
Two Trivial Attacks on Trivium

Alexander Maximov and Alex Biryukov

Laboratory of Algorithmics, Cryptology and Security

University of Luxembourg

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

e-mail: movax@mail.ru, alex.cryptan@gmail.com

Abstract

Trivium is a stream cipher designed in 2005 by C. De Cannière and
B. Preneel for the European project eSTREAM. It has successfully passed
the first phase of the project and has been selected for a special focus in
the second phase for the hardware portfolio of the project. Trivium has
an internal state of size 288 bits and the key of length 80 bits. Although
the design has a simple and elegant structure, no attack on it has been
found yet.

In this paper we study a class of Trivium-like designs. We propose a
set of techniques that one can apply in cryptanalysis of such constructions.
The first group of methods is for recovering the internal state and the
secret key of the cipher, given a piece of a known keystream. Our attack
is more than 230 faster than the best known attack. Another group of
techniques allows to gather statistics on the keystream, and to build a
distinguisher.

We study two designs: the original design of Trivium and a truncated
version Bivium, which follows the same design principles as the original.
We show that the internal state of the full Trivium can be recovered in
time around c · 283.5, and for Bivium this complexity is c · 236.1. These
are the best known results for these ciphers. Moreover, a distinguisher for
Bivium with working time 232 is presented, the correctness of which has
been verified by simulations.

1 Introduction

Additive stream ciphers are an important class of data encryption primitives,
in which the process of encryption simulates the one-time-pad. The core of any
stream cipher is its pseudo-random keystream generator (PRKG). It is initial-
ized with a secret key K, and an initial value (IV). Afterwards, it produces a
long pseudo-random sequence called keystream u. In the encryption procedure,
the ciphertext c is then obtained by a bitwise xor of the message m and the
keystream u, i.e., c = m ⊕ u.
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Many stream ciphers are currently used in various aspects of our life. To
mention some of them, they are: RC4 [Sma03] (is used on the Internet), E0 [Blu03]
(in Bluetooth), A5/1 [BGW99] (in GSM communication), and others. However,
it has been shown that these primitives are susceptible to various kinds of weak-
nesses and attacks [FM00, MS01, LV04, LMV05, BSW00, MJB04]. In 1999 the
European project NESSIE was launched [NES99] and among other encryption
and signature primitives it attempted to select stream ciphers for its final port-
folio. However after a few rounds of evaluation and cryptanalysis, most of the
proposals were broken1. As a result the board of the project NESSIE could not
select any of the stream cipher proposals for its final portfolio.

The recent European project ECRYPT [ECR05] has started in 2004 within
the Sixth Framework Programme (FP6). It announced a new call for stream
cipher proposals, for its subproject eSTREAM. In the first phase 34 proposals
were received, but only a few of them got the status of “focused” algorithms
in the second phase. In the hardware portfolio only four new designs are in
focus, they are: Trivium [CP05], Grain [HJM05], Mickey [BD05], and Phe-
lix [WSLM05].

In this paper we analyze one of these designs – Trivium. The stream cipher
Trivium was proposed in 2005 for the project eSTREAM by C. De Canniére
and B. Preneel [CP05]. It has an internal state of 288 bits and the key of 80
bits. Though the cipher was designed for hardware implementation it is also
very fast in software, which makes it one of the most attractive candidates
of the competition. The structure of the cipher is elegant and simple, and
it follows clearly described design principles. After the design was announced
many cryptographers tried to analyze it. However, only two results on Trivium
are known so far.

The first known result is actually given on the eSTREAM discussion fo-
rum [eDF05] where the complexity to recover the internal state from given
keystream is argued to be 2135. The second result is a paper from H. Rad-
dum [Rad06], where a new algorithm for solving nonlinear systems of equations
is proposed and applied on Trivium. The attack complexity found was 2164.
Two reduced versions of this design, Bivium -A and -B, were proposed in that
paper as well. The first reduced version was broken “in about one day”, whereas
the second version required time of around 256 seconds.

In this paper we consider the design of Trivium in general, and as examples
we consider two instances: the original design of Trivium and a reduced version
Bivium, the one given in [Rad06] under the name Bivium-B. We propose a set
of techniques to analyse this class of stream ciphers, and show how its internal
state can be recovered given the keystream. The complexity of this attack
determines the upper bound for the security level of the cipher. Its complexities
for Trivium and Bivium are found to be c · 283.5 and c · 236.1, respectively,
where c is the complexity of solving a sparse system of linear equations (192
for Trivium and 118 for Bivium). It means that, for example, the secret key

1There was a discussion at NESSIE on whether a distinguishing attack of very high com-
plexity qualifies as a break of a cipher.
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cannot be increased to 128 bits in a straightforward way unless the design in
general is changed. This time complexity is much better than in [eDF05] and
[Rad06], and is the best known result on Trivium so far.

In the second attack linear statistical methods are applied. We show how a
distinguisher can be built, and propose a linear distinguishing attack on Bivium
with less than 232 operations in total. This attack was implemented and in
practice works even slightly better than expected.

This paper is organized as follows. In Section 2 we define the structures of
Trivium and Bivium. Afterwards, in Section 3, we give methods for a state
recovering attack, and propose a set of attack scenarios for both Trivium and
Bivium. A linear distinguishing attack is given in Section 4. The paper ends
with the summary of our results and conclusions.

1.1 Notation

In this paper we accept the following notation. A single bit will commonly be
denoted by x

(t)
i , where i is an index of a variable, and t is the time instance.

Bold symbols u represent a stream or a vector of bit-oriented data u1, u2, . . ..
Let us also define triple-clock of a cipher as just three consecutive clocks of it.

2 Bivium and Trivium

In Figure 1 two classes of stream ciphers are shown, namely, Bivium and Triv-
ium.

The number of basic components is two or three, respectively. Each basic
component (a register) consist of three blocks, each of size divisible by 3. An
instance of this class is a specification vector with the blocks’ sizes specified, i.e.,

Bivium ⇒ Bi(A1, A2, A3; B1, B2, B3),
Trivium ⇒ Tri(A1, A2, A3; B1, B2, B3; C1, C2, C3).

(1)

Notation on the registers is summarized in Table 1.

Reg total length cells denoted the AND gate In:Out Res

RA A = A1 + A2 + A3 a
(t)
0 , . . . , a

(t)
A−1 a

(t)
A−3 · a

(t)
A−2 pt : qt xt

RB B = B1 + B2 + B3 b
(t)
0 , . . . , b

(t)
B−1 b

(t)
B−3 · b

(t)
B−2 qt : pt/rt yt

RC C = C1 + C2 + C3 c
(t)
0 , . . . , c

(t)
C−1 c

(t)
C−3 · c

(t)
C−2 rt : pt zt

Table 1: The structure of the internal state’s registers.

At any time t, the keystream bits of Bivium and Trivium are derived as
ut = xt +yt, and vt = xt +yt +zt, respectively. In this paper two examples from
this class of stream ciphers are considered in detail, the specification of which
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Figure 1: Bivium and Trivium classes of stream ciphers.

is given in Table 2. These correspond to Trivium and Bivium as described
in [CP05, Rad06].

Description Specification A : B : C Size, θ
Trivium [CP05] Tri(66, 3, 24; 69, 9, 6; 66, 21, 24) 93 : 84 : 111 288
Bivium [Rad06] Bi(66, 3, 24; 69, 9, 6) 93 : 84 : − 177

Table 2: Two instances’ specifications, Trivium and Bivium.

For simplicity in further derivations let us introduce three subsets:

T (t)
0 = {a(t)

3i+0} ∪ {b(t)
3j+0} ∪ {c(t)

3k+0}

T (t)
1 = {a(t)

3i+1} ∪ {b(t)
3j+1} ∪ {c(t)

3k+1}

T (t)
2 = {a(t)

3i+2} ∪ {b(t)
3j+2} ∪ {c(t)

3k+2}

where
i = 0, 1, . . . , A/3 − 1,

j = 0, 1, . . . , B/3 − 1,

k = 0, 1, . . . , C/3 − 1.

(2)

3 The First Trivial Analysis: State Recovering

In this attack, given a keystream u of some length n an attacker wants to
recover the internal state of the cipher. Since the cipher has invertible state-
update function this also leads to a key recovery attack. A classical time-memory
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trade-off technique based on birthday paradox gives the upper bound for such
an attack of O(

√
θ) known keystream, and memory, where θ is the size of the

internal state. The importance of the state recovering analysis is that it gives the
upper bound for the length of the secret key K. When the design of Trivium
has appeared, several researchers raised the question: Whether the secret key
can be increased from 80 bits till, for example, 128 bits, thus, improving the
security level? In this section we will give the precise answer.

3.1 Guessing T (t)
0 at some time t

One of the main observations is that all blocks of the cipher are divisible by
3. Moreover, the transition of the internal state at time t to time t + 1 is a
linear transformation of the subset T (t)

t mod 3, plus a minor one bit disturbance
from the adjacent two subsets. Therefore, the attack scenario can consist of the
following phases.

Phase I: Guess the state T (t)
0 at some time t,

Phase II: Having the state T (t)
0 guessed correctly, recover the rest of the bits.

In the case of an exhaustive search of the sub state T (t)
0 , the time complexity

is O(2θ/3), and the keystream length is O(1). Note also that the first d =
min{A1, B1, C1}/3 forward triple-clocks d linear equations on the bits of T (t)

0

can be received. It means that the number of bits to be guessed can be reduced,
and the total time complexity is then

O(2(θ−min{A1,B1,C1})/3).

For Trivium and Bivium these complexities are 274 and 237, respectively.

3.2 Guessing Outcomes for Specific AND Gates

To receive more linear equations for the phases I and II, we suggest to consider
a set of specific AND gates:

a
(t+3i)
A−3 · a(t+3i)

A−2 , i = 0, 1, . . . , ga − 1,

b
(t+3j)
B−3 · b(t+3j)

B−2 , j = 0, 1, . . . , gb − 1,

c
(t+3k)
C−3 · c(t+3k)

C−2 , k = 0, 1, . . . , gc − 1,

(3)

where ga, gb, gc are chosen parameters. If we guess these gates, then the number
of linear equations that we can get for the phase I is

d′ = min{ga +
B1

3
, gb +

C1

3
, gc +

A1

3
}.

The most probable guess would be that all the gates are zeros, since Pr{x&y =
0} = 0.75. However, if we allow some of the gates to output ones, the length
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of the keystream can be reduced significantly. Let G gates out of ga + gb + gc

AND gates produce zeros, and the remaining H gates produce ones. Then, the
probability of such an event is

pg = 0.75G0.25H .

Note that we can allocate H ones among G + H positions in
(
G+H

H

)
ways.

Therefore, the keystream is required to be of length O
(
1/

[
pg ·

(
G+H

H

)])
.

3.3 Guessing Sums of Specific AND Gates

The right guess of specific AND gates from the previous subsection allows us
to increase the number of linear equations for the first phase till d′. However,
the remaining bits of T (t)

0 should be guessed with probability 1/2. However, if
the keystream can still be increased, then that probability can be reduced, in a
trade-off with the keystream length.

After d′ triple-clocks, we start receiving nonlinear equation, where the linear
part consists of the bits from T (t)

0 , and the nonlinear part is the sum of w AND
gates, for some small w. Since the outcome of each of them is biased, then their
sum is biased as well. Let pw be the probability that the sum of w gates is zero,
then we have:

pw =
�w/2�∑
i=0

(
w

2i

)
0.75w−2i0.252i, (4)

or, its recursive formula is pw+1 = 0.75pw + 0.25(1 − pw), with p0 = 1. Let lw
be the number of nonlinear equations with the sum of w AND gates. Then, the
time complexity to recover lw bits is plw

w , instead of 0.5lw , but the keystream
length is increased by the ratio p−lw

w . The total probability of such an event is

q =
∞∑

w=1

plw
w .

It is rationale to use this approach for small ws, say for w ∈ {1, 2, 3, 4}, since
for large ws the probability pw is very close to 0.5, and it does not give a big
gain in comparison with the truly random guess, but rather increases the length
of the keystream rapidly.

3.4 Collecting System of Equations for Remaining Un-
knowns

Assume that the state of T (t)
0 and the outcomes of specific G+ H AND gates are

guessed and derived correctly. To recover the remaining 2/3rd of the state we
need to collect a number of equations on T (t)

1 and T (t)
2 , enough to derive the

exact solution.
At any time t, if the values a

(t)
A−3, b

(t)
B−3, c

(t)
C−3 are known, then two consecu-

tive clocks of the cipher are linear. Because of our specific guess, we have that d′
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triple-clocks the system is linear. In one triple-clock we receive two linear equa-
tions on the remaining unknowns of the internal state. The first nonlinearity
will not affect on the degree of receiving equations immediately, but rather with
some delay. The first nonlinear equations will be of degree 2, and then of degree
3, and so on. Also note that each of H guesses also give us two equations of
degree 1 of the form xi = 1 and xi+1 = 1, and each of the G guesses give us one
equation of degree 2 of the form xixj = 0. The structure of this cipher is such
that backward clocks increase the degree of equations rapidly footnote Trivium
is designed to maximize parallelism in forward direction. This allows hardware
designers to choose trade-off between speed and chip-size. . Therefore, only few
equations of low degree can be collected by backward clocking.

Let the number of equations of degrees 1 and 2 that we can collect be n1 and
n2, respectively. Then, when all the parameters are fixed, a particular scenario
can be described.

3.5 Attack Scenarios for Trivium and Bivium

Let us accumulate techniques given in the previous sub sections, and propose a
set of attack scenarios for Trivium and Bivium in Table 3.

Scenario T0 Descr. = Tri l1:l2:l3:l4 = 0:0:0:0 Ph.II unknowns=192
ga:gb:gc G:H r d′ q pg n1 n2 time keystream
0:0:0 0:0 1 22 1 1 100 61 c · 274.0 O(1)

Scenario T1 Descr. = Tri l1:l2:l3:l4 = 5:5:4:1 Ph.II unknowns=192
ga:gb:gc G:H r d′ q pg n1 n2 time keystream
46:37:42 125:0 1 59 2−9.7 2−51.9 192 178 c · 283.5 261.5

Scenario T2
42:33:38 113:4 222.6 55 2−9.7 2−53.2 192 162 c · 288.9 240.3

Scenario T3 Descr. = Tri l1:l2:l3:l4 = 0:0:5:4 Ph.II unknowns=192
ga:gb:gc G:H r d′ q pg n1 n2 time keystream
29:30:30 89:0 1 52 2−7.8 2−36.9 158 152 c · 279.7 244.7

Scenario B0 Descr. = Bi l1:l2:l3:l4 = 0:0:0:0 Ph.II unknowns=118
ga:gb:gc G:H r d′ q pg n1 n2 time keystream
0:0:— 0:0 1 22 1 1 100 61 c · 237.0 O(1)

Scenario B1
9:5:— 14:0 1 27 1 2−5.8 118 67 c · 237.8 25.8

Table 3: Attack scenarios.

In all scenarios above the constant c is the time required for the second
phase, where the remaining bits are recovered, and it is different for different
scenarios.

T0 and B0 are trivial scenarios for Trivium and Bivium, where no out-
comes of any AND gates are guessed. However, the number of linear equations
is not enough to recover the remaining bits using simple Gaussian elimination.
Therefore, equations of a higher degree need to be collected and used. These

7



scenarios have the least possible time and keystream complexities, and are the
lower bounds.

In T1 and B1 we show optimal, on our view, choice of parameters such
that the second phase has enough linear equations and the time complexity is
minimal. However, along with linear equations we also have many equations
of degree 2, which we are not using at all. Note that the attack complexities
presented here are much lower than those given in [Rad06].

In T2 we show how the trade-off between the length of the keystream and
time works. For a small increase of time we can reduce keystream significantly.

In T3 we receive a system of equations of degree ≤ 2 on 192 variables. This
system is quite overdefined (more than 50%), and it might be possible to have
an efficient algorithm for solving such a system.

However, the results given in these scenarios can be improved significantly
if a pre- or/and a post- statistical tests can be applied efficiently. For these
approaches see Appendices A and B.

3.6 System of Equations: Linear vs. Nonlinear

Another possibility to reduce the constant c can be done by efficient solving of
a system of sparsed linear equations (in cases of T1, T2, B1), or by the use of
equations of a higher degree (in cases of T3, B0).

Finding such an algorithm is a hard problem, and we leave it as an open
question.

3.7 Conclusions: Our Results vs. Exhaustive Search

We have shown that Bivium can be broken for the time around c · 237, which
makes a really low bound for the security level. This example was taken to make
a comparison with the paper [Rad06], where the best attack on this design has
complexity around c · 256 seconds.

Although the security level of Trivium is 280, an exhaustive search requires
much more time, γ280, where γ is the initialization time of the cipher, which
includes 1152 clocks to be done before the first keystream bits are produced.
Because of different implementation issues can be applied, including parallelism,
an average time required for one clock of the cipher can vary. However, we can
assume that the coefficient γ is around 210, and an exhaustive search would
require around 210+80 operations. This means that such scenarios as T1, T3
are competitive, and at least are very close to the exhaustive search, if not faster.

Obviously, in this particular design the security level cannot be improved
by simple increasing the size of the key – our attack will definitely be faster
than an exhaustive search. Therefore, in order to increase the security level
the design of Trivium should be changed, for example, the size of the state
could be increased. This would result in a longer initialization time and a larger
hardware footpring.
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4 The Second Trivial Analysis: Statistical Tests

Linear cryptanalysis is one of the most powerful analysis of stream ciphers.
In this section we find a way of sampling from the keystream such that their
distribution is biased. By this mean we build a linear distinguisher for the
cipher.

4.1 Standard Approximation Technique

Let the variables of T0 be denoted as {w0, w1, . . . , w95}. Then, assuming that all
AND terms are zeros, we receive a system of linear equations of rank 93 (instead
of 96). It means that we can sample from the stream as follows∑

i∈Ik

wi = Nk, ∀k ∈ {93, 94, 95, 96}, (5)

where
I93 = {0, 1, 4, 6, 8, 9, 12, 13, 14, 17, 19, 20, 23, 25, 27, 30, 31, 34, 35, 38, 39, 41, 43, 44,

67, 68, 70, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93};
I94 = {0, 2, 4, 5, 6, 7, 8, 10, 12, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36,

38, 40, 41, 42, 43, 45, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94};
I95 = {0, 3, 4, 5, 7, 11, 12, 14, 16, 17, 18, 22, 23, 24, 26, 28, 29, 30, 33, 34, 37, 38, 42,

46, 67, 71, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95};
I96 = {0, 5, 9, 14, 15, 18, 20, 24, 29, 41, 44, 47, 67, 70, 73, 96}.

(6)

The noise variable Nk is a sum of a set of random AND gates. Therefore, the
bias and the complexity of a distinguisher can be summarized in Table 4.

k # of AND gates in Nk bias ε attack complexity
93 108 2−108 2216

94 126 2−126 2252

95 112 2−112 2224

96 72 2−72 2144

Table 4: Linear distinguishers for Trivium and its attack complexities.

Obviously, we could also mix these four equations to receive other 8 linear
combinations that are different in principal from the found four. However, we
could not achieve complexity lower than 2144.

For Bivium, the rank appeared to be 57 (instead of 59), and similar resulting
Table 5 is as follows.

I.e., Bivium can be distinguished from random in time complexity 232, which
is much faster than all previously known attacks on it. Since the complexity
of the attack is feasible, we could run the simulation of the attack on Bivium,
which confirmed the found theoretical bias.
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k # ANDs time Ik

57 49 298 {0, 2, 4, 5, 6, 7, 8, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34,
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57}

58 49 298 {1, 3, 5, 6, 7, 8, 9, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 34, 35,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}

59 16 232 {0, 5, 9, 10, 14, 33, 36, 59}

Table 5: Linear distinguishers for Bivium and their attack complexities.

4.2 Another Way of Approximation

In the previous section all AND terms were approximated as zero. However,
another sort of approximation is possible, such as

AND(x, y) = τxx + τyy + n,

where τx, τy are chosen coefficients, and n is the noise variable with the bias
ε = 2−1. Whenever approximations for every AND gate are appropriately chosen,
there must exist a biased linear equation on a shorter window of the keystream
than that in the previous subsection. Our goal is to reduce the number of noise
variables in the final expression for sampling. Unfortunately, the search for
appropriate coefficients, which give us a strongly biased expression for sampling,
is a hard task. Moreover, the probability that we can find an expression with
the number of gates less than 72 is low. In our simulations we could find several
biased equations on a shorter window, but the number of approximations were
larger than 72. This issue is an interesting open problem.

4.3 Multidimensional Approximation

In Sub section 4.1 we gave a set of linear relations for a biased sampling from
the keystream. The best equations for Trivium and Bivium require 72 and
16 approximations of AND gates, respectively. However, these samples are not
independent, and some of the noises appear in several samples at different time
instances. Therefore, the attack complexity can be improved by considering sev-
eral samples jointly. I.e., we suggest to test a multidimensional approximation
where one sample comes from a joint distribution.

Unfortunately, this did not give us a significant improvement. We considered
three samples jointly, and the bias of that noise was 2−15.4, which is larger than
2−16, but does not differ significantly.

5 Results and Conclusions

In this paper we have studied methods for analysis of Trivium-like stream
ciphers. Below we give a comparison Table 6 of the known attacks on two
instances, original Trivium and a reduced version called Bivium.
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C
as

e Comp- Exhaustive State Recovering Attack Distinguishing Attack
lexity search previous new attack previous new attack
time γ280 δ · 2135 [eDF05] c · 283.5 2144 [CP05] —

γ ≈ 210 2164 [Rad06] c ≈ 216

T
r
iv

iu
m

keystream O(1) O(1) 261.5 2144 —
time γ280 256 sec. [Rad06] c · 236.1 — 232

c ≈ 214 verified
B

iv
iu

m

keystream O(1) O(1) 211.7 — 232

Table 6: Resulting comparison of various attacks.

A brief summary for the algorithm of the state recovering attack on Trivium
is given in Table 7, and a distinguishing attack on Bivium is presented in Table 8.

Given: u = u1, u2 – the keystream of Trivium of length 261.5

Attack Scenario T1:
1. For every t = 0, 1, 2, . . . , 
261.5� assume that a

(t+3i)
90 a

(t+3i)
91 =

0, b
(t+3j)
81 b

(t+3j)
82 = 0, c

(t+3k)
108 c

(t+3k)
109 = 0, for i = [0 : 45], j = [0 :

36], k = [0 : 41].

2. Collect 59 linear equations on T0 with probability 1, and 15 more
linear equations with the total probability 2−9.7, see Sub section 3.3.

3. For every guess of the remaining 22 bits from T0, derive the state of
T0 using the linear equations collected in step 2.

4. Collect 192 linear equations on T1 and T2, clocking the cipher forward,
under the assumption that the guess above was correct.

5. Recover the state of T1 and T2 by any linear technique (e.g., Gaussian
elimination) in fixed time, and verify the solution in time O(1).

6. Repeat the loops in steps 1 and 3 until the right internal state is
found.

Table 7: Attack scenario T1 on Trivium in brief.

With the key of 80 bits Trivium seems to be secure. However, contrary
to what one could expect from its almost 300 bit state, there is no security
margin. This also means that one cannot use 128 bit keys and IVs with the
current design. For this purpose, either the internal state has to be increased
or some other re-design should take place.
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Given: v = v1, v2 – the keystream of Bivium of length 232

Init: P [2] = 0 – a binary distribution, not normalized
A linear distinguishing attack on Bivium:

1. For every t = 1, 2, . . . , 232 calculate

s = vt + vt+15 + vt+27 + vt+30 + vt+42 + vt+99 + vt+108 + vt+177,

and attune the distribution as P [s] + +.

2. After the loop is finished, calculate the distance

ξ = P [0]/232 − 0.5.

3. Make the final decision

δ(ξ) =

{
v is from Bivium, if ξ > 2−16/2,
v is Random, if ξ ≤ 2−16/2.

Table 8: A linear distinguishing attack on Bivium in detail.

References

[BD05] S. Babbage and M. Dodd. Mickey-128, 2005.
http://www.ecrypt.eu.org/stream/ciphers/mickey128/mickey128.pdf.

[BGW99] M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implemen-
tation of A5/1. Available at http://jya.com/a51-pi.htm (accessed
August 18, 2003), 1999.

[Blu03] SIG Bluetooth. Bluetooth specification. Available at
http://www.bluetooth.com (accessed August 18, 2003), 2003.

[BSW00] A. Biryukov, A. Shamir, and D. Wagner. Real time cryptanalysis
of A5/1 on a PC. In B. Schneier, editor, Fast Software Encryption
2000, volume 1978 of Lecture Notes in Computer Science, pages
1–13. Springer-Verlag, 2000.
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Appendix A: Statistical Pre-Test for the Phase I

In the scenarios above the constant c within time complexity denotes the time
needed for solving a system of equations in the second phase. Although the
equations are sparse, this constant can still be large. When the number of
variables is 192, we assume that this constant is approximately lower bounded
as c ≈ 216.

One idea to reduce the total time complexity is to consider only those “win-
dows” in the stream where the probability for the guess of the AND gates is larger
than in a random case.

g1

g3

g5

g2

g4

g6

...

...

...
vt
vt+1

ut
ut+1

Figure 2: Statistical pre-test.

Let us observe an output pair (ut, ut+1) (or (vt, vt+1)) at some time t and
t+1, each component of which is the sum of 6 (respectively, 4) bits of the state
from T (t)

1 and T (t)
2 , as shown in Figure 2. The question here is: What is the

probability that the sum of six (four) AND gates is zero, given the observed pair?
We can use this criteria to cut undesired cases, since the sum of the gates must
be zero when all of them are zeros as well. Below, in Table 9, we give these
probabilities in accordance.

I.e., when the keystream in a specified “window” is a zero sequence, then
the probability of our guess, a set of specific AND gates is zero, is larger than
otherwise. However, this approach would require a much longer keystream, and
the gain in time complexity is not significant. More complicated tests can also
be developed.
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(ut, ut+1) Pr{the sum of AND gates is zero}
(vt, vt+1) in Trivium in Bivium

(0, 0) 0.53125 0.625
(0, 1) 0.5 0.5
(1, 0) 0.5 0.5
(1, 1) 0.5 0.5

Table 9: Keystream influence for the pre-test technique.

Appendix B: Statistical Post-Test of the Phase I

Another approach is to make a test after the first 1/3rd of the state is guessed
and derived. Let us introduce a decision rule for the test

δ(T (t)
0 ) =

{
Accept, T (t)

0 passes the test,
Reject, otherwise.

(7)

Associated with the decision rule δ there are two error probabilities.

α = Pr{δ(T (t)
0 ) = Reject|the guess T (t)

0 is correct},

β = Pr{δ(T (t)
0 ) = Accept|the guess T (t)

0 is wrong}.
(8)

Thus, the time complexity can be reduced from c·Q down to β·c·Q. However,
the success of the attack will be Psucc = 1−α. If the test is statistically strong,
then α and β are small, lowering the time complexity significantly.

One such a test could be as follows. At a time t the sequence of d′ triple-
clocks allows us to receive d′ linear equations on the bits of T (t)

0 . However, if we
continue clocking, we will then receive a sequence of biased samples. The bias
decreases rapidly as long as the number of random AND terms in the equation
for the noise variable grows.

Unfortunately, for Trivium there is no valuable gain, but for Bivium the
gain is more visible. Consider the scenario B1. After the first phase the following
triple-clocks give us the following samples.

AND gates in the noise, i = 1 2 3 4 ...
Number of samples, li = 5 4 1 13 ∞

Let us denote the first 23 samples (24=5+4+1+13) as s23 = s0, s1, . . . , s22,
and the decision rule for our test be

δ(s23) =

{
Accept, if Hw(s23) ≥ σ0,

Reject, otherwise,

where 0 ≤ σ0 ≤ 23 is some appropriately chosen decision threshold. The error
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probabilities are then as follows.

α =
∑

{ ∀tw : 0 ≤ tw ≤ lw, w = 1 . . . 4
t1 + t2 + t3 + t4 < σ0

4∏
w=1

(
lw
t1

)
ptw

w (1 − pw)lw−tw ,

β = 2−23
23∑

t=σ0

(
23
t

)
,

(9)

where the probabilities pw are calculated via (4). Additional information is
extracted from the fact that the distribution of α is “shifted” with regard to the
distribution of β, and, therefore, the gain can be achieved. In Table 10 these
probabilities are given for several values of the threshold σ0.

σ0 0 7 11 12 14 18 23
α ∼ 0 0.0038 0.1585 0.2964 0.6275 0.9839 ∼ 1
β ∼ 1 0.9826 0.6612 0.5000 0.2024 0.0053 ∼ 0

Table 10: Error probabilities for the post-test technique.

I.e., if we choose σ0 = 18 in B1, then the time complexity will be c · 230.2,
instead of 237.8. The length of the keystream remains the same. However, the
success probability of this attack is Psucc = 0.0161, which is low.

The situation with the success rate can be improved if the attack will be
repeated 1/Psucc times. Thus, we have the overall time complexity around
25.9 ·230.2 = 236.1, but the keystream is also increased till 211.7. We could trade-
off a better time complexity with the length of the keystream, and the overall
success probability is around 1.

Searching for a proper statistical test is a challenge and is not an easy task.
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