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Abstract. Anonymity is one of the main concerns in group-oriented cryptography. However,
most efforts, for instance, group signatures and ring signatures, are only made to provide anonymity
on the sender’s point of view. There is only a few work done to ensure anonymity in a crypto-
graphic sense on the recipient’s point of view in group-oriented communications. In this paper, we
formalize the notion of group decryptions. It can be viewed as an analogous of group signatures in
the context of public key encryptions. In this notion, a sender can encrypt a committed message
intended to any member of a group, managed by a group manager, while the recipient of the
ciphertext remains anonymous. The sender can convince a verifier about this fact without leaking
the plaintext or the identity of the recipient. If required, the group manager can verifiably open
the identity of the recipient. We propose an efficient group decryption scheme that is proven
secure in the random oracle model. The overhead in both computation and communication is
independent of the group size. A full ciphertext is about 0.2K bytes in a typical implementation
and the scheme is practical to protect the recipient identity in privacy-sensitive group-oriented
communications.

Keywords: group-oriented cryptography, group decryption, anonymity, group manager, public
key encryptions.

1 Introduction

Anonymity is the main concern in group-oriented cryptography. It has attracted a lot of
attentions in the context of digital signatures and extensively studied in the literature, such
as group signatures, ring signatures, etc. However, these types of anonymous signatures only
provide anonymity on the sender’s viewpoint in the communication. There is only a few
work done to ensure anonymity on the recipient’s viewpoint using cryptographic primitives.
This paper concentrates on the identity privacy of recipients in group-oriented public key
encryptions and proposes practical solutions.

Let us consider the following scenario. Alice wants to send a secret message to Bob who
is one of the department managers in a company. For some security reasons and the purpose
? We noted that Aggelos Kiayias and Yiannis Tsiounis and Moti Yung recently presented an indepen-

dent paper Group Encryption which achieved the same goals with an different implementation at:
http://eprint.iacr.org/2007/015.pdf. Their work was submitted on 12 Jan 2007 from database record but
not publicly accessible until 19 Jan 2007 due to a reviewing process. We submitted this report to eprint on
21 Jan 2007.
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of protecting the managers from dealing with junk messages, the company gateway system
does not allow the message in the network, unless it is directed for any department manager.
However, Bob may not want to let the gateway know that he is the actual recipient of the
message sent by Alice. By knowing only the public information of managers of the company,
the gateway system has to determine whether the encrypted message is allowed to stay in the
network or not. In other words, the gateway needs to test whether the message is indeed sent
to one of the managers in the company, without knowing who is the actual recipient of the
message. Furthermore, in the case of dispute, we may hope a trusted third party can reveal
the identity of the recipient.

There may exist other applications where the recipients’ anonymity is essential. For in-
stance, in the optimistic fair exchange scenario, the two parties exchanging the secrets may
not want to reveal their identities to the third party. Another examples include identity escrow
and transactions over the Internet.

There are some related notions on the anonymity of users in the context of signatures.
Group signatures, introduced by Chaum and van Heyst [9,5,8], provide signers’ anonymity.
Any group member can sign messages on behalf of the group, but the resulting signatures keep
the identity of signer secret. In the standard definition, there is a third party who can open the
signature, or undo its anonymity in the case of dispute. A ring signature, introduced in [21],
is an alternative mean to achieve anonymity for ad-hoc groups without requiring any trusted
manager. It is used to convince any third party that at least one member in an ad-hoc group
has indeed issued the signature on behalf of the group. In contrast to the group signatures,
the anonymity in ring signatures cannot be revoked.

In the context of public key based encryptions, recently, Bellare et al. [3] presented a
notion of key privacy in public-key encryption schemes. However, the setting, goal and model
in this notion are different from ours. They studied the setting of asymmetric encryptions to
capture a security property for public-key-based encryption schemes that an attacker cannot
determine the public keys that were used to generate the ciphertexts that it sees. Notice
that the attacker cannot verify whether the ciphertexts are valid for some of the potential
recipients, and no trusted party can trace the actual recipient. They use the classic chosen
plaintext attack (CPA) and chosen ciphertext attack (CCA) to model the adversary in their
notion. Their goal is to find public key encryption schemes with a special property referred
to as recipient anonymity or key privacy. They showed that the existing well-known schemes
such as the ElGamal encryption [12], the Cramer-Shoup encryption [11] and the RSA-OAEP
[7,22] provide such a recipient anonymity with or without some trivial modifications.

In [18,17], a similar notion of custodian-hiding verifiable encryption schemes was presented.
In their notion, a sender can verifiably encrypt a message under a chosen public key from
a public key list but the actual recipient is anonymous. Since there is no group manager
to administer the potential recipients, the notion is only applicable to ad-hoc applications
and hence each ciphertext has to contain the public key list of potential recipients. Their
instantiations suffer from a linear cost in both communication and computation in addition
to the public key list in each ciphertext. Furthermore, in the case of dispute introduced by a
ciphertext in their notion, no group manager can revoke the anonymity of the receiver.
Our Contributions
In this paper, we formalize the notion of group decryptions. It can be viewed as an analogous of
group signatures in the context of public key encryptions. In this notion, a sender can encrypt
a committed message to any intended group member managed by a group manager while
the recipient of the ciphertext remains anonymous. The sender can convince a verifier about
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this fact without leaking the plaintext or the identity of the recipient. If required, the group
manager can verifiably open the identity of the recipient (for instance, in the case of dispute).
We propose an efficient group decryption scheme from pairing groups secure in the random
oracle model[6]. The overhead in both computation and communication is independent of the
group size and the scheme is practical. We also present several efficient sub-protocols such
as commitment schemes to commit a group element in pairing groups and the corresponding
zero-knowledge proof protocols. These sub-protocols are of independent interest and maybe
useful for different applications.
Roadmap
The rest of the paper is organized as follows. The next section formalizes the notion of group
decryptions. In Section 3, we review the underlying computational assumptions. Section 4
presents the building blocks. We propose our group decryption scheme in Section 5. Section
6 concludes the paper.

2 Modeling Group Decryptions

In this section, we formalize the notion of group decryption. It allows a sender to verifi-
ably encrypt a committed message to any group member while the actual recipient remains
anonymous. In the case of dispute, the anonymity can be revoked by the group manager.

2.1 Group Decryption Algorithms

A group decryption scheme consists of the following procedures.

– ParaGen: It is a polynomial time algorithm which on input a security λ, outputs the
system-wide parameters π.

– GKeyGen: It is a polynomial time algorithm which on input the system parameters π,
outputs the group public and secret key pair (gpk, gsk).

– UKeyGen: It is a polynomial time algorithm which on input the system parameters π,
outputs a user’s public and secret key pair (upk, usk).

– Join: It is a polynomial time interactive algorithm between a user U who wants to join a
group and the group manager GM. The user has input usk while the group manager has
input gsk. The common input is the (π, gpk, upk). The user has output (mpk,msk) which
is the public and secret key pair of U as a legitimate group member. The group manager
has output an updated local database which includes a tracing trapdoor TU corresponding
to group member U . The tracing trapdoors forms a tracing list LT secretly maintained
by the group manager. All the legitimate group members’ public keys mpk comprise of a
public key list Lpk.

– Encrypt: It is a polynomial time algorithm which on input a secret message m in the
structured message space, one of the group members’s public key mpk in the public key
list and the system parameters π, outputs a ciphertext c in the ciphertext space.

– EnVerify: It is a polynomial time algorithm which on input a ciphertext c, the system
parameters π, the group public key gpk and the public key list of the group members,
outputs a bit 1 or 0 to represent that the ciphertext is valid or not.

– Decryption: It is a polynomial time algorithm which on input a valid ciphertext c, the
system parameters π, the intended group member U ’s public key mpk and secret key msk,
outputs a message m in the message space.



4 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

– Trace: It is a polynomial time algorithm which on input a valid ciphertext c, the system
parameters π, the group key pair (gpk, gsk), the public key list Lpk of the group members
and its local tracing list LT , outputs an error message or the public key mpk of the
recipient which represents the recipient’s identity.

– TrProof: It is a polynomial time interactive algorithm between the group manager GM
and a verifier. The group manager has input (π, gpk, gsk, TU , Lpk, LT ) while the verifier
has input (π, gpk, Lpk). After the interactive algorithm is run, the verifier outputs a bit 1
or 0 to represent that the Trace procedure has been correctly run or not while the group
manager has no output.

A group decryption scheme is said to be correct if all the parties follow the scheme honestly,
the EnVerify algorithm outputs 1, the Decryption algorithm outputs the correct message and
the verifier in the TrProof procedure outputs 1.

2.2 Adversarial Model in Group Decryptions

We model the adversaries in group decryption schemes with the following oracles to which
the adversaries can query. These oracles are maintained by a challenger.

– UKeyGen Oracle. For the i-th (i > 0) query to this oracle, the adversary queries this oracle
with an integer i. The challenger responds with the i-th user’s public key upki but keeps
the corresponding secret key uski. The challenger maintains a counter n to records the
query times and updates n = i.

– Join Oracle. The adversary queries this oracle with upki which is an output of the UKeyGen
Oracle. The challenger runs the Join procedure for (upki, uski). The transcript of this
procedure and the corresponding group member public key mpki are sent to the adversary.
The challenger updates the corresponding tracing list as the real scheme.

– Corruption Oracle. The adversary queries with mpki and obtains the corresponding secret
key mski if mpki is in the group member public key list.

– Encryption Oracle. The adversary queries this oracle with (m,mpki), where m is a message
in the message space and mpki is in the group member public key list. The challenger
responds the corresponding ciphertext c.

– Decryption Oracle. The adversary queries this oracle with a valid ciphertext. The challenger
responds with the corresponding message.

– Trace Oracle. The adversary queries this oracle with a valid ciphertext. The challenger
responds with a public key which represents the identity of the true recipient.

– TrProof Oralce. The adversary queries this oracle with a valid ciphertext and the identity
of the traced recipient. The challenger responds with a proof to show that the ciphertext
was sent to the traced recipient.

2.3 Security Definitions of Group Decryptions

The security of group decryption schemes includes three aspects, i.e., the semantic security
against chosen-ciphertext attacks, the anonymity and traceability.

Let us first consider semantic security against chosen-chiphertext attacks. It is defined by
the following game between a challenger CH and an adversary A.
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Setup: CH runs ParaGen and GkeyGen algorithms to generate the system parameters π and
the group public and secret key pair (gpk, gsk). (π, gpk) are sent to the attacker A. CH also
maintains a counter and three lists LU , LM , LT to recorder the users, the group members,
and the tracing trapdoors.

Phase 1: A can adaptively make all the oracles defined above.
Challenge: A chooses a tuple (m0,m1,mpki), where m0,m1 are in the message space and

mpki ∈ Lpk was never not queried to the Corruption oracle. CH randomly selects a bit
b ∈ {0, 1}. outputs the challenge ciphertext c∗ =Encrypt(π,mpki,mb). CH sends c∗ to A.

Phase 2: A may make another sequence of queries as in Phase 1 with a constraint that the
Corruption oracle cannot be queried on mpki and c∗ cannot be queried to the Decrypt
oracle.

Output: Finally A outputs a guess bit b′ ∈ {0, 1}. A wins if b′ = b.

Definition 1. We say that a group decryption scheme is semantically secure against chosen
ciphertext attacks if no polynomially bounded adversary has advantage that is non-negligibly
greater than 1/2 of winning in the above game.

Anonymity is defined by the following game between a challenger CH and an adversary A.

Setup: It is the same as the semantic security game.
Phase 1: A can adaptively make all the oracles defined above.
Challenge: A chooses a tuple (m,mpki0 ,mpki1), where mpki0 ,mpki1 ∈ Lpk were never

queried to the Corruption oracle and m is in the message space. CH randomly selects
a bit b ∈ {0, 1}. outputs the challenge ciphertext c∗ =Encrypt(π,mpkib ,m). CH sends c∗

to A.
Phase 2: A may make another sequence of queries as in Phase 1 except that the Corruption

oracle cannot be queried on mpki0 ,mpki1 and c∗ cannot be queried to the Decrypt oracle.
Output: Finally A outputs a guess bit b′ ∈ {0, 1}. A wins if b′ = b.

Definition 2. We say that a group decryption scheme is anonymous if no polynomially
bounded adversary has advantage that is non-negligibly greater than 1/2 of winning in the
above game.

A group decryption scheme should allow to revoke the identity of the recipient’s identity in
the case of dispute. The traceability of a group decryption scheme is defined by the following
game between a challenger CH and an adversary A.

Setup: It is the same as the semantic security game.
Probe Phase: A can adaptively make queries to all the oracles defined above.
Output: A outputs a valid ciphertext c∗. A wins if the Trace algorithm outputs an error

message or a string which is not the identity of the true recipient.

Definition 3. We say that a group decryption scheme is traceable if no polynomially bounded
adversary has negligible probability to win the above game.

3 Mathematical Aspects

3.1 Bilinear Pairings

We review some general concepts of pairing groups [4,14,23]. Let PairingGen be an algorithm
that, on input a security parameter 1λ, outputs a tuple Υ = (p ,G1, G2, G3, g1, g2, e), where
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G1 = 〈g1〉 and G2 = 〈g2〉 have the same prime order p. e : G1×G2 → G3 is an efficient bilinear
map if the following conditions hold:

1. Non-degeneration: e(g1, g2) 6= 1;
2. Bilinearity: For all h1 ∈ G1, h2 ∈ G2 and u, v ∈ Z, e(hu

1 , h
v
2) = e(h1, h2)uv

From [13], there are three types of pairing groups:

1. G2 = G1 and accordingly denote Υ = (p ,G,G3, g, e)← PairingGen(1λ) for simplicity;
2. G2 6= G1 in which there is an efficient distortion map ψ : G2 → G1 but there is no efficient

distortion map ϕ : G1 → G2, where the distortion map satisfies ψ(gu
2 ) = ψ(g2)u ∈ G1 for

any u ∈ Zp;
3. G2 6= G1 but there is no efficient distortion map ψ : G2 → G1 or ϕ : G1 → G2.

If G2 6= G1 and there are efficient homomorphisms ψ : G2 → G1 and ϕ : G1 → G2, it can
be re-interpreted as Type 1. The Type 1 case is implemented using supersingular curves. The
curves of Type 2 are ordinary and the homomorphism from G2 → G1 is the trace map. The
curves of Type 3 are ordinary and G2 is typically taken to be the kernel of the trace map.

3.2 Computational Assumptions

Suppose that Υ = (p,G1,G2,G3, g1, g2, e)← PairingGen(1λ) are SXDH pairing groups, where
G1, G2, and G3 are public. Our proposals are based on the following assumptions about pairing
groups. We recall that these assumptions have been used by previous works in the literature
[1,2,4,16].
Assumption 1 (Inverse of Bilinear Pairing (IBP) Assumption) Let Υ = (p, G1, G2,
G2, g1, g2, e) ← PairingGen(1λ). Given random values Y, h2 ∈ G2, for any probabilistic
polynomial time (PPT) adversary A, the probability to compute X ∈ G1 satisfying e(X, g2) =
e(Y, h2) is negligible in λ.

The IBP assumption is weaker than the co-CDH assumption [4]. An adversary A breaking
the IBP assumption can be efficiently converted into an adversary B to break the co-CDH
assumption. The transformation is trivial: Given a co-CDH challenge (g1, g2, gu

1 , g
v
2), B com-

putes A = e(gu
1 , g

v
2) = e(g1, g2)uv and queries A with (A, g1, g2). B straightforward uses A’s

reply X = guv
1 to answer the co-CDH challenge. Similarly, if G1 = G2, the IBP assumption is

implied by the classic CDH assumption in the case G = G1 = G2.
The IBP assumption is an analog of the RSA assumption in the pairing group settings.

We will use a strong version of the IBP assumption which can be viewed as an analog of
the strong RSA assumption in the pairing group settings. This assumption holds only in the
SXDH pairing groups (Type 3).
Assumption 2 (Strong Inverse of Bilinear Pairing (SIBP) Assumption) Let Υ = (p,
G1, G2, G2, g1, g2, e) ←PairingGen(1λ) be pairing groups of Type 3. Given random values
h2 ∈ G3, g1 ∈ G1, g2 ∈ G2, for any PPT adversary A, the probability to compute a pair
(X,Y ) ∈ G1 satisfying e(X, g2) = e(Y, h2) is negligible in λ.

In pairing groups of type 3, the conventional DDH assumption holds in both G1 and G2.
Hence, such pairing groups are also called SXDH (symmetric external Diffie-Hellman) pairing
groups [1]. In [1], Ateniese et al. exploited such pairing groups to built their practical group
signatures without random oracles.
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Assumption 3 (Symmetric External Diffie-Hellman (SXDH) Assumption) Let Υ =
(p, G1, G2, G2, g1, g2, e) ←PairingGen(1λ) be pairing groups of Type 3. The SXDH assump-
tion states that the standard DDH assumption holds in both G1 and G2.

The LRSW assumption is a discrete-logarithm assumption originally introduced by Lysyan-
skaya et al. [16] and used in many subsequent works. Recently, a stronger form of the LRSW
assumption, called Strong LRSW, was introduced by Ateniese et al. [2]. Strong LRSW only
holds in SXDH pairing groups (Type 3).
Assumption 4 (Strong LRSW Assumption) For SXDH pairing groups Υ = (p, G1, G2,
G2, g1, g2, e) ←PairingGen(1λ), Let X,Y ∈ G2 be chosen at random, and OX,Y (·) be an
oracle that takes as input a value v ∈ Z∗

p, and outputs an LRSW-tuple (a, ax, ay+vxy) for a
random a ∈ G1. Then for any PPT adversary A(·) and all u ∈ Z∗

p,

Pr
[
x← Zp, y ← Zp

X = gx
2 , Y = gy

2

∣∣∣∣ (a1, a2, a3, a4, a5)← AOX,Y (·)(g1, g2, X, Y ) ∧ a1 ∈ G1

∧a2 = au
1 ∧ a3 = ax

1 ∧ a4 = aux
1 ∧ a5 = ay+uxy

1 ∧ u /∈ Q

]
≤ 1
poly(λ)

where Q is the set of queries A makes to OX,Y (·).

4 Building Blocks

In this section, as building blocks of our group decryptions, we present new commitment
schemes to commit group element in pairings. The commitment schemes works similarly to the
well-known discrete logarithm and Peterson commitments. Then we propose zero-knowledge
proof protocols of knowledge of the committed values and show that these sub-protocols are
Σ-Protocols. The notions of commitment schemes and Σ-Protocols are reviewed in Appendix
A for completeness.

4.1 Commitment

A commitment scheme consists of four efficient algorithms: C = (ParaGen, Com, Open, Ver).
The generation algorithm ParaGen(1k), where k is the security parameter, outputs a public
commitment key pk (possibly empty, but usually consisting of public parameters for the
commitment scheme). Given a message m from the associated message spaceM, Compk(m; r)
produces a commitment string c for the message m. We will sometimes omit r and write
c ← Compk(m). Similarly, the opening algorithm Openpk(m; r) (which is supposed to be run
using the same value r as the commitment algorithm) produces a decommitment value d
for c. Finally, the verification algorithm V erpk(m, c, d) accepts (i.e., outputs 1) if the pair
(c, d) is a valid commitment/decommitment pair for m. We require that for all m ∈ M,
Verpk(m, Compk(m; r), Openpk(m; r)) = 1 holds with all but negligible probability.

We remark that without loss of generality we could have assumed that the opening algo-
rithm simply outputs its randomness r as the decommitment, and the verification algorithm
simply checks if c = Compk(m; r). When clear form the context, we will sometimes omit pk
from our notation. Regular commitment schemes have two security properties:

– Hiding: No PPT adversary (who knows pk) can distinguish the commitments to any two
message of its choice: Compk(m1), Compk(m2). That is, Compk(m) reveals “no information”
about m.
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– Binding: Having the knowledge of pk, it is computationally hard for the PPT adversary
A to come up with c,m, d,m′, d′ such that (c, d) and (c, d′) are valid commitment pairs
for m and m′, but m 6= m′ (such a tuple is said to cause a collision). That is, A cannot
find a value c which it can open in two different ways.

4.2 Σ-Protocols

Let R = (x,w) be some NP-relation (i.e., it is efficiently testable to see if (x,w) ∈ R and
|w| ≤ poly(|x|)). We usually call x the input, and w the witness (for x). Consider a three move
protocol run between a PPT prover P, with input (x,w) ∈ R, and a PPT verifier V with input
x, of the following form. P chooses a random string rp, computes a = Start(x,w; rp), and
sends a to V. V then chooses a random string c (called “challenge”) from some appropriate
domain E (see below) and sends it to P. Finally, P responds with z = Finish(x,w, c; rp).
The verifier V then computes and returns a bit b = Check(x, a, c, z). We require that Start,
Finish, and Check be polynomial-time algorithms, and that |c| ≤ poly(|x|). Such a protocol
(given by procedures Start, Finish, and Check) is called a Σ-Protocol for R if it satisfies
the following properties, called completeness, special soundness, and special honest-verifier
zero-knowledge:

– Completeness: If (x,w) ∈ R then the verifier outputs b = 1 (with all but negligible
probability).

– Special Soundness: There exists a PPT algorithm Extract, called the (knowledge) ex-
tractor, such that it is computationally infeasible to produce an input tuple (x, a, c, z, c′, z′)
such that c 6= c′ both lie in the proper “challenge” domain, Check(x, a, c, z) = Check(x, a,
c′, z′) = 1, and yet Extract(x, a, c, z, c′, z′) fails to output a witness w such that (x,w) ∈ R.
Intuitively, if some prover can correctly respond to two different challenges c and c′ on the
same first flow a, then the prover must “know” a correct witness w for x (in particular, x
has a witness).

– Special HVZK: There exists a PPT algorithm Sim, called the simulator, such that for any
(x,w) ∈ R and for any fixed challenge c, the following two distributions are computation-
ally indistinguishable. The first distribution (x, a, c, z) is obtained by running an honest
prover P (with some fresh randomness rp) against a verifier whose challenge is fixed to c.
The second distribution (x, a, c, z) is obtained by computing the output (a, z)← Sim(x, c)
(with fresh randomness rs). Intuitively, this says that for any a-priori fixed challenge c,
it is possible to produce a protocol transcript computationally indistinguishable from an
actual run with the prover (who knows w).

Using the known Fiat-Shamir transformation, the above knowledge proof protocols can
be converted into digital signatures. They can be proven secure in the random oracle model
due to the fork lemma.

4.3 Prove of Knowledge of Committed Element in Pairings Groups

We present a commitment scheme to commit to elements in pairing groups then show how
to prove the knowledge of the committed values. This commitment scheme is similar to the
discrete logarithm commitment scheme. Let (p, G1, G2, G3, g1, g2, e) ← PairingGen(1λ).
The public commitment key is pk = (p, G1, G2, G3, g1, g2, e).
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To commit a group element x ∈ G1, one computes the commitment

A = e(x, g2).

To open the commitment A, the committer shows m ∈ G1 to the verifier. The verifier checks

that x
?
∈G1 and e(x, g2)

?=A. The verifier outputs 1 if both verifications hold; otherwise outputs
0. Clearly, the commitment scheme is computationally hiding and binding.

Similar to the knowledge proof of discrete logarithm, we present a knowledge proof of the
knowledge of the committed m in A, and denote the protocol by

PK{x|A = e(x, g2)}.

The 3-move protocol is as follows.

Step 1 The prover (i.e., the committer) randomly selects r ∈ G1 and sends B = e(r, g2) to
the prover.

Step 2 The verifier challenges the prover with a random c ∈ Z∗
p.

Step 3 The prover responses with s = rxc.

Step 4 The verifier checks that s
?
∈G1 and e(s, g2)

?=BAc.The verifier outputs 1 if both checks
hold; otherwise outputs 0.

The completeness of the above protocol is obvious. Now we prove the soundness and
zero-knowledge.

Theorem 1. The above knowledge proof protocol PK{x|A = e(m, g2) is Σ-protocol.

Proof. We first show the special soundness by construction of an efficient knowledge extractor
if the malicious committer can respond to different challenges c 6= c′ on the same first flow.
Let s 6= s′ ∈ G1 be the two different responses. From the verification equations, it holds that
e(s, g2) = BAc and e(s′, g2) = BAc′ . Assume that r ∈ G1 satisfies that e(r, g2) = B. Then
we have that s = rxc and s′ = rxc′ . It follows that sx−c = s′x−c′ . Hence, xc−c′ = s/s′. Since
c− c′ 6= 0, x = (s/s′)

1
c−c′ . The knowledge is extracted.

Then we prove the special HVZK, i.e., there exists an efficient simulator sim, which on
input public parameters pk and A, outputs a simulated transcript (B′, c′, s′) indistinguishable
from the output (B, c, s) of a real run of the protocol. The simulation works as follows.
Randomly select s′ ← G1, c

′ ← Z∗
p. Compute B′ = e(s′, g2)/Ac′ . Clearly, e(s′, g2) = B′Ac′ ,

and (B′, c′, s′) has identical distribution as the output (B, c, s) of a real run of the protocol.
This completes the proof. ut

4.4 Prove equality of committed elements in pairing groups

In this subsection, we present a zero-knowledge proof of the equality of committed group
elements. Let the prover committed two values A = e(x, g2) and B = e(x, h2), where h2 is an
independent generator of G2. The prover can prove it to an honest verifier in a zero-knowledge
meaner. We denote the protocol by

PK{x|A = e(x, g2) ∧B = e(x, h2)}.

The protocol works as follows.
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– Step 1 The prover randomly selects r ← G1 and sends D = e(r, g2) and E = e(r, h2) to
the verifier.

– Step 2 The verifier challenges the prover with c← Z∗
p.

– Step 3 The prover responses with s = rxc.

– Step 4 The verifier checks that s
?
∈G1, e(s, g2)

?=DAc and e(s, g2)
?=EBc. The verifier

outputs 1 if all checks hold; otherwise, output 0.

The completeness of the protocol is straightforward. For the security, we have the following
result.

Theorem 2. The above protocol PK{x|A = e(x, g2) ∧B = e(x, h2)} is a Σ-protocol.

Proof. We omit it as it is very similar to the previous theorem. ut

4.5 Prove of Knowledge of Pedersen Commitment of Element in Pairing
Groups

The Pedersen commitment [?] of discrete logarithms is a widely used commitment scheme.
In this subsection, we present a Pedersen commitment of a group element in SXDH pairing
groups. Let Υ = (p, G1, G2, G2, g1, g2, e) ←PairingGen(1λ) be pairing groups of Type 3.
Given random values h2 ∈ G2, the Pedersen commitment of of a secret element X ∈ G1 is

A = e(X, g2)e(R, h2)

where r is randomly chosen from G1.
Similar to the classic Pedersen commitment, we argue that this commitment is uncondi-

tionally hiding and computationally binding. On the one hand, given A ∈ G3 and g2, h2 as
independent generators of G2, for any X ′ ∈ G1, there exists an R′ ∈ G1 such that e(R′, h2) =
A/e(X ′, g2). Hence, it is unconditionally hiding. On the other hand, if the committer can out-
put two pairings (X,R) 6= (X ′, R′) such that A = e(X, g2)e(R, h2) and A = e(X ′, g2)e(R′, h2),
then we have e(x, g2)/e(x′, g2) = e(r′, h2)/e(r, h2). Hence, we can output a pair (x/x′, r′/r)
satisfying e(x/x′, g2) = e(r′/r, h2). However, this is infeasible in SXDH pairing groups under
the SIBP assumption. Hence the above commitment is computationally binding.

We provide a knowledge proof of the Pedersen commitment in SXDH pairing groups. We
denote the protocol by

PK{X,R|A = e(X, g2)e(R, h2)}.
The protocol runs as follows.

– Step 1 The prover randomly selects V,W ← G1 and sends D = e(V, g2)e(W,h2) to the
verifier.

– Step 2 The verifier challenges the prover with c← Z∗
p.

– Step 3 The prover responses with S = V Xc,Z = WRc.

– Step 4 The verifier checks that S,Z
?
∈G1 and e(S, g2)e(Z, h2)

?=DAc. The verifier outputs
1 if both checks hold; otherwise, output 0.

The completeness of the protocol is straightforward. For the security, we have the following
result.

Theorem 3. The above protocol PK{x, r, r̄|A = e(x, g2)e(r, h2)} is a Σ-protocol.

Proof. We omit it as it is very similar to Theorem 1. ut
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4.6 Prove of Knowledge of Discrete Logarithm of Pedersen Commitment in
Pairing Groups

By slightly modifying the above protocol, we achieve a zero-knowledge proof protocol

PK{X,R, x|A = e(X, g2)e(R, h2) ∧X = gx
1},

where a prover proves the knowledge of X,R ∈ G1 and x ∈ Zp satisfying A = e(X, g2)e(R, h2)
and X = gx

1 without leaking X,R or x. The modified protocol is as follows.

– Step 1 The prover randomly selects γ ← Zp,W ← G1 and sends D = e(gγ
1 , g2)e(W,h2)

to the verifier.
– Step 2 The verifier challenges the prover with c← Z∗

p.
– Step 3 The prover responses with σ = γ + cx, Z = WRc.

– Step 4 The verifier finally checks that σ
?
∈Zp, Z

?
∈G1, e(gσ

1 , g2)e(Z, h2)
?=DAc. The verifier

outputs 1 if all checks hold; otherwise, output 0.

The completeness of the protocol is straightforward. For the security, we have the following
result.

Theorem 4. The above protocol PK{X,R, x|A = e(X, g2)e(R, h2)∧X = gx
1} is a Σ-protocol.

We omit the proof as it is very similar to the previous theorems. If we view x as the identify
or public key of the prover and α its private key, the above modified protocol may be useful
for anonymous systems. The protocol may also be useful in other applications due to the
homomorphic property of A,X, x. ut

5 Proposed Group Decryption Scheme

In this section, we propose a group decryption scheme following the definition. We notice
that, currently and independently, Kiayias, Tsiounis and Yung [15] presented a primitive and
efficient instantiation to achieve the security goals which is referred to as group encryption. We
refer to this primitive as group decryption to stress the anonymity on the receiver’s viewpoint.
We briefly compare our works with theirs here.

Their general idea is to let the sender first commit to the message to be sent. Then the
sender encrypts the message using the anonymous receiver’s public key. The sender also en-
crypts the receiver’s public key as well as the associated certificate from the group manager
using the open manager’s public key. Finally, the sender proves to a verifier it has behaved
honestly in a zero-knowledge manner. For a practical implementation, proper underlying en-
cryption schemes have to be found to enable an easy zero-knowledge proof protocol. They
realize their scheme with a cramer-shoup variation of the Paillier cryptosystem and obtain
a CCA-2 secure scheme without using random oracles. The zero-knowledge proof protocol
is interactive. It can be converted into a non-interactive one using the Fiat-Shamir trans-
formation but the security now relies on the random oracle model. Without considering the
transcripts introduced by the zero-knowledge proof to show the correctness of the encryption,
their requires more than 5K bytes.

Our general idea is also to first let the sender commit to the message to be sent. However,
before encrypting the message, the sender rerandomizes the receiver’s public key and the
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corresponding certificate, such that the rerandomized public key corresponds to the same
secret key as the original one and any one can verify that the rerandomized certificate is still
a signature of the re-randomized public key, but no one can link them with the original public
key and certificate except the intended receiver and the group manager. Then the sender
encrypts the message using the rerandomized public key of some group member. Finally, the
sender just prove that the last encryption operation takes the committed message as input
because the intended receiver can use its original secret key to decrypt it. For a practical
implementation, we have to find proper encryption schemes and methods to generate the
receiver’s public keys and their certificates allowing rerandomization. We realize our scheme
with the original ElGamal encryption in the context of pairing groups and the CL-signature
[10] to generate the certificates of the group members’ public keys. We obtain CCA-2 security
only in the random oracle model but our scheme is non-interactive. With an interactive zero-
knowledge proof, our scheme can also achieve CCA-2 security without random oracles if the
Cramer-Shoup encryption in the context of pairing groups is adopted. The full ciphertext
including the transcript of zero-knowledge proofs in our scheme is about 0.2K bytes and
almost an order shorter than theirs.

– ParaGen: Υ = (p,G1,G2,G3, g1, g2, e)← PairingGen(1λ). H(·) : {0, 1}∗ → Zp is crypto-
graphic hash function. Let h2 be an independent generator of G2. The globe parameters
are π = {Υ,H, h2}.

– GKeyGen: Randomly select x, y ← Z∗
p. Compute X = gx

2 , Y = gy
2 . The public and secret

key pair of the group manager is

gpk = (X,Y ), gsk = (x, y).

– UKeyGen: Choose at random u ← Z∗
p. Compute U = e(g1, g2)u. The public and secret

key pair of the user is
upk = U, usk = u.

– Join: A user U can join a group and become a group member via the following protocol
with the group manager GM.
1. U sends E = gu

1 , T = gu
2 to GM via a confidential channel and proves the knowledge

of decryption key: % = PK{u|E = gu
1}.

2. GM checks the validity of % and e(E, g2) = e(g1, T ) = U . If both checks are successful
and T has been not in its local database, GM adds (T,U) in its local database, and
sends S = (a1, a2, a3, a4, a5) to U as its group certificate corresponding to U , where

a1 = gγ
1 , a2 = Eγ , a3 = ax

1 , a4 = ax
2 , a5 = (a1a4)y

for a randomly chosen value γ ← Z∗
p. Else, GM aborts the Join protocol.

3. The user checks the validity of the group certificate S = (a1, a2, a3, a4):

e(a1, T ) = e(a2, g2), e(a3, g2) = e(a1, X), e(a4, g2) = e(a2, X), e(a5, g2) = e(a1a4, Y ).

If any equation does not hold, the Join protocol fails. Else, the user computes a knowl-
edge signature

σ = KS{u, T |e(a1, T ) = e(a2, g2) ∧ e(g1, T ) = U ∧ au
1 = a2}(gpk||upk||S)

on a message of the group public key, the user’s own public key and the corresponding
certificate. The user U who has become a group member has a member public key and
secret key pair

mpk = {S,U, σ},msk = u.
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– Encryption: Let a sender want to send a secret message m ∈ G1 to a group member U .
It can verifiably send it to U without leaking the identity of U as follows.
1. Membership check: The sender verifies the validity of S and σ. If any check fails, the

sender aborts.
2. Message commitment: For m ∈ G1, commit the secret message m as follows:

δ ← G1, c0 = e(m, g2)e(δ, h2).

3. Key Re-randomization: Randomly select r ← Z∗
p and re-randomize the group certificate

of U by computing:

c1 = ar
1, c2 = ar

2, c3 = ar
3, c4 = ar

4, c5 = ar
5.

4. Message encryption: Randomly choose s← Z∗
p, compute

c6 = as
1, c7 = m−1bs2.

5. Encryption proof: Prove that (c0, c6, c7) has been correctly generated by compute the
knowledge signature

c8 = KS{M, s|e(c7, g2)c0 = e(M, g2)e(δ, h2)∧c6 = bs1∧M = bs2}(c0||c1||c2||c3||c4||c5||c6||c7),

which is equivalent the following knowledge signature:

c′8 = KS{m, s|c0 = e(m, g2)e(δ, h2)∧c6 = bs1∧c7 = m−1bs2}(c0||c1||c2||c3||c4||c5||c6||c7).

Output c = (c0, c1, c2, c3, c4, c5, c6, c7, c8) as the resulting ciphertext of messagem to the
anonymous group member U . Here, a knowledge signature σ = KS{x|y = f(x)}(m)
denotes a signature σ of message m to show the knowledge of x such that y = f(x).

– Encryption Verification Any verifier can verify the validity of the ciphertext as follows:
1. Check that

e(c1, T ) = e(c2, g2), e(c3, g2) = e(c1, X), e(c4, g2) = e(c2, X), e(c5, g2) = e(c1c4, Y ).

2. Check that c8 is a valid knowledge signature as defined.
If any check fails, the ciphertext is rejected. Else it is accepted.

– Decryption: The group member decrypts a ciphertext c as follows:
1. Check that c2 = cu1 ;
2. Check that is a valid knowledge signature as defined;
3. Check that

e(c1, T ) = e(c2, g2), e(c3, g2) = e(c1, X), e(c4, g2) = e(c2, X), e(c5, g2) = e(c1c4, Y ).

If any check fails, the group member U aborts the Decryption procedure. Else, it outputs

m = cu6/c7.

– Receiver Tracing: The group manager can trace the recipient as follows. It check whether
there exists (T,U) in its local database such that

e(c1, T ) = e(c2, g2).

If so, output U . Else output an error message.
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– Receiver-Tracing Proof: The group manager can prove to a verifier that it has correctly
traced the recipient with the following zero-knowledge proof:

PK{T |e(c1, T ) = e(c2, g2) ∧ e(g1, T ) = U}.

The correctness of the scheme follows from a straightforward verification. For the security,
we have the following claims proved in Appendix B.

Theorem 5. The proposed group decryption scheme is semantically secure against chosen
ciphertext attacks in the random oracle model under the DDH assumption and the Strong
LRSW assumption in SXDH pairing groups.

Proof. We prove that a successful attacker in the semantical security game of our scheme can
be used as a subroutine to break the DDH assumption in G1.

Assume that we are given a DDH challenge g1, gα
1 , g

β
1 , g

δ
1 ∈ G1, where G1 is from pairing

groups Υ = (p,G1,G2,G3, g1, g2, e) ← PairingGen(1λ). We are required to answer whether
δ = αβ or not. We first use a DDH challenge to simulate the oracles that the attacker may
query and then use the attacker’s reply to answer the DDH challenge.

Setup. We randomly choose h2 ∈ G2. The globe parameters are π = {Υ,H, h2}, where
the hash function H(·) : {0, 1}∗ → Zp is modeled as a random oracle. It is simulated in
the standard way. That is, we maintain an H-list and for any query ξ, if ξ is not in the
list, we reply with a random number c ∈ Zp and add (ξ, c) to the H-list. If the ξ has been
in the list, we forward the precious reply to maintain consistent. We also randomly select
x, y ← Z∗

p and compute X = gx
2 , Y = gy

2 . The public and secret key pair of the group manager
is gpk = (X,Y ), gsk = (x, y). π and gpk are sent to the attacker.

UkeyGen Oracle. Let the system contain at most n = poly(λ) users. We randomly choose
an integer 1 ≤ i0 ≤ n. For the attacker’s query i 6= i0, we behave as the real scheme and send
the corresponding public key to the attacker. If i = i0, we send e(gα

1 , g2) as the i0-th user’s
public key.

Join Oracle. For the attacker’s query upk 6= gα
1 in the user public key list LU , we behave

as the real scheme. For query gα
1 , we randomly choose two strings in the ciphertext space to

respectively simulate the ciphertexts of gα
1 and gα

2 . We randomly select (c, s) ∈ Zp × Z∗
p to

simulate the (non-interactive) knowledge proof PK{α|E = gα
1 }. Add (gs

1E
c, c) to the H-list.

Use (x, y), we can generate the group certificate S = (a1, a2, a3, a4, a5) for E = gα
1 as the

real scheme. We can also similarly simulate the knowledge signature σ = KS{α, T |e(a1, T ) =
e(a2, g2) ∧ e(g1, T ) = U ∧ aα

1 = a2}(gpk||E||S) in the random oracle model without knowing
α, T .

Corruption Oracle. Whenever the attacker queries a group member’s secret key msk, if
mpk corresponds to gα, we declare failure and aborts the protocol, denoted by a bad event
Failure 1. Else we can correctly answer with the corresponding msk since we have generated
such group member’s public and secret key pair as the real scheme. Here, Failure 1 happens
with probability ε1 = nc

n , where nc is the number of corrupted members.
Encryption Oracle. We do as the real scheme but keep a list to record all the ciphertext we

have produced.
Decryption Oracle. When the attacker queries this oracle with c = (c1, · · · , c8), if it is not

corresponding to the user public key gα
1 , we can reply with the corresponding message m as

the real scheme. If it is corresponding to the user public key gα
1 but (c1, · · · , c7, c′8) is in the
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ciphertext list but c8 6= c′8, we reply with the plaintext m corresponding to (c1, · · · , c7, c′8) if
and only if the encryption verification on c holds. If (c1, · · · , c7) is not in the ciphertext list
but the encryption verification on c holds, we run the attacker two times using the standard
rewinding technique [20] to extract M, s. We reply with Mc−1

7 as the corresponding plaintext.
Trace Oracle. When the attacker queries this oracle with a valid ciphertext c = (c1, · · · , c8),

we trace it with the tracing trapdoors in the tracing list. If all the trapdoors fail to trace the
recipient, we output the group member corresponding to gα

1 as the recipient. Else we trace
the recipient as the real scheme. This simulation fails if the ciphertext is not generated for
any recipient in the group member list which implies that the attacker has successfully forge
a group member certificate results into a solution to the Strong LRSW assumption. Hence,
this Failure 2 happens with negligible probability ε3 assuming the Strong LRSW assumption.

TrProof Oracle. When the attacker queries this oracle with a valid ciphertext and the
identity of traced recipient mpk, if mpk does not correspond to gα

1 , we reply as the real
scheme. If mpk corresponds to gα

1 , we use the standard simulation of the zero-knowledge
proof in the random oracle model to reply the attacker.

In the challenge phase, the attacker queries with a tuple (m0,m1,mpk), where m0,m1 are
in the message space and mpk = (a1, a2, a3, a4, a5, upk, σ) is a valid group member’s public key
and has never been queried to the Corruption Oracle. If upk 6= e(gα

1 , g2), we declare failure and
denoted it by a bad event Failure 3 which happens with probability 1− 1

n . Else we randomly
choose a bit b ∈ {0, 1} and do the following.

– Commit the chosen message mb with c∗0 = e(m, g2)e(δ, h2) for a random δ ← G1.
– Compute c∗1 = gγ

1 , c
∗
2 = (gα

1 )γ , c∗3 = ax
1 , c

∗
4 = ax

2 , c
∗
5 = (c∗1c

∗
4)

y for a randomly chosen value
γ ← Z∗

p.
– Randomly choose s← Z∗

p, compute c∗6 = (gβ
1 )γ , c∗7 = m−1

b (gδ
1)

γ .
– Simulate the knowledge signature in the random oracle model: c∗8 = KS{M, s|e(c∗7, g2)c∗0 =
e(M, g2)e(δ, h2) ∧ c∗6 = (c∗1)

s ∧M = (c∗2)
s}(c∗0||c∗1||c∗2||c∗3||c∗4||c∗5||c∗6||c∗7).

– Output c∗ = (c∗0, c
∗
1, c

∗
2, c

∗
3, c

∗
4, c

∗
5, c

∗
6, c

∗
7, c

∗
8) as the challenge ciphertext of message mb to the

group member mpk.

After receiving the challenge ciphertext c∗, the attacker can still query above oracles but
mpk cannot be queried to the Corruption Oracle and c∗ cannot be queried to the Decryption
Oracle. We answer these queries as above.

Finally, the attacker will output its guess bit b′. We conclude that (g1, gα
1 , g

β
1 , g

δ
1) is a DDH

tuple in G1 if and only if b′ = b. Note that c∗ is valid ciphertext of mb under the group member
public key mpk if and only if (g1, gα

1 , g
β
1 , g

δ
1) is a DDH tuple. We answer successfully whenever

the attacker has a correct guess. Let the attacker win this semantical security game with
probability ε. Hence, we win the DDH challenge with probability (1− ε1)(1− ε2)(1− ε3)ε ≈
(1− nc

n ) 1
nε. This completes the proof. ut

Theorem 6. The proposed group decryption scheme is anonymous in the random oracle
model under the DDH assumption and the Strong LRSW assumption in SXDH pairing groups.

Proof. We prove that a successful attacker in the anonymity game of our scheme can be used
as a subroutine to break the DDH assumption in G1.

Assume that we are given a DDH challenge g1, gα
1 , g

β
1 , g

δ
1 ∈ G1, where G1 is from pairing

groups Υ = (p,G1,G2,G3, g1, g2, e) ← PairingGen(1λ). We are required to answer whether
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δ = αβ or not. We first use a DDH challenge to simulate the oracles that the attacker may
query and then use the attacker’s reply to answer the DDH challenge.

The simulation is the same as the previous proof in the semantical security. In the challenge
phase, the attacker queries with a tuple (m,mpki0 ,mpki1), where m is in the message space
and mpkib = (a1,b, a2,b, a3,j , upkib , σib) are valid group member’s public keys for b = 0, 1
and have never been queried to the Corruption Oracle. If upkib 6= e(gα

1 , g2) for b = 0, 1, we
declare failure and denoted it by a bad event which happens with probability 1 − 2

n . Else
upkib = e(gα

1 , g2). We compute the challenge ciphertext as follows.

– Commit the chosen message m with c∗0 = e(m, g2)e(δ, h2) for a random δ ← G1.
– Compute c∗1 = gβ

1 , c
∗
2 = gδ

1, c
∗
3 = cx1 , c

∗
4 = cx2 , c

∗
5 = (c1c4)y for a randomly chosen value

γ ← Z∗
p.

– Randomly choose s← Z∗
p, compute c∗6 = (c∗1)

s, c∗7 = m−1(c∗2)
s.

– Simulate the knowledge signature in the random oracle model using the standard sim-
ulating technique: c∗8 = KS{M, s|e(c∗7, g2)c∗0 = e(M, g2)e(δ, h2) ∧ c∗6 = (c∗1)

s ∧ M =
(c∗2)

s}(c∗0||c∗1||c∗2||c∗3||c∗4||c∗5||c∗6||c∗7).
– Output c∗ = (c∗0, c

∗
1, c

∗
2, c

∗
3, c

∗
4, c

∗
5, c

∗
6, c

∗
7, c

∗
8) as the challenge ciphertext of message mb to the

group member mpk.

After receiving the challenge ciphertext c∗, the attacker can still query above oracles but
mpk cannot be queried to the Corruption Oracle and c∗ cannot be queried to the Decryption
Oracle. We answer these queries as above.

Finally, the attacker will output its guess bit b′. We conclude that (g1, gα
1 , g

β
1 , g

δ
1) is a

DDH tuple in G1 if and only if b′ = b. Note that c∗ is valid ciphertext of m under the group
member public key mpkib if and only if (g1, gα

1 , g
β
1 , g

δ
1) is a DDH tuple. We answer successfully

whenever the attacker has a correct guess. Let the attacker win this semantical security game
with probability ε. Similarly, we win the DDH challenge with probability (1 − nc

n ) 2
nε. This

completes the proof. ut

Theorem 7. The proposed group decryption scheme is traceable in the random oracle model
under the Strong LRSW assumption in SXDH pairing groups.

Proof. Assume that we are given a DDH challenge g1, X = gx
2 , Y = gy

2 ∈ G1×G2
2, where G1,G2

are from pairing groups Υ = (p,G1,G2,G3, g1, g2, e) ← PairingGen(1λ). We are required to
output a tuple (a1 ∈ G1, a2 = ax

1 , , a3 = au
1 , a4 = aux

1 , a3 = ay+uxy
1 ) for a value u ∈ Z∗

P which
has never been queried to the LRSW oracle. We first use the LRSW challenge and LRSW
oracle to simulate the oracles that the attacker may query and then use the attacker’s reply
to answer the strong LRSW challenge.

The Setup is the same as the previous proof. We generate the users’ key pairing as the real
scheme. When attacker requires to add these users into the group, we ask the strong LRSW
oracle to obtain the corresponding group certificates and compute the rest parts as the real
scheme. All the other can be perfectly simulated as we know the group members’ secret keys.
Finally, the attacker will output a valid ciphertext c′ = (c′1 · · · , c′8) which we cannot traced.
Note that the condition 1 in the Encryption Verification procedure guarantees that (c′1 · · · , c′5)
is a LRSW tuple. Hence, logc′1

c′2 = u′ is not the secret key of any group member and hence
has never been queried to LRSW oracle. Therefore, (c′1 · · · , c′5) can be used to successfully
answer the strong LRSW challenge. This contradicts to the strong LRSW assumption in
SXDH pairing groups and completes the proof. ut
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6 Conclusion

In this paper, we formalized the notion of group decryptions. It allows a sender to verifiably
encrypt a committed message intended to any member of a group, managed by a group
manager, while the recipient of the ciphertext remains anonymous. In case of dispute, the
group manager can verifiably open the identity of the recipient. We proposed the first group
decryption scheme from pairing groups secure in the random oracle model. Our scheme has
constant complexity in both computation and the communication. To achieve our scheme, we
presented several sub-protocols. These sub-protocols are efficient and of independent interest.
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