaptive chosen message secure digital signature, (iv) extractable
commitments and (v) zero-knowledge proofs for any NP-language.

Proof. Consider a GE scheme :〈
SETUP, JOIN, 〈Gr,R, sampleR〉, ENC, DEC, OPEN, 〈P,V, recon〉

〉
(i) We first build a cryptosystem based on the anonymity property of the GE scheme. In this case

the system will be based on the following components 〈SETUPinit||SETUPOA||SETUPGM||Gr||Juser||JGM, ENC
′′,

DEC′′〉. The public-key of the system is param and pkOA as well as skOA, pkR, skR. The procedure
SETUPGM is executed to obtain pkOA, skOA and then the protocol Juser, JGM is simulated a sufficient
number of times so that at least two distinct pk0, sk0, pk1, sk1 pairs of public-keys are produced
together with their corresponding certificates cert0, cert1.

The encryption function ENC′′ employs sampleR(pkR, skR) to sample (x,w) and then encrypts
a message m ∈ {0, 1} with label L as follows ψ ← ENC(pkGM, pkOA, pkm, certm, w, L). To decrypt
a ciphertext the receiver applies OPEN to obtain pkm and then recovers m by comparing pkm to
pk0, pk1. Extending the message space to {0, 1}log ν is trivial. It is easy to see that the security of
the cryptosystem is directly based on the anonymity property of the GE scheme.

(ii) Next we show how to build a public-key cryptosystem relying only on the security property of
a GE scheme. In particular, we will show that 〈SETUPinit||SETUPGM||SETUPOA, Juser||JGM||Gr, ENC′, DEC′〉
constitutes a CCA2-key private CCA2-secure public-key encryption scheme. The public-parameters
of the encryption scheme will be 〈param, pkOA, skOA, pkGM, skOA, pkR, skR〉 as produced by the corre-
sponding procedures of the GE scheme. A receiver, in order to construct its public/secret-key pair, it
simulates locally the Juser, JGM, JOIN protocol to obtain pk, sk, cert. The public-key is set to pk, cert
and the secret-key is sk.

The message space of the cryptosystem will be {0, 1}. The encryption ENC′ of a message m with
context L is as follows: the sender samples (x,w) according to sampleR(pkR, skR) until it holds
that B(w) = m. Then it forms the ciphertext ψ ← ENC(pkGM, pkOA, pk, cert, w, L). The decryption
operation employs DEC as well as B to recover the message m from w. Note that the expected number
of trials till the sender obtains some pair (x,w) from sampleR(pkR, skR) is 2; otherwise it would be
the case that a trivial adversary that always returns the same value would violate the hard-to-guess
property of the predicate B.

The CCA2-security and CCA2-key-privacy of the cryptosystem as described above follows directly
from the security and anonymity property respectively of the underlying GE scheme.
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(iii) The existence of a digital signature scheme follows easily using the result of item (i) above
that states that GE implies a CCA2 public-key encryption scheme. A CCA2 encryption scheme
implies immediately that the encryption function is a one-way mapping from the set of coins and
plaintexts to the set of ciphertexts. One-way functions imply adaptively secure digital signatures
[?, ?].

Finally, recall that (i) extractable commitments follow directly from public-key encryption, (ii)
zero-knowledge proofs for any NP-language follow from commitments [?]. �

4 Efficient GE of Discrete-Logarithms

In this section we will consider the discrete-logarithm relation 〈Gdl,Rdl, sampledl〉: Gdl given 1ν samples
a description of a cyclic group of ν-bits order and a generator γ of that group; R contains pairs of
the form (x,w) where x = γw; note that pkR = 〈desc(G), γ〉 and skR is empty. Finally sampledl on
input pkR selects a witness w and returns the pair (x = γw, w). In this section we will present a GE
scheme for the above relation. Note that the results of this section can be easily extended to other
relations based on discrete-logs such as a commitment to w.

4.1 Design of a public-key encryption for discrete-logarithms with key-privacy
and security

One of the hurdles in designing a GE for discrete-logarithms is finding a suitable encryption scheme for
the group members. In this section we will present a public-key encryption scheme that is suitable for
verifiable encryption of discrete-logarithms while it satisfies CCA2-key-privacy and CCA2-security.
The scheme is related to previous public-key encryption schemes of [?, ?, ?, ?] and it is the first
Paillier-based public-key encryption that satisfies key-privacy and security against chosen ciphertext
attacks. Below we give a detailed description of our public-key encryption 〈Ze,Ge, E ,D〉 and of the
accompanying intractability assumptions that ensure its properties.

Public-parameters. The parameter selection function Ze, given 1ν selects a composite modulus n = pq
so that n is a ν-bit number, p = 2p′ + 1, q = 2q′ + 1 and p, p′, q, q′ are all prime numbers with p, q of
equal size at least bν/2c + 1. Then it samples g ← Z∗

n2 and computes g1 ← g2n(modn2). Observe
that 〈g1〉 with very high probability is a subgroup of order p′q′ within Z∗

n2 . In such case 〈g1〉 is a
group that contains all square n-th residues of Z∗

n2 and we will call this group Xn2 . We note further
that all elements of Z∗

n2 can be written in a unique way in the form gr1(1 + n)v(−1)α(p2p − q2q)β
where r ∈ [p′q′], v ∈ [n], α, β ∈ {0, 1} (in this decomposition, p2, q2 are integers that satisfy p2p

2 ≡q2
1, q2q2 ≡p2 1). We will denote by Qn2 the subgroup of quadratic residues modulo n2 which can
be easily seen to contain all elements of the form gr1(1 + n)v with r ∈ Zp′q′ and v ∈ Zn and has
order np′q′ (precisely one fourth of Z∗

n2 and is generated by g1(1 + n)). Note that we will use the
notation h =df 1 + n. Finally, a second value g2 is selected as follows: w is sampled at random from
[n4 ] =df {0, . . . , bn4 c} and we set g2 ← gw1 . A random member H of a universal one-way hash function
family UOWHF is selected [?]; the range of H is assumed to be [0, 2ν/2−2). The global parameters of
the cryptosystem that will be shared by all recipients are equal to param = 〈n, g1, g2,descH〉, where
descH is the description of H.
Key-Generation. The key-generation algorithm Ge receives the parameters 〈n, g1, g2,descH〉, samples
x1, x2, y1, y2 ←R [n

2

4 ] and sets pk = 〈c, d, y〉 where c = gx1
1 gx2

2 , d = gy11 g
y2
2 and y = gz1 ; the secret-key

is sk = 〈x1, x2, y1, y2, z〉. Note that below we may include the string param as part of the pk and sk
strings to avoid repeating it, nevertheless it should be recalled in all cases that n, g1, g2,descH are
global parameters that are available to all parties.
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Encryption. The encryption function E operates as follows: given the pk, a message w and a label
L it samples r ←R [n4 ] and outputs the triple 〈u1, u2, e, v〉 computed as follows: u1 ← gr1 mod n2,
u2 ← gr2 mod n2, e ← yr(1 + n)w mod n2, v ← ||crdrH(u1,u2,e,L) mod n2|| where || · || : Z∗

n2 → Z∗
n2 is

defined as follows ||x|| = x if x ≤ n2/2 and ||x|| = −x if x > n2/2. We note that the “absolute value”
function || · || is used to disallow the malleability of a ciphertext with respect to multiplication with
−1 (cf. the decryption test below). To summarize, encryption works as follows:

r ←R

[n
4

]
: u1 ← gr1 u2 ← gr2 e← yrhm v ← ||crdrH(u1,u2,e,L)||

Decryption. The decryption function D given a ciphertext (u1, u2, e, v) and a label L it performs the
following checks:

v
?= ||v|| ∧ v2 ?= (ux1

1 u
x2
2 )2(uy11 u

y2
2 )2H(u1,u2,e,L)

if all tests pass it computes m′ = e2u1
−2z − 1(modn2) and returns (m′ · 2−1 mod n)/n, otherwise it

returns ⊥.
This completes the description of the cryptosystem. Observe that the cryptosystem is correct,

i.e., encryption inverts decryption: indeed, assuming that 〈u1, u2, e, v〉 ← E(pk, w, L), we have that
m′ = e2u−2z

1 − 1 ≡n2 h2w − 1 and due to the fact that hx ≡n2 1 + xn for all x ∈ Zn we have that
w′ ≡n2 (2m mod n) · n. It follows that (w′ · 2−1 mod n)/n = w.

We will next argue about the security of the cryptosystem. We note that the above cryptosystem
has a “double trapdoor” property: for each public-key, c, d, y, based on parameters n, g1, g2,descH,
one trapdoor is the discrete-logarithm of y base g1, whereas the the other trapdoor is the factoriza-
tion of n. Indeed given the factorization of n, one can easily decrypt any ciphertext 〈u1, u2, e, v〉 by
computing ep

′q′ ≡n2 hp
′q′m. Subsequently m can be computed easily similarly to the regular decryp-

tion function. In GE the global trapdoor will not be used and the factorization of n will be assumed
unknown by all parties. The intractability assumption that will be employed is the following:

Definition 4.1 The Decisional Composite Residuosity DCR assumption [?]: It is computationally
hard to distinguish between: (i) tuples of the form (n, un mod n2) where n is a composite RSA
modulus and u←R Z∗

n2, and (ii) tuples of the form (n, v) where v ←R Z∗
n2.

Next, we prove IND-CCA2 security under the DCR.

Theorem 4.2 The cryptosystem 〈Ze,Ge, E ,D〉 defined above satisfies CCA2-security under the DCR
assumption and the target collision resistance of the employed UOWH family.

Proof. (of theorem ??) We define a sequence of games, starting from game G0 being the game
corresponding to the IND-CCA2 attack game according to the definition (see below).

1. param← Z(1ν).
2. 〈pk, sk〉 ← Ge(param).
3. 〈m0,m1, aux, L〉 ← AD(sk,·)(FIND, pk).
4. if m0 = m1 then abort;
5. b←R {0, 1}.
6. ψ∗ ← E(pk,mb, L).
7. b∗ ← AD¬ψ(sk,·)(GUESS, ψ∗, aux).

For the cryptosystem at hand the game looks as follows:
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1. 〈n, g1, hk〉 ← Z(1ν).
2. g2 ← gw1 ; w r← [n4 ]
3. c← gx1

1 gx2
2 ; x1, x2

r← [n
2

4 ]
4. d← gy11 g

y2
2 ; y1, y2

r← [n
2

4 ]
5. y ← gz1 ; z

r← [n
2

4 ]
6. pk = 〈c, d, y〉; sk = 〈x1, x2, y1, y2, z〉.
7. 〈m0,m1, aux, L∗〉 ← AD(sk,·)(FIND, pk).
8. u∗1 ← gr1; u

∗
2 ← gr2 ; r r← [n4 ]

9. e∗ ← yrmb ; b r← {0, 1}
10. v∗ ← crdrh

∗
; h∗ ← Hhk(u∗1, u

∗
2, e

∗, L)
11. ψ∗ = 〈u∗1, u∗2, e∗, v∗〉
12. b∗ ← AD¬ψ(sk,·)(GUESS, ψ∗, aux)

We let S0 be the event that the adversary is successful in game G0, i.e., the event that b = b∗.
The decryption oracle operates as follows; first it performs the following test on a given ciphertext

〈u1, u2, e, v〉 and label L:

v
?= ||v|| ∧ v2 ?= u2x1+2y1h

1 u2x2+2y2h
2

where h = Hhk(u1, u2, e, L). If it passes it computesm′ = e2u−2z
1 −1( mod n2), and returns (m′/2 mod

n)/n, otherwise it returns⊥. In the GUESS stage the oracle returns⊥ if the ciphertext 〈u∗1, u∗2, e∗, v∗, L∗〉
is given as a query.

Game G1. This game modifies G0 as follows.
The values c, d in the public-key are selected as c← gx

′
1 , d← gy

′

1 where x′ = x1+wx2, y
′ = y1+wy2

(over the integers). Additionally, the decryption oracle is modified to operate as follows: given a
ciphertext 〈u1, u2, e, v〉 and a label L, the check performed is defined as,

v
?= ||v|| ∧ (u2)2

?= u2w
1 ∧ v2 ?= u

2x′+2y′Hhk(u1,u2,e,L)
1

It is easy to see that the public-key elements c, d as defined in games G0 and G1 are identically
distributed, thus the modification to the public-key values c, d will incur no change in the adversary’s
behavior. Arguing the same thing about the modification to the decryption oracle requires some more
work.

Let us consider the event F to be the event that includes those coin tosses for which the adversary
produces a query ciphertext ψ = 〈u1, u2, e, v〉 and a label L for which it holds that ψ is answered
differently in games G0 and game G1. Given that the two games are identical as long as ¬F happens
using a standard argument (cf. [?]) it is easy to see that |Prob[S0]−Prob[S1]| ≤ Prob[F]. Next we
will bound Prob[F].

Consider the event F′ to be the event that the adversary produces a query ciphertext 〈u1, u2, e, v〉
and a label L that passes the decryption test of G0 but it is such that either (u1)2 6∈ Xn2 or (u2)2 6∈ Xn2 .
From standard probability it holds that Prob[F] ≤ Prob[F ∩ ¬F′] + Prob[F′].

Observe that the event ¬F′ suggests that the adversary either produces ciphertexts that fail the
decryption test of G0 or it holds that they pass the decryption test of G0 and (u1)2, (u2)2 ∈ Xn2 .

Claim. Prob[F ∩ ¬F′] is negligible assuming the hardness of factoring.
Suppose first that a ciphertext 〈u1, u2, e, v〉 with label L fails the decryption test of G0. Then

it holds that either v 6= ||v|| or v2 6= (u2x1+2y1h
1 u2x2+2y2h

2 ). If v 6= ||v|| then we have that the
ciphertext is also rejected in G1 and thus this is not included in the event F. Assume now that
the given ciphertext passes the test of game G1. This implies that v = ||v||, u2

2 = u2w
1 as well as
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v2 = u2x′+2y′h
1 where h = Hhk(u1, u2, e, L). These relations translate to: v2 = u

2(x1+wx2)+2h(y1+wy2)
1 =

(ux1
1 u

x2
2 )2(uy11 u

y2
2 )2h, which means that the same exact ciphertext 〈u1, u2, e, v, L〉 passes the test in

game G0, a contradiction. It follows that if a ciphertext fails the decryption test of G0 then it also
fails the decryption test of G1. This suggests that the event F∩¬F′ contains the coin tosses for which
all the adversary’s ciphertexts pass the decryption test of game G0, satisfy (u1)2, (u2)2 ∈ Xn2 and
fail the decryption test of game G1.

Since the test of game G0 is passed we know that v = ||v|| and that v2 = (u1)2x1+2y1h(u2)2x2+2y2h.
It follows that it must be that u2

2 6= u2w
1 since in the case u2

2 = u2w
1 the test of game G1 would also

be passed. As a result it must be the case that u2
2 6= u2w

1 , i.e., logg1(u1)2 6= logg1(u2)2.
We will show that the probability of F∩¬F′ will be negligible assuming the hardness of factoring.

Observe that the values x1, x2, y1, y2 are used only through x′ = x1 + wx2 mod p′q′ and y′ = y1 +
wy2 mod p′q′ (for this it is necessary to use the condition that (u1)2, (u2)2 ∈ Xn2). It follows that in
the view of the adversary during the FIND stage the values x1, x2, y1, y2 satisfy the following system
of equations in Zp′q′ , where r1 = logg1(u1)2, r2 = logg2(u2)2 and the third equation will be induced
by any ciphertext 〈u1, u2, v, e〉 with label L that triggers the event F ∩ ¬F′ .

 1 w 0 0
0 0 1 w
r1 wr2 r1h wr2h

 ·

x1

x2

y1

y2

 =

 logg1 c
logg1 d
logg1 v


Observe that the above system contains a square matrix with determinant w(r2 − r1) over Zp′q′

that it is non-zero inside Zp′q′ . It follows that: (1) in the case that w(r1 − r2) ∈ Z∗
p′q′ the system is

of full rank and as a result the probability that the adversary can produce the third equation of the
linear system above is negligible (given that it will bind one degree of freedom of x1, x2, y1, y2 beyond
the two degrees bound in the system’s public-key); (2) regarding the case that w(r1 − r2) 6∈ Z∗

p′q′

we have the following: on the one hand, the probability that gcd(w, p′q′) > 1 is negligible (given
the random choice of w); on the other hand, if 1 < gcd(r1 − r2, p′q′) < p′q′ then we can use the
adversary to obtain the value α = gr1−r22 that will have order that belongs to {p′, q′} and as a result
gcd(α − 1, n) ∈ {p, q} i.e., we can split n. During the GUESS stage the above arguments lead to an
identical conclusion. We conclude that under the assumption that factoring is hard the event F∩¬F′

is negligible probability event and this concludes the proof of the claim.

Claim. Prob[F′] is negligible.
We will split the event F′ in a number of events F′j that suggest that the adversary succeeds in

triggering the event F′ for the first time in the j-th query. It will follow from the union bound that
Prob[F′] ≤

∑
j Prob[F′j ]. Each event F′j is defined as follows: j is the first ciphertext query posed

by the adversary for which it holds that the ciphertext passes the decryption test of game G0 but
(u1)2 6∈ Xn2 or (u2)2 6∈ Xn2 . Consider integers r1, r2 ∈ Zp′q′s1, s2 ∈ Zn such that u2

1 = gr11 h
s1 and

u2
2 = gr21 h

s2 . Based on the condition of the event, it holds that either s1 6= 0 mod n or s2 6= 0 mod n.
Since the decryption test of game G0 is passed we have that v2 = u2x1+2y1h

1 u2x2+2y2h
2 , and assuming

that v2 = gr3hs3 we obtain the following equation

x1s1 + y1s1h + x2s2 + y2s2h = s3 (in Zn)

Now observe that for any fixed values of y1, y2 and conditioning on the progress of the game till
the j-th query of the adversary, it holds that the variables x1(modn), x2(modn) are statistically
indistinguishable from the uniform distribution of Zn (over the conditional probability space). From
this it follows that the probability that the adversary produces a ciphertext that satisfies the above
equation is bounded by 1/n and thus negligible.
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Game G2. Game G2 modifies G1 with respect to the choice of the public-key. In particular, in game
G2, the values c, d are selected as follows: c← gx

′
1 and d← gy

′

1 with x′, y′ ←R [n
2

4 ]. It is easy to show
that |Prob[S2]−Prob[S1]| is negligible.
Game G3. We modify the decryption oracle at step 12 so that it rejects an additional number of
ciphertexts for which it holds that (1) h = Hhk(u1, u2, e, L) = h∗ but 〈u1, u2, e, L〉 6= 〈u∗1, u∗2, e∗, L∗〉 or
that (2) v 6= v∗ but (v)2 = (v∗)2 and v = ||v||. The events that the adversary will produce a ciphertext
that triggers one of the two new rejection rules will be called F1 and F2 respectively. It is easy to show
that |Prob[S3] − Prob[S2]| ≤ Prob[F1] + Prob[F2]. Moreover it holds that Prob[F1] ≤ AdvGG

H (ν)
where AdvGG

H (ν) is the advantage of an adversary in breaking the security of the UOWHF. On the
other hand observe that if (v∗)2 = v2 but v 6= v∗ it holds that (v − v∗)(v + v∗) ≡n2 0; given that
(1) v 6= v∗ and the fact that v = ||v|| and v∗ = ||v∗|| we know also that v∗ 6= −v. It follows that
gcd(v − v∗, n2) reveals a non-trivial divisor of n and as a result Prob[F2] ≤ AdvFact(ν).
Game G4. We modify the computation of u∗2, e

∗, v∗ as follows:

〈u∗2, e∗, v∗〉 ← 〈(u∗1)w, (u∗1)zhmb , (u∗1)x
′+y′h∗〉

Observe that this modification is conceptual and it is easy to see that Prob[S3] = Prob[S4].
Game G5. We modify the computation of u∗1 so that u∗1 is selected at random from Qn2 . It is easy
to see that |Prob[S4]−Prob[S5]| ≤ AdvDCR(1ν).
Game G6. We modify the parameter selection so that the primes p, q are known to the game execution
and we further modify the decryption oracles so that any ciphertext 〈u1, u2, v, e, L〉 submitted for
which it holds that (u1)2 6∈ Xn2 is rejected. Clearly games G5 and G6 proceed identically unless
the event F that the adversary produces a ciphertext that passes the decryption test of G5 however
(u1)2 6∈ Xn2 . It is easy to see that |Prob[G5]−Prob[G6]| ≤ Prob[F].

We proceed now to bound F. Let Fj be the event that in the j-th query for the first time the
adversary triggers the event F. Clearly Prob[F] ≤

∑
j Prob[Fj ]. We concentrate now on Fj where j

is a query at the GUESS stage of the adversary. Let 〈u1, u2, e, v, L〉 be the j-th query ciphertext that
satisfies v = ||v||, u2 = uw1 , and v2 = (u2

1)
x′+y′h while (u1)2 6∈ Xn2 . Suppose that (u1)2 = gr1h

s and
v2 = gr

′
1 h

s′ . It follows from the above that we obtain two equations

rx′ + ry′h ≡p′q′ r′ and sx′ + sy′h ≡n s′

Given that in the view of the adversary the value x′ mod n, y′ mod n are almost uniformly distributed
over Zn (no information is leaked about these values in any step of the game’s operation till the j-th
query) it follows that Prob[Fj ] is negligible.

Now let us consider the case that the j-th query is posed in the FIND stage of the adversary. This
case is different since now the adversary possesses the challenge ciphertext u∗1, u

∗
2, e

∗, v∗, L∗; suppose
that (u∗1)

2 = gr
∗

1 h
s∗ and as a result (v∗)2 = g

2(x′+y′h)r∗

1 h2(x′+y′h)s∗ .
Let 〈u1, u2, e, v, L〉 be the ciphertext that triggers the event Fj in the j-th query of the adversary.

It must hold then that 〈u1, u2, e, v, L〉 6= 〈u∗1, u∗2, e∗, v∗, L∗〉 (otherwise the ciphertext is rejected by
the definition of the FIND oracle).

Suppose now that 〈u1, u2, e, L〉 and 〈u∗1, u∗2, e∗, L∗〉 are such that h = h∗; in this case, it follows
that it must be v 6= v∗. Recall that the ciphertext 〈u1, u2, e, v, L〉 passes the test of G5 which means
that v2 = (u2

1)
x′+y′h. The right-hand-side of the equality equals (u∗1)

2x′+2y′h∗ using the equality of
u1 = u∗1 and h = h∗; it follows that v2 = (v∗)2. But the combination of v 6= v∗ and v2 = (v∗)2

means that the ciphertext should get rejected by the second rejection rule of the G3 modification.
We conclude that the ciphertext 〈u1, u2, e, v, L〉 if it triggers the event Fj it has the property that
h 6= h∗.
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Suppose now that v2 = gr̃1h
s̃ and (v∗)2 = gr1h

s. The equations regarding x′, y′ over Zn are
going to be as follows (using the equalities that (u1)2 = gr1h

s, (u∗1)
2 = gr

∗
1 h

s∗ and the facts that
(v∗)2 = (u∗1)

2x′+2y′h∗ (by definition) and v2 = (u1)2x
′+2y′h):

s∗x′ + s∗y′h∗ ≡n s and sx′ + sy′h ≡n s̃

The above system defines two systems, one over Zp and one over Zq that each one has integer
determinant ss∗(h− h∗). By the definition of the event Fj we know that s 6= 0 mod n which means
that either s 6= 0 mod p or s 6= 0 mod q; assume without loss of generality that s 6= 0 mod p.
Moreover by the way that u∗1 is selected in game G5 we have that s∗ 6= 0 mod p (with overwhelming
probability). Moreover given that h 6= h∗ and employing the fact that 0 ≤ h, h∗ < p we have that
h− h∗ 6= 0 mod p. As a result the above system has an invertible determinant in Zp. It follows that
the probability Prob[Fj ] is negligible.

Now observe that the probability G6 of the adversary winning game G6 is 1/2. Indeed this is
the case as u∗1 is selected at random from Qn2 and as result it is of the form gr

′′
hs

′′
. Given that

z
r← [n2/4] it holds that if z1 = z mod p′q′ and z2 = z mod n it holds that e∗ = gz1r

′′
hmb+z2s

′′
.

The key observation here is that the value z2 is independent from the view of the adversary and
thus the expression mb + s̃z2 is uniformly distributed over Zn, independently of b conditioning on
s′′ ∈ Z∗

n which is an event of overwhelming probability given the selection of u∗1. The fact that z2 is
independent from the view of the adversary, i.e., the adversary has no information about z2 beyond
what is revealed from the e∗ value follows from the following: the only way for the adversary to obtain
information about z2 is through the decryption oracle queries. In G6 we made explicit that all oracle
queries that do not satisfy (u1)2 ∈ Xn2 are rejected. This means that the adversary obtains output
from the decryption oracle only for ciphertexts 〈u1, u2, e, v, L〉 that satisfy (u1)2 ∈ Xn2 . Observe that
in the computation of the oracle’s response the value u1 used as teh base of the exponent −2z and
as a result it follows that the value z2 will be cancelled in any of these queries. This completes the
proof. �

Interestingly, it is not clear whether the DCR can be used for proving the key-privacy of the
cryptosystem. To see why this is the case consider the following: Consider the CPA version of the
cryptosystem using only a single generator over Xn2 : in the CPA case the cryptosystem is similar to
ElGamal, with ciphertexts pairs of the form 〈gr mod n2, yrhm mod n2〉. Note that IND-CPA security
can be easily shown under the DCR assumption. On the other hand, to show CPA-key-privacy
one has to (essentially) establish the indistinguishability of the distributions 〈g, y0, y1, g

r, yr0h
m〉 and

〈g, y0, y1, g
r, yr1h

m〉. It is not apparent how to apply DCR to prove this indistinguishability; ultimately
this is because the message m is the same in both of these distributions and its randomization (easily
provided by DCR) appears to be immaterial to the indistinguishability of the two distributions. It
should be noted that since the adversary is not interested in the hm portion of the ciphertext he can
easily cancel it out by raising everything to n. For this reason the power of DCR seems of little use
in this case, and a Diffie-Hellman-like assumption in Xn2 would seem more appropriate. Hence, we
introduce this intractability assumption:

Definition 4.3 The Decisional Diffie Hellman assumption for square n-th residues (DDHSQNR):
Consider n a safe composite as above. The distribution 〈n, g, y, gr, yr〉 where g generates Xn2, y ←R

〈g〉 and r ←R [p′q′] is computationally indistinguishable from the distribution 〈n, g, y, gr, yr′〉 where
g, y, r are as above and r′ ←R [p′q′].

We argue that DDHSQNR is a plausible intractability assumption for the following reasons:

(I) The group Xn2 is a cyclic group whose order has no small prime divisors and typically DDH
appears to hold in modular groups of prime and composite order that have no small prime divisors,
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cf. [?]. Moreover, we note that the DDH over the group of quadratic residues Qn2 can be easily seen
to be a stronger assumption as it implies DDHSQNR.

(II) While it is not apparent if DCR implies DDHSQNR we will see next that DCR implies the compu-
tational version of the assumption CDHSQNR in theorem ??. It should be pointed out that there are
no examples of elementary modular arithmetic groups of order without small prime divisors where
CDH is hard while DDH is easy (groups with such behavior have only been demonstrated in the
elliptic curve setting).

Theorem 4.4 DCR =⇒ CDHSQNR

Proof. First, It is easy to see that the DCR implies that the two ensembles,

〈N,G〉 : G←R Xn2 〈N,Y 〉 : Y ←R Qn2

are indistinguishable, where Qn2 is the group of quadratic residues modulo n2 (the reduction is
straightforward: given the challenge for DCR simply square it to get something distributed in one of
the above ensembles).
Claim. For any m1,m2, the following two distributions are computationally indistinguishable under
the DCR.

〈n, g, y, gr, yrhm1〉 : g, y ←R Xn2 , r ←R [p′q′]

and
〈n, g, y, gr, yrhm2〉 : g, y ←R Xn2 , r ←R [p′q′]

Proof of the Claim. Consider the first distribution:

〈n, g, y, gr, yrhm1〉 : g, y ←R Xn2 , r ←R [p′q′]

First we modify the selection of r as follows:

〈n, g, y, gr, yrhm1〉 : g, y ←R Xn2 , r ←R [np′q′]

This is a statistically indistinguishable modification since r appears only over elements of order p′q′.
Now this distribution, based on the DCR it is indistinguishable from:

〈n, g, z, gr, zrhm1〉 : g ←R Xn2 , z ←R Qn2 , r ←R [np′q′]

which can also be rewritten as:

〈n, g, y · hv, gr, yrhv·r+m1〉 : g, y ←R Xn2 , v ←R Zn, r ←R [np′q′]

based on Chinese remaindering now we can rewrite the above distribution as:

〈n, g, y · hv, gr1 , yr1hv·r2+m1〉 : g, y ←R Xn2 , v, r2 ←R Zn, r1 ←R [p′q′]

and without difficulty the above is seen to be statistically indistinguishable to

〈n, g, y · hv, gr, yrhr′〉 : g, y ←R Xn2 , v, r′ ←R Zn, r ←R [p′q′]

The same steps can be performed for the case m2 and thus the two distributions are indistinguishable.
(end of proof of claim).

Let us turn now to the statement of the theorem: DCR =⇒ CDH in Xn2
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The following two distributions are indistinguishable under the DCR:

〈n, g, y, gr, yrhm〉 : g, y ←R Xn2 , r ←R [p′q′],m←R Zn

and
〈n, g, y, gr, yr〉 : g, y ←R Xn2 , r ←R [p′q′]

On the other hand, It is very easy to see that given a CDH oracle that has probability of success
α we can produce the test CDH(n, g, y,G)/Y =? 1 for a given challenge n, g, y,G, Y . Given that
CDH(n, g, y,G) = Y with probability α we have that if n, g, y,G, Y is drawn from the second dis-
tribution the test will return 1 with probability α. On the other hand, if the challlenge is drawn
from the second distribution the test will return 1 with probability at most 1/n (since m is drawn at
randomand is independent of the CDH solver). It follows that the test has distinguishing probability
α − 1/n. As a result if α is non-negligible the two distributions can be distinguished efficiently
something that violates the DCR assumption. It follows that DCR implies the CDH assumption. �

Based on the above we formulate our key-privacy theorem for the cryptosystem:

Theorem 4.5 The cryptosystem 〈Z,Ge, E ,D〉 defined above satisfies CCA2-key-privacy under the
DDHSQNR assumption and the target collision resistance of the employed UOWH family.

Proof. (of theorem ??) Let us recap the attack game for CCA2-key-privacy in more detail applied
directly to our cryptosystem. The attack game is as follows:

1. 〈n, g1,descH〉 ← Z(1ν).
2. g2 ← gw1 ; w r← [n4 ]
3. ci ← gx1i

1 gx2i
2 ; x1i, x2i

r← [n
2

4 ] for i ∈ {0, 1}
4. di ← gy1i1 gy2i2 ; y1i, y2i

r← [n
2

4 ] for i ∈ {0, 1}
5. yi ← gzi1 ; zi

r← [n
2

4 ] for i ∈ {0, 1}
6. pki = 〈ci, di, yi〉; ski = 〈x1i, x2i, y1i, y2i, zi〉 for i ∈ {0, 1}.
7. 〈m, aux, L∗〉 ← AD(sk0,·),D(sk1,·)(FIND, pk0, pk1).
8. u∗1 ← gr1; u

∗
2 ← gr2 ; r r← [n4 ]

9. e∗ ← yrbh
m ; b r← {0, 1}

10. v∗ ← ||crbdrh
∗

b ||; h∗ ← H(u∗1, u
∗
2, e

∗, L∗)
11. ψ∗ = 〈u∗1, u∗2, e∗, v∗〉
12. b∗ ← AD¬ψ∗,L∗ (sk0,·),D¬ψ∗,L∗ (sk1,·)(GUESS, ψ∗, aux)

The decryption oracle D(ski, ·) during the FIND-stage of the adversary is implemented as follows

if v2 = u
2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 and v = ||v|| then return L(e2 · (u2

1)
−zi) else ⊥ where

h = Hhki(u1, u2, e, L).

Note that L(v) is defined as ((v mod n2−1) ·2−1 mod n)/n and is well defined for elements of the
form (1 + n)x mod n2. Similarly the decryption oracle D¬ψ∗,L∗ in the GUESS-stage of the adversary
is of the form:

if v2 = u
2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 and v = ||v|| and 〈ψ,L〉 6= 〈ψ∗, L∗〉 then return L(e2 ·

(u2
1)
−zi) else ⊥ where h = H(u1, u2, e, L).

Let S0 be the probability of the event b = b∗ in the above game (called G0).

Game G1. This game has the following modifications: first the components of the public-keys y0, y1

are selected so that yi = gz1i1 gz2i2 with z1i, z2i randomly selected from [n
2

4 ]. Moreover the decryption
oracles in the GUESS and FIND stages are modified respectively as follows
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if v2 = u
2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 and v = ||v|| then L(e2 · (u2

1)
−z1i(u2

2)
−z2i) else ⊥

if v2 = u
2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 and v = ||v|| and 〈ψ,L〉 6= 〈ψ∗, L∗〉 then L(e2·(u2

1)
−z1i(u2

2)
−z2i)

else ⊥

It is easy to see that conditioned on all choices till the selection of values y0, y1, the probability
distribution of y0 in game G0 is identical to the probability distribution of y0 in game G1 and likewise
for the variable y1.

Let us define by R the event that the adversary submits a ciphertext to the decryption oracle for
which it holds that it passes the decryption test (it is the same for both games) and additionally it
holds that u2

2 6= u2w
1 .

Observe first that whenever ¬R happens it holds that for all ciphertexts submitted by the adver-
sary, either it holds that u2

2 = u2w
1 or they are rejected by the decryption oracle. Now in the case that

u2
2 = u2w

1 it holds that u2z1i
1 u2z2i

2 = u
2(z1i+wz2i)
1 . Moreover it holds that yi = gz1i+wz2i1 (by definition).

Observe then that the distribution of the random variable z1i + wz2i as an exponent to an element
of order pqp′q′ (or any divisor of this number) is statistically indistinguishable from the distribution
of zi modulo the same number (where zi is selected as specified in game G0). It follows that in cases
that the event ¬R happens the output behavior of the two games is statistically indistinguishable.

Given the above, in order to conclude that the distance between the probabilities S0 and S1 is
negligible we have to argue that the probability of the event R is negligible itself.

Suppose that Rj is the event that in the j-th query of the adversary the event R is triggered
for the first time. Clearly it holds that R ⊆ ∪jRj and we can use the union-bound to bound the
probability of the event R as long as we bound the probability of the events Rj .

Assume that Rj happens and the j-th query occurs in the FIND stage of the adversary. Given
that the submitted ciphertext satisfies the decryption test we have that v2 = u

2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 .

Based on the properties of the group Z∗
n2 we can write u2

1 = gr11 h
t1 and u2

2 = gr22 h
t2 . Finally let

v2 = gr1h
t. Based on these we know the following regarding the values x1i, x2i, y1i, y2i.

 1 w 0 0
0 0 1 w
r1 wr2 r1h wr2h

 ·

x1i

x2i

y1i

y2i

 ≡p′q′
 logg1 ci

logg1 di
r


where the first two equations are provided by the public-key information and the third equation is
suggested by the j-th decryption query. Note that the above matrix has a minor with determinant
that is equal to w(r2 − r1) over Zp′q′ . Observe that up to the j-th query of the adversary no more
information is provided by the game to the adversary regarding the values x1i, x2i, y1i, y2i mod p′q′.

Now we consider two cases, either u2nw
1 = u2n

2 and u2w
1 6= u2

2 or u2nw
1 6= u2n

2 (one of these two
cases must be true given that u2w

1 6= u2
2). In the second case it follows immediately that r2 6= r1 and

as result the determinant w(r2− r1) is non-zero conditioning on w ∈ Z∗
p′q′ which is an overwhelming

probability event. Still it may be the case that r2− r1 mod p′q′ is a zero divisor in Zp′q′ . In this case
it must be that α = u2nw

1 u−2n is an element of Xn2 for which it holds that its order is either p′ or
q′. Based on this fact we can factor n by computing gcd(α− 1, n). Based on the above we conclude
that the determinant w(r2 − r1) ∈ Z∗

p′q′ and thus the likelihood of the above system being satisfied
by x1i, x2i, y1i, y2i is negligible.

Suppose on the other hand that, u2nw
1 = u2n

2 and uw1 6= u2. The above argument cannot be
extended in this case since we have that r2 = r1. However we know that it holds s1 6= ws2 and
v2 = ux1i+y1ih

1 ux2i+y2ih
2 . From this we obtain the equation s = (x1i + y1ih)s1 + w(x2i + y2ih)s2 in

Zn. Observe that up to this moment the adversary’s view is completely independent of the values
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x1i, y1i, x2i, y2i mod n (based on Chinese remaindering). It follows that the probability that this
equation is satisfied is negligible (due to s1 6= ws2 the values s1, s2 cannot be both zero).

Using the above we conclude that the event Rj will happen with negligible probability and as
a result it also holds that Prob[R] is negligible. Composing the above facts together we have that
|Prob[S0]−Prob[S1]| is negligible under the assumption that factoring is hard.

Game G2. We make the following change to the previous game.

9. e∗ ← (u∗1)
z1b(u∗2)

z2bhm ; b r← {0, 1}
10. v∗ ← ||(u∗1)x1b+h∗y1b(u∗2)

x2b+h∗y2b ||; h∗ ← H(u∗1, u
∗
2, e

∗, L).

It is easy to see that the above modification is purely conceptual and does not affect the view of
the adversary in any way. It follows easily, Prob[S2] = Prob[S1].

Game G3. We make the following change to the previous game.

8. u∗1 ← g
r∗1
1 ; u∗2 ← g

r∗2
2 ; r∗1, r

∗
2 ←R [n4 ].

Regarding the above modification to game G2 It is easy to see that |Prob[S3] − Prob[S2]| ≤
AdvDDHSQNR

(ν).

Game G4. Next we make the following modifications in the way the decryption oracles operate in
the GUESS and FIND stages:

if u2
2 = u2w

1 and v2 = u
2(x1i+wx2i+(y1i+wy2i)h)
1 and v = ||v|| then L(e2 · (u2

1)
−z1i−wz2i)

else ⊥

if u2
2 = u2w

1 and v2 = u
2(x1i+wx2i+(y1i+wy2i)h)
1 and v = ||v|| and 〈ψ,L〉 6= 〈ψ∗, L∗〉 then

L(e2 · (u2
1)
−z1i−wz2i) else ⊥

) Let R be the event that the adversary produces a ciphertext ψ directed to one of the two decryption
oracles and a label L that is answered differently in game G3 and in game G4. Let us concentrate
first on the FIND stage. First suppose that the ciphertext ψ with context L pass the decryption
test of G4. This means that they satisfy u2

2 = u2w
1 and v2 = u

2(x1i+wxwi+(y1i+wywi)h)
1 where ψ =

〈u1, u2, e, v〉. From this we obtain that v2 = u
2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 i.e.,the ciphertext should also

pass the decryption test of game G3. Given that decryption itself is identical in the two games we
have that the two oracles behave in identical fashion. Note that the same holds true even in the
GUESS stage.

We conclude that if R happens it must be that the ciphertext ψ and label L gets rejected in the
decryption test of game G4 and passes the decryption test of game G3 (so that the answers of the
two oracles is different). It follows that either u2

2 6= u2w
1 or v2 6= u

2(x1i+wx2i+(y1i+wy2i)h)
1 . Note that

it must be that u2
2 6= u2w

1 (otherwise, if u2
2 = u2w

1 given that the decryption same of G3 passes it
will also be the case for the decryption test of G4). We conclude that the event R happens whenever
u2

2 6= u2w
1 and the ciphertext passes the decryption test of game G3.

We split the event R so that R1 means that the first time the adversary produces a ciphertext that
triggers R is in the FIND stage similarly for R4 for the GUESS stage. We will first consider R1. We
split the event R1 in the number of queries of the adversary and we consider the event that it happens
for the first time in the j-th query. We have that in his j-th query the adversary for some i ∈ {1, 2},
for the first time produces 〈u1, u2, v, e, L〉 so that u2

2 6= u2w
1 and v2 = u

2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 ). Suppose

that u2
1 = gr11 h

s1 and u2
2 = gr22 h

s2 . Also let v2 = gr1h
s. We obtain the following system of equations

in Zp′q′ that represents the view of the adversary with respect to the values x1i, x2i, y1i, y2i.
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 1 w 0 0
0 0 1 w
r1 wr2 r1h wr2h

 ·

x1i

x2i

y1i

y2i

 ≡p′q′
 logg1 ci

logg1 di
r


the first two equations are given by the public-key of the system whereas the last equation

corresponds to the ciphertext that was produced by the adversary. Observe that the above system
has a 3x3 matrix with determinant w(r2 − r1).

Now we consider two cases, either u2nw
1 = u2n

2 and u2w
1 6= u2

2 or u2nw
1 6= u2n

2 . In the second case it
follows immediately that r2 6= r1 and as a result the determinant w(r2− r1) is non-zero conditioning
on w ∈ Z∗

p′q′ which is an overwhelming probability event. Still it may be the case that r2−r1 mod p′q′

is a zero divisor. In this case it must be that α = u2nw
1 u−2n is an element of Xn2 for which it holds

that its order is either p′ or q′. Based on this fact we can factor n by computing gcd(α−1, n). Based
on the above we conclude that the determinant w(r2 − r1) ∈ Z∗

p′q′ and thus the likelihood of the
above system being satisfied is negligible.

Suppose on the other hand that, u2nw
1 = u2n

2 and u2w
1 6= u2

2. As before the above argument cannot
be extended in this case since we have that r2 = r1. Nevertheless now, we know that it holds s1 6= ws2
and v2 = u

2(x1i+y1ih)
1 u

2(x2i+y2ih)
2 . From this we obtain the equation s = (x1i+y1ih)s1+w(x2i+y2ih)s2

in Zn. Observe that up to this moment the adversary’s view is completely independent of the values
x1i, y1i, x2i, y2i mod n (based on Chinese remaindering). It follows that the probability that this
equation is satisfied is negligible (given that s1 6= ws2 not both s1, s2 can be simultaneously zero).
This completes the argument that the probability of the event R1 is negligible (under the assumption
that factoring is hard).

We turn now to the event R4 which is the event that the adversary is producing the query to
the decryption oracle after he has received the challenge. We will only consider the case that the
challenge ciphertext is consistent with the oracle targetted as it is the most complex one; the other
case can be dealt with in a very similar way. We will further split the event R4 in three sub-cases,
(i) that u2nw

1 = u2n
2 and h 6= h∗, (ii) u2nw

1 6= u2n
2 and h 6= h∗, and (iii) h = h∗.

Within Z∗
p′q′ the following system of equations is defined from the view of the adversary:

1 w 0 0
0 0 1 w
r∗1 wr∗2 r∗1h

∗ wr∗2h
∗

r1 wr2 r1h wr2h

 ·

x1i

x2i

y1i

y2i

 ≡p′q′


logg1 ci
logg1 di
r∗

r


where r∗ comes from (v∗)2 = gr

∗
1 h

s∗ and r comes from v2 = gr1h
s. The integer determinant of this

system is equal to w2(r1 − r2)(r∗1 − r∗2)(h− h∗). Below we will condition on w2(r∗1 − r∗2) ∈ Z∗
p′q′ as it

is an overwhelming probability event. Considering now the case (i) we have that r2 6= r1 and h 6= h∗.
Under the assumption that factoring is hard we obtain as before that the determinant is an element
of Z∗

p′q′ and thus the probability that the adversary has in satisfying the system is negligible. Suppose
now case (ii) happens. In this case we cannot use the system above as it holds r2 = r1. Nevertheless
we have that s2 6= ws1 and that the equation s = (x1i + y1ih)s1 + w(x2i + y2ih)s2 is satisfied in
Zn. The adversary has no prior information about the values x1i, x2i, y1i, y2i (not even from the
challenge ciphertext since the u∗1, u

∗
2 values belong to Xn2) and as a result we have that the adversary

has negligible success probability in satisfying this equation. Finally we consider, case (iii), h = h∗.
We know regarding the submitted ciphertext ψ = 〈u1, u2, e, v, L〉 that it holds 〈u1, u2, e, v, L〉 6=
〈u∗1, u∗2, e∗, v∗, L∗〉 since in the opposite case the ciphertext would have been rejected. Consider now
two cases (iiia) 〈u1, u2, e, L〉 = 〈u∗1, u∗2, e∗, L∗〉 and v 6= v∗ and (iiib) 〈u1, u2, e, L〉 6= 〈u∗1, u∗2, e∗, L∗〉.
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Case (iiib) it follows easily that the probability it happens will be bounded by the advantage of
finding collisions in the given UOWH family. Regarding case (iiia) we observe that u1 = u∗1 ∈ Xn2

and u2 = u∗2 ∈ Xn2 . Moreover we know that (v∗)2 = (u∗1)
2(x1i+y1ih)(u∗2)

2(x2i+y2ih) by definition. Since
the ciphertext ψ passes the test of game G3 it also holds that v2 = (u1)2(x1i+y1ih)(u2)2(x2i+y2ih), i.e.,
(v∗)2 = v2. In addition we have that v = ||v|| and v∗ = ||v∗||. From this we obtain the fact that
v, v∗ are two elements of Z∗

n2 that satisfy v 6= v∗ but v 6= ±v∗ and v2 = (v∗)2. It follows that we can
factor n by computing gcd(n, v− v∗) and as a result case (iiia) is a negligible probability event based
on factoring.

Game G5. We modify the parameter selection so that the factorization of n is known. We modify
the decryption oracles as follows:

if u2
1 ∈ Xn2 and u2

2 = u2w
1 and v2 = u

2(x1i+wx2i+(y1i+wy2i)h)
1 and v = ||v|| then L(e2 ·

(u2
1)
−z1i−wz2i) else ⊥

if u2
1 ∈ Xn2 and u2

2 = u2w
1 and v2 = u

2(x1i+wx2i+(y1i+wy2i)h)
1 and v = ||v|| and 〈ψ,L〉 6=

〈ψ∗, L∗〉 then L(e2 · (u2
1)
−z1i−wz2i) else ⊥

Note that the test u2
1 ∈ Xn2 is possible since the factorization of n is known. Consider R the event

that the adversary produces a ciphertext for which it passes the test of game G4 but it is rejected by
game G5 (it cannot be the other way around). Let us suppose that u2

1 = gr11 h
s1 . In the FIND stage

of the adversary the equation that must be satisfied by the query ciphertext is as follows:

s̃ ≡n s1(x1i + wx2i + (y1i + wy2i)h)

where v2 = gr̃hs̃. Since it holds that s1 6= 0 then observe that up to this point the values
x1i, x2i, y1i, y2i in Zn are independent of the adversary’s view and as a result the probability that a
ciphertext submitted by the adversary satisfies the equation is negligible. The result is the same for
the GUESS stage of the adversary as the challenge ciphertext does not provide any information about
the values of x1i, x2i, y1i, y2i in Zn.

Game G6. We modify the computation of the challenge as follows:

9. e∗ ← gr
′

1 h
m; b r← {0, 1}, r′ r← [n4 ].

Observe that in game G5 the value e∗ is calculated as gr
∗
1z1b+wr

∗
2z2b

1 hm whereas in G6 it is calculated
as gr

′
1 h

m. Considering the setting of game G5 regarding the values z1b, z2b the adversary knows the
following equations: (

1 w
r∗1 wr∗2

)
·
[
z1b
z2b

]
≡p′q′

[
logg1 yb
r′

]
Conditioning on w(r∗1 − r∗2) ∈ Z∗

p′q′ (which is an overwhelming probability event) it follows that
te determinant of the matrix is invertible and thus any choice of r′ can be accommodated by z1, z2;
it follows that the probability distributions of e∗ in games G5 and game G6 are statistically indistin-
guishable. It should be stressed that the adversary has no other information about z1b, z2b in Z∗

p′q′

as his decryption oracles depend on z1b, z2b used only through z1b + wz2b mod p′q′ = logg1 yb.

Game G7. We modify further the calculation of the challenge as follows:

10. v∗ ← ||gr′′1 ||; r′′ ←R Zq.
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The adversary knows the following regarding the values x1b, x2b, y1b, y2b :

 1 w 0 0
0 0 1 w
r∗1 wr∗2 r∗1h

∗ wr∗2h
∗

 ·

x1b

x2b

y1b

y2b

 ≡p′q′
 logg1 cb

logg1 db
r′′


The above system has a 3x3 matrix with integer determinant w(r∗2 − r∗1) which belongs to Z∗

p′q′ with
overwhelming probability. Any choice of r′′ can be accommodated by the system and as a result the
statistical distance between game G6 and game G7 is negligible. Note that no other information is
revealed to the adversary regarding the values x1b, x2b, y1b, y2b beyond logg1 cb and logg1 db.

Observe that the probability of the event (b = b∗) in game G7 is clearly 1/2 since no information
about b is shared with the adversary in any phase of the game. �

4.2 Proof of Public-Key Validity

We will employ the public-key encryption scheme above to build the public-key database of the GE
scheme. When a user joins the group he will be allowed to generate a public-key and he will be
required to show that the public-key is valid. For our new cryptosystem the language of valid public-
keys is Lparam

pk = {〈c, d, y〉 | c, d, y ∈ Xn2} where param = 〈n, g1, g2,H〉. It follows that joining will
require three instances of a proof of language membership to the subgroup Xn2 of Z∗

n2 . The validity
of an element y can be performed by executing the following steps where k0, k1 ∈ IN are parameters
that affect the soundness and zero-knowledge properties of the proof of language membership below:

1. [User:] Select t r← {0, 1}k0 and transmit a← gt mod n2.
2. [GM:] Select c r← {0, 1}k1 and transmit c.
3. [User:] Compute s← t− cz ∈ Z and transmit s.
4. [GM:] Verify a2 ≡n2 (g2

1)
sy2c.

It is easy to verify that given any prover that produces a value y and then executes the proof
above, it must be the case that y2 ∈ Xn2 with probability 1 − 2−k1 . Note that this still allows for
a slight misbehavior on the part of the user as he can multiply y with an element of order 2 inside
Z∗
n2 ; while it is easy to add an additional step in the above proof to avoid this slight misbehavior we

will not do so as we will show the security properties of our GE scheme without such guarantee.

4.3 Construction of GE of Discrete-logarithms

We proceed to the description of the GE scheme SETUP, JOIN, 〈Gdl,Rdl, sampledl〉, ENC, DEC, OPEN, 〈P,V, recon〉.
First recall that from the discrete-logarithm relation, Gdl given 1ν samples a description of a cyclic
group of ν-bits order and a generator γ of that group; Rdl contains pairs of the form (x,w) where
x = γw. Finally sampledl on input pkR = 〈desc(G), γ〉 selects a witness w and returns the pair
(x = γw, w).
Parameter Selection. The procedure SETUP selects the following parameters:
◦ Integer values k0, k1.
◦ A safe composite n of `n bits and generators g, ğ, g1, g2 of the group Xn2 .
◦ The description of a hash function H drawn at random from a UOWH family.
◦ A prime number Q of the form λ · n2 + 1 and F,H generators of the order n2 subgroup of Z∗

Q.
◦ A safe composite n̂ of `N bits and two generators ĝ, ŷ of the group Xn̂2 .
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We stress that the above parameters are part of the trusted setup of the system (also referred
to as the common reference string, and no participant of the system, including the GM, OA, or any
user will know any private information about these values).
SETUPOA. The procedure selects x1, x2, y1, y2, z←R [n

2

4 ] and set pkOA = 〈y̆, c̆, d̆〉 = 〈gz, gx1 ğx2 , gy1 ğy2〉.

SETUPGM. The GM will employ a digital signature 〈Gs,S,Vs〉 that must satisfy adaptive chosen
message security and be suitable for engaging in proofs of knowledge of signed messages when the
signature is committed. In our design will employ the signature of Camenisch and Lysyanskaya [?]
as the underlying digital signature scheme (hence referred to as CL-signature). The choice of the
digital signature is not unique to our design and other signature schemes can be employed as well.
The key-generation procedure Gs (that will be used by GM in SETUPGM) samples a pair 〈skGM, pkGM〉
where pkGM = 〈A0, A1, A2, G, Y1, Y2, Y3, N〉 with N a safe composite of `N bits and A0, A1, A2, G, Y1,
Y2, Y3 ∈ Z∗

N are random quadratic residues in QN . The signing key skGM is the factorization of N . In
addition to `N we have the parameters `m where [0, 2`m) will be the message space for the signature
such that n2 < 2`m (this is because we want to use the signature to sign public-keys of the encryption
scheme).
JOIN. The prospective group member submits c, d, y as generated by the encryption system 〈Ge, E ,D〉
given in the beginning of the section. In particular, recall that 〈c, d, y〉 is defined as c← gx1

1 gx2
2 mod

n2, d ← gy11 g
y2
2 mod n2, y ← gz1 and x1, x2, y1, y2, z ←R [n

2

4 ]. The secret key of the user is set to
the values x1, x2, y1, y2, z. The user engages with the GM in a proof of membership for the validity
of c, d, y. Upon acceptance the GM will use the signing procedure S for CL-signatures that is as
follows: given the message M ∈ {c, d, y}, the GM will sample R ← [0, 2`N+`m+`) where ` is a
security parameter and a random prime E > 2`m+1 of length `m + 2 bits; then it will compute
A = (A0A

M
1 A

R
2 )1/E(modN) (recall that the factorization of N is the signing key). Finally the

signature to M is the triple 〈A,E,R〉. It follows that each recipient will accumulate three signatures
for his public-key 〈y, c, d〉 that will be denoted by 〈Aa, Ea, Ra〉 for a ∈ {y, c, d}.

Finally, the GM will enter 〈c, d, y〉 into the public database followed by the three signatures.
Note that the GM should not allow a user to enter into database a key 〈c, d, y〉 such that there is
some 〈ci, di, yi〉 in the database already for which it holds that c2 = c2i , or d2 = d2

i or y2 = y2
i .

Note that the verification algorithm Vs given a message M and a signature 〈A,E,R〉 on it, checks
whether it holds that AE = A0A

M
1 A

R
2 mod N and verifies all the range constraints on M,E,R as

stated above.

ENC, DEC and recon. Following our modular design methodology of section ?? the GE encryption
function consists of the encryption of the witness w under a recipient’s public-key 〈c, d, y〉 and a
sequence of commitments to the public-key used and commitments to the certificate of this public-
key. More specifically when Alice wants to encrypt her witness w for her public-value x = γw under
label L she computes the following:
1. Commitment to Certificate of Public-key. The commitment to the certificate of the public-key of
the recipient that Alice selected is formed as follows: for each one of the three certificates 〈Aa, Ea, Ra〉
for a ∈ {y, c, d} the following values are computed B̃a = Gua mod N , Ãa = Y ua

1 Aa mod N , Ẽa =
Y ua

2 GEa mod N , R̃a = Y ua
3 GRa mod N for a ∈ {y, c, d}.

2. Bridge Commitments. The “bridge commitments” will assist in the efficient proof of ciphertext
validity. In particular Alice includes the commitments Êa = ĝEa(la,1)n̂ mod n̂2, R̂a = ĝRa(la,2)n̂ mod
n̂2 for a ∈ {y, c, d} and la,j

r← Zn where a ∈ {y, c, d} and j = 1, 2. Moreover she includes the
commitments ỹ = Hu′

y F
y mod Q, c̃ = Hu′

c F
c mod Q, d̃ = Hu′

d F
d mod Q.

3. Encryption of the recipient’s public-key. Encryption of the public-key that Alice selected is
formed as three ciphertexts: 〈fc, f̆c, ḟc, f̈c〉, 〈fd, f̆d, ḟd, f̈d〉, 〈fy, f̆y, ḟy, f̈y〉, where each is selected as
〈gua , ğua , y̆uaa, c̆ua d̆uaH(L′a)〉 where ua

r← [n4 ], a ∈ {y, c, d}, a ∈ {y, c, d} and L′a = 〈fa, f̆a, ḟa, f̈a, L〉.
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4. Encryption of the witness. The encryption of witness w is as follows: 〈u1, u2, e, v〉 ← 〈gr1, gr2, yrhw,
||crdrH(u1,u2,e,L′c,L

′
d,L

′
y)||〉.

DEC is the decryption process as defined in the beginning of the section for the new encryption scheme.
recon is simply the identity function.
OPEN. The opening procedure applies to the three ciphertext excluding the witness ciphertext (item
4, above). In particular, it returns 〈c, d, y〉 = 〈fcḟ

−z
c , ḟdf

−z
d , ḟyf

−z
y 〉 or ⊥ depending on the outcome

of the ciphertext validity tests fx1+y1
a f̆

(x2+y2)H(L′)
a

?= f̈a for a ∈ {y, c, d}. The owner of the public-key
is identified by comparing 〈c2, d2, y2〉 to all entries 〈c2i , d2

i , y
2
i 〉 that are inside the database database.

The proof of validity 〈P,V〉. This protocol will be constructed as an AND composition of four
sub-protocols and are presented in section ??. These protocols belong to a class of efficient proofs
for discrete log relations that are very common in the design of cryptographic primitives and their
concrete and efficient instantiation has become quite standard in the literature. An exception perhaps
is protocol # 2 which is a more complex protocol and is related to the “double-decker” proof of
knowledge for discrete-logarithms [?, ?]. This protocol is the least efficient as it requires parallel
repetition for decreasing the knowledge-error. Still, we stress that the overall communication is
independent of the size of the group and well within practical limits.

4.4 The 〈P ,V〉 construction

Protocol #1. This proof of knowledge will establish that 〈u1, u2, e, v〉 is a valid ciphertext encrypt-
ing a witness w for which it holds that w = logγ x (recall that x and γ are public-values) under
a public-key that is committed into the three ciphertexts 〈fa, f̆a, ḟa, f̈a〉 for a ∈ {c, d, y}. At the
same time we prove that the public-key ciphertxts 〈fa, f̆a, ḟa, f̈a〉 have the valid format and thus they
decrypt properly to the values they commit. Using the notation introduced in [?] we can describe
this protocol as:

PK
(
w, r, ua, πa : (u2

1 = g2r
1 ) ∧ (u2

2 = g2r
2 ) ∧a (f2

a = g2ua) ∧a (f̆2
a = ğ2ua) ∧ (f2r

a = g2πa)∧

∧(e2y̆2π = h2wḟ2r
y ) ∧ (v2y̆2πc y̆2πd = (ḟcḟ

h
d )2r) ∧a (f̈2

a = (c̆d̆ h′)2ua) ∧ (x = γw)
)

where h and h′ are the two hashes of encryptions and commitments that are employed for the
encryption of the witness and the encryption of the public-key respectively (these values are publicly
computable) and a ranges in {c, d, y}.
Protocol #2. This will ensure that the value committed into (fa, ḟa) where a ∈ {c, d, y} is also
committed into ã (note that ã is a Pedersen commitment to a, whereas (fa, ḟa) can be viewed as a
regular ElGamal ciphertext encrypting a inside Xn2). A protocol achieving this is as follows:
Blinding phase. The prover selects, B1 = gω1 mod n2 and B2 = Hω2

a F ((ga)−ω1 mod n2) where ω1 ←R [n4 ]
and ω2 ←R Zn2 . The prover submits B1, B2 to the verifier.
Challenge selection. The verifier selects c←R {0, 1} and submits c to the prover.
Response. The prover responds by σ1 = ω1 − cu (in Z) and σ2 = ω2 − cz2ḟ−1

a (ga)−σ1 mod n2.

Verification. The verifier checks the relations B1
?= gσ1f ca and B2

?= Hσ2
a (F (ga)−σ1 )1−c(ãḟ

−1
a (ga)−σ1 )c.

To check the completeness of the above, recall that B2 = Hω2
a F (ḟa)−ω1 ; now observe that if c = 1

and ã and (fa, ḟa) are well-formed we have that Hσ2
a · ãḟ

−1
a (ga)−σ1 = H

σ2+u′ḟ−1
a (ga)−σ1

a F aḟ−1
a (ga)−σ1 =

Hω1
a F aa−1(ga)−u−σ1 = Hω1

a F (ḟa)−u−ω1+u
= B2. The case c = 0 is straightforward.

Observe that the above proof ensures with probability 1/2 that the encryption (fa, ḟa) is consistent
with the commitment ã. In the AND composition we will (essentially) run this proof k1 times in
parallel (where k1 is the length of the challenge selected by V).
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Protocol #3. The values B̃a, Ãa, Ẽa, R̃a for a ∈ {c, d, y} constitute a commitment to a valid CL-
certificate 〈Aa, Ea, Ra〉 of the value a ∈ {y, c, d} that is committed into ã.

PK
(
u, u′, a, R,E, π : (B̃a = Gu) ∧ (Ẽa = Y u

2 G
E) ∧ (R̃a = Y u

3 G
R) ∧ (ã = Hu′

a F
a)∧

∧(B̃E
a = Gπ) ∧ (AEa = A0A

y
1A

R
2 Y

π
1 )

)
Protocol #4. The Paillier ciphertexts Êa, R̂a for a ∈ {c, d, y} hide the same values with the
Pedersen commitments Ẽa and R̃a for a ∈ {c, d, y}. This requires a proof of knowledge between a
Paillier ciphertext ĉ = ĝmln̂ and a Pedersen commitment C = Y uGm. The protocol proceeds as
follows: the prover computes c′ = gm

′
ln̂0 and C ′ = Y u′Gm

′
and transmits c′, C ′ to the verifier. The

verifier responds by a random challenge d ∈ {0, 1}k1 and the prover computes the answer s = u′−du,
t = m′ − dm and l1 = l0l

−d and transmits s, t, l1. The verifier accepts provided that gt(ĉ)dln̂1 = c′

Y sGtCd = C ′.
Based on the above, the theorem below follows as a corollary of theorem ??:

Theorem 4.6 The GE scheme for discrete-logarithms defined above satisfies (i) Correctness; (ii)
Anonymity and (iii) Security, both properties under the DDHSQNR, DDH over QN , DCR and the
collision resistance of the UOWH family; (iv) Soundness, under the Strong-RSA and the DLOG
assumptions.

Proof. The proof of the theorem is an application of theorem ??. In particular we observe the
following:
(1). The public-key encryption scheme that is employed by the users satisfies CCA2-key privacy
based on theorem ?? assuming the DDHSQNR assumption (note that we can also design a UOWH
function family so that its target collision resistance is also based on DDHSQNR. Next, note that the
encryption scheme employed by the OA satisfies CCA2-security assuming the DDH assumption over
the subgroup of quadratic residues Qn as well as the factoring assumption; this follows from the fact
that the scheme employed by the OA is simply a Cramer-Shoup [?] variant over the Z∗

n group that
was investigated by [?]. The commitment scheme we employ to hide the certificate and the public-
key satisfies the hiding property under the DDH assumption over QN and the DCR assumption.
Regarding the zero-knowledge property observe that the protocol 〈Ppk,Vpk〉 as well as the protocols
presented in section ?? satisfy the honest-verifier zero-knowledge (HVZK) property. To turn them
into zero-knowledge proofs in various adversarial settings a number of techniques exist, e.g., [?, ?]
as well as heuristics [?]. For example, using an equivocal commitment (cf. [?]) we can obtain easily
turn all the protocols into concurrent zero-knowledge proofs of knowledge in the common reference
string model. The above suggest that the GE scheme satisfies the anonymity property.
(2). The public-key encryption scheme that is employed by the users satisfies CCA2-security based
on theorem ?? assuming the DCR assumption as well as target collision resistance of the underlying
UOWH function family (which in turn can follow from DDHSQNR as in case 1). Arguing in the same
way as in case 1 we also conclude that the commitment employed for hiding the certificate and the
public-key is hiding under the DDH and DCR assumptions over QN as well as the employed protocols
are zero-knowledge.
(3). The employed digital signature scheme satisfies adaptive chosen message security based on
the Strong-RSA assumption (following [?]). Moreover the employed commitment scheme is binding
based on the DLOG assumption respectively over QN and the 〈F 〉 subgroup of Z∗

Q. The commitment
used for the certificate is extractable by using the the factorization of n̂ as the trapdoor as well as
the discrete-logarithms of Y1, Y2, Y3 base G within Z∗

N . Finally the soundness of the zero-knowledge
proofs of knowledge of 〈Ppk,Vpk〉 and 〈P,V〉 can be argued under the Strong-RSA assumption in a
similar way as in [?, ?] �
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Length of proof and interaction. The total communication cost for a full 〈P,V〉 interaction is
about 70Kbytes if one wants to achieve a knowledge error of 2−50. The GE ciphertext itself is of
length 10 Paillier ciphertexts, which for a choice of 1024-bits for the RSA key amounts to 2.5 Kbytes.

4.5 Cascaded Group Encryptions

In the cascaded group encryption setting, instead of a single opening authority, we have a structured
group of opening authorities; to open a cascaded group encryption, the opening authorities need to
apply in sequence their keys to the cascaded ciphertext following the order selected by the sender;
each opening authority will reveal the identity of the next opening authority and can forward the
ciphertext to her. The very last opening authority will obtain the identity of Alice’s recipient Bob.

In our GE construction above the public-key of the opening authority is 〈g, ğ, c̆, d̆, y̆〉 and the
public-key of the recipient is 〈g1, g2, c, d, y〉 (with g1, g2 shared across recipients). In the cascaded
encryption setting, each opening authority A will have a key of the form 〈g, ğ, c̆A, d̆A, y̆A〉 (i.e., all of
them will share the same g, ğ). Using a similar technique as in our basic construction above, Alice
can choose a sequence of opening authorities A1, . . . , Av and will employ the public-key of Ai to
encrypt the public-key of Ai+1 for i = 1, . . . , v− 1; finally she will perform a group encryption of her
witness under Bob’s public-key using the public-key of Av as the last opening authority.

In order for the above construction to work we need the following: First, the encryption used
by opening authorities must satisfy CCA2-key-privacy; given that the encryption used by opening
authorities is a Cramer-Shoup [?] variant over Xn2 , the result will follow from the DDHSQNR using
similar reasoning as in the proof of theorem ??. Second, Alice will need to convince the verifier
that the public-key she employs for each opening authority is a certified one; this can be done by
requiring all opening authorities to be members of a PKI (or disjoint PKI’s if preferred) and Alice
will be committing to their certificates as well as proving that they are correct in exactly the same
way we demonstrated above where she proves that her recipient’s public-key is certified. Thus, the
construction methodology we developed for GE is sufficient for efficiently cascading the construction;
we omit further details.
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