On Perfectly Balanced Boolean Functions

O. A. Logachev
Information Security Institute, Lomonosov University, Moscow
e-mail: logol@iisi.msu.ru

Abstract

Perfectly balanced functions were introduced by Sumarokov in [1]. A well known class of such functions are those linear either in the first or in the last variable. We present a novel technique to construct perfectly balanced functions not in the above class.

Keywords: Boolean function, perfectly balanced function, function with defect zero.

1 Introduction

Let \mathbb{N} be the set of natural numbers. For $n \in \mathbb{N}$ let $V_{n}=\mathbb{F}_{2}$ be the n dimensional vector space over the field $\mathbb{F}_{2}=G F(2)$. We use \oplus for the addition modulo 2. A Boolean function over V_{n} is a mapping $V_{n} \rightarrow \mathbb{F}_{2}$. For any $n \in \mathbb{N}$ we denote by \mathcal{F}_{n} the set of all Boolean functions in variables $\left\{x_{1}, \ldots, x_{n}\right\}$. We also identify \mathcal{F}_{n} with $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2} \oplus x_{i}, i=1, \ldots, n\right)$, the quotient ring of the ring of polynomials with coefficients in \mathbb{F}_{2} w.r.t. the ideal generated by the polynomials $x_{i}^{2} \oplus x_{i}, i \in\{1, \ldots, n\}$. Then for any $f \in \mathcal{F}_{n}$ we have the algebraic normal form

$$
\begin{equation*}
f(x)=\bigoplus_{a_{1}, \ldots, a_{n} \in \mathbb{F}_{2}} g\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}=\bigoplus_{a \in V_{n}} g(a) x^{a} \tag{1.1}
\end{equation*}
$$

where $g \in \mathcal{F}_{n}$ and $f \rightarrow g$ is called Möbius Transform of \mathcal{F}_{n}. By $\operatorname{deg}(f)$ we denote the algebraic degree of a function $f \in \mathcal{F}_{n}$.

Let $f \in \mathcal{F}_{n}$ and $i \in\{1, \ldots, n\}$. We use the following notation

$$
\operatorname{deg}\left(f, x_{i}\right)=\operatorname{deg}\left(f\left(x \oplus e_{i}\right) \oplus f(x)\right)+1
$$

where $e_{i}, i=1, \ldots, n$, are the vectors of the canonical basis of V_{n}. If $\operatorname{deg}\left(f, x_{i}\right)=1$, then we say that f depends linearly on x_{i}. The weight wt (f) of f is the number of $x \in V$ such that $f(x)=1$. A function f is balanced if $\mathrm{wt}(f)=\mathrm{wt}(f \oplus 1)=2^{n-1}$.

Let $A=\bigcup_{s=1}^{\infty} \mathbb{F}_{2}^{s}$. By definition, put $B=\bigcup_{t=n}^{\infty} \mathbb{F}_{2}^{t}$. A Boolean function $f \in \mathcal{F}_{n}$ induces a mapping $B \rightarrow A$ of the form

$$
\begin{equation*}
b=\left(b_{1}, \ldots, b_{l}\right) \rightarrow\left(f\left(b_{1}, \ldots, b_{n}\right), \ldots, f\left(b_{l-n+1}, \ldots, b_{l}\right)\right) \tag{1.2}
\end{equation*}
$$

for any $b \in B$.
Perfectly balanced functions (i.e., Boolean functions f such that the mapping (1.2) is onto) were introduced by Sumarokov in [1]. A well known class of such functions (cf. [2]) consists of all functions that are linear either in the first or in the last variable. The aim of this paper is to develop a novel technique to construct perfectly balanced functions not in the above class.

2 Basic definitions

Let $f \in \mathcal{F}_{n}$ and $m \in \mathbb{N}$. Consider the system of equations

$$
\begin{equation*}
f\left(x_{s}, x_{s+1}, \ldots, x_{s+n-1}\right)=y_{s}, s=1,2, \ldots, m, \tag{2.1}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{m+n-1}\right) \in V_{m+n-1}, y=\left(y_{1}, \ldots, y_{m}\right) \in V_{m}$. In vectorial form this system can be written as follows

$$
y=f_{m}^{*}(x),
$$

where

$$
\begin{align*}
& f_{m}^{*}\left(x_{1}, x_{2}, \ldots, x_{m+n-1}\right) \\
& \quad=\left(f\left(x_{1}, \ldots, x_{n}\right), f\left(x_{2}, \ldots, x_{n+1}\right), \ldots, f\left(x_{m}, \ldots, x_{m+n-1}\right)\right) \tag{2.2}
\end{align*}
$$

For any $f \in \mathcal{F}_{n}$ and any $m \in \mathbb{N}$ consider a set

$$
\begin{equation*}
J(f, m)=\left\{y \in V_{m} \mid \forall x \in V_{m+n-1} f(x) \neq y\right\} . \tag{2.3}
\end{equation*}
$$

Denote by $\operatorname{Def}_{m}(f)$ the cardinality of $J(f, m)$.

Definition 2.1 ([1]). A function $f \in \mathcal{F}_{n}$ is said to have defect zero iff $\operatorname{Def}_{m}(f)=0$ for any $m \in \mathbb{N}$.

It is easy to see $([1])$ that $f \in \mathcal{F}_{n}$ has defect zero if $\operatorname{deg}\left(f, x_{1}\right)=1$ or $\operatorname{deg}\left(f, x_{n}\right)=1$. Let

$$
\mathcal{L}_{n}=\left\{f \in \mathcal{F}_{n} \mid \operatorname{deg}\left(f, x_{1}\right)=1\right\}
$$

and

$$
\mathcal{R}_{n}=\left\{f \in \mathcal{F}_{n} \mid \operatorname{deg}\left(f, x_{n}\right)=1\right\} .
$$

Definition 2.2 ([1]). A function $f \in \mathcal{F}_{n}$ is called perfectly balanced iff

$$
\sharp\left(f_{m}^{*}\right)^{-1}(y)=2^{n-1}
$$

for any $m \in \mathbb{N}$ and for every $y \in V_{m}(\sharp M$ denotes the cardinality of the set $M)$.

Let \mathcal{E}_{n} denote the set of all perfectly balanced functions in \mathcal{F}_{n}. From Definition 2.2 it is easy to see that a perfectly balanced function $f \in \mathcal{F}_{n}$ is balanced, i.e., $\operatorname{wt}(f)=2^{n-1}$. It follows immediately that $\sharp \mathcal{E}_{n} / 2^{2^{n}} \rightarrow 0$ as $n \rightarrow \infty$.

3 Preliminaries

Theorem 3.1 ([1]). A Boolean function has defect zero iff it is perfectly balanced.

Denote by \mathcal{D}_{n} the set of Boolean functions in \mathcal{E}_{n} such that

$$
\operatorname{deg}\left(f, x_{1}\right) \geq 1, \quad \operatorname{deg}\left(f, x_{n}\right) \geq 1
$$

Sumarokov [1] developed a technique to construct functions in $\mathcal{D}_{n} \backslash\left(\mathcal{L}_{n} \cup \mathcal{R}_{n}\right)$ was developed.

Example 3.2 ([1]). A Boolean function

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} \oplus x_{2} \oplus x_{3} \oplus x_{1} x_{2} x_{4} \oplus x_{2} x_{4} \oplus 1
$$

is a perfectly balanced function in $\mathcal{D}_{4} \backslash\left(\mathcal{L}_{4} \cup \mathcal{R}_{4}\right)$.

Furthermore Sumarokov [1] proved some upper bounds on m for functions of nonzero defect and defined the following mappings $\gamma_{0}, \gamma_{1}, \gamma_{2}$ from \mathcal{F}_{n} onto \mathcal{F}_{n} such that $\gamma_{i}\left(\mathcal{E}_{n}\right)=\mathcal{E}_{n}, i=1,2,3$:
(1) $\gamma_{0}: f\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \oplus 1$;
(2) $\gamma_{1}: f\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{1} \oplus 1, \ldots, x_{n} \oplus 1\right)$;
(3) $\gamma_{2}: f\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{n}, \ldots, x_{1}\right)$.

For certain applications it is interesting to investigate conditions under which the distribution of the right-hand side of (2.1) is uniform provided that the distribution of the random vector $X_{m}=\left(x_{1}, \ldots, x_{m+n-1}\right)$ is uniform.
Theorem 3.3 ([3]). Let $\left\{X_{m}=\left(x_{1}, \ldots, x_{m+n-1}\right)\right\}_{m=1}^{\infty}$ be a sequence of random variables, where X_{m} is distributed uniformly over V_{m+n-1}. Then the random variable $Y_{m}=f_{m}^{*}\left(X_{m}\right)$ is distributed uniformly for any $m \in \mathbb{N}$ iff the function f is perfectly balanced.

4 Main result

For any $k \in \mathbb{N}$ and any $l \in \mathbb{N}$ consider a mapping $\Xi_{k, l}: \mathcal{F}_{k} \times \mathcal{F}_{l} \rightarrow \mathcal{F}_{k+l-1}$ of the form

$$
\Xi_{k, l}(f, g)=f[g]=h \in \mathcal{F}_{k+l-1}, f \in \mathcal{F}_{k}, g \in \mathcal{F}_{l},
$$

where

$$
\begin{aligned}
h\left(x_{1}, \ldots, x_{k+l-1}\right) & =f[g]\left(x_{1}, \ldots, x_{k+l-1}\right) \\
& =f\left(g\left(x_{1}, \ldots, x_{k}\right), g\left(x_{2}, \ldots, x_{k+1}\right), \ldots, g\left(x_{k}, \ldots, x_{k+l-1}\right)\right) .
\end{aligned}
$$

Our main result is the next theorem.
Theorem 4.1. Let $f \in \mathcal{F}_{k}, g \in \mathcal{F}_{l}$. A Boolean function $h=f[g] \in \mathcal{F}_{k+l-1}$ is perfectly balanced iff both functions f and g are perfectly balanced.
Proof. Let f and g be perfectly balanced functions and m be any natural number. Then for any vector $z=\left(z_{1}, \ldots, z_{m}\right) \in V_{m}$ we have $\sharp\left(f_{m}^{*}\right)^{-1}(z)=$ 2^{k-1}. Furthermore for every vector $y=\left(y_{1}, \ldots, y_{m+k-1}\right) \in\left(f_{m}^{*}\right)^{-1}(z)$ we have $\sharp\left(g_{m+k-1}^{*}\right)^{-1}(y)=2^{l-1}$. It now follows that

$$
\begin{aligned}
\sharp\left(h_{m}^{*}\right)^{-1}(z) & =\sharp\left(f[g]_{m}^{*}\right)^{-1}(z) \\
& =\sum_{y \in \sharp\left(f_{m}^{*}\right)^{-1}(z)} \sharp\left(g_{m+k-1}^{*}\right)^{-1}(y)=2^{k+l-2}=2^{(k+l-1)-1},
\end{aligned}
$$

for any $m \in \mathbb{N}$ and any $z \in V_{m}$, i.e. a function $h \in \mathcal{F}_{k+l-1}$ is perfectly balanced.

Let the function $h=f[g] \in \mathcal{F}_{k+l-1}$ be perfectly balanced. Assume the contrary, namely, that either f or g is not perfectly balanced. First assume that f is not perfectly balanced. By Theorem 3.1, f is not a function of defect zero. Then there exist a natural number m and a vector $z=\left(z_{1}, \ldots, z_{m}\right) \in$ V_{m} such that $z \in J(f, m)$. Therefore we have $z \in J(f[g], m)$, i.e., $f[g]$ is not a function of defect zero. By Theorem 3.1, $f[g]$ is not perfectly balanced. This contradiction proves that f is perfectly balanced.

Now, assume that g is not perfectly balanced. Then there exist a natural number r and a vector $y^{*}=\left(y_{1}^{*}, \ldots, y_{r}^{*}\right) \in V_{r}$ such that $\sharp\left(g_{r}^{*}\right)^{-1}\left(y^{*}\right)=2^{l-1}+\alpha$, where $0<\alpha \leq 2^{l-1}$. Using the vector y^{*}, we construct a set $M_{r, t}, t=1,2, \ldots$ of vectors in $V_{r(t+1)+(l-1) t}$ of the form

$$
\begin{aligned}
& y=\left(y_{1}^{*}, \ldots, y_{r}^{*} ; y_{r+1}, \ldots, y_{l+r-1} ; y_{1}^{*}, \ldots, y_{r}^{*} ; \ldots ;\right. \\
& \left.\quad y_{1}^{*}, \ldots, y_{r}^{*} ; y_{t r+(t-1)(l-1)}, \ldots, y_{t r+t(l-1)} ; y_{1}^{*}, \ldots, y_{r}^{*}\right),
\end{aligned}
$$

where components of y not asterisked are arbitrary. It follows easily that $\sharp M_{r, t}=\left(2^{l-1}\right)^{t}$. Using the definition of the set $M_{r, t}$, one can shown that for any $y \in M_{r, t}$ with $\left(g_{r(t+1)+(l-1) t}^{*}\right)^{-1}(y) \neq \emptyset$, the next inclusion holds:

$$
\left(g_{r(t+1)+(l-1) t}^{*}\right)^{-1}(y) \subseteq \underbrace{\left(g_{r}^{*}\right)^{-1}\left(y^{*}\right) \times \ldots \times\left(g_{r}^{*}\right)^{-1}\left(y^{*}\right)}_{t+1} .
$$

Furthermore it is clear that

$$
g_{r(t+1)+(l-1) t}^{*}(\underbrace{\left(g_{r}^{*}\right)^{-1}\left(y^{*}\right) \times \ldots \times\left(g_{r}^{*}\right)^{-1}\left(y^{*}\right)}_{t+1}) \subseteq M_{r, t} .
$$

Let μ_{t} denote an expected number of vectors in the set $\underbrace{\left(g_{r}^{*}\right)^{-1}\left(y^{*}\right) \times \ldots \times\left(g_{r}^{*}\right)^{-1}\left(y^{*}\right)}_{t+1}$ per vector of the set $M_{r, t}$:

$$
\mu_{t}=\frac{\left.2^{l-1}+\alpha\right)^{t+1}}{\left(2^{l-1}\right)^{t}}=2^{l-1}\left(1+\frac{\alpha}{2^{l-1}}\right)^{t+1}
$$

Since $\left(1+\alpha / 2^{l-1}\right)>1$, it follows that there exists a natural number t_{0}, such that $\mu_{t_{0}}>2^{(k+l-1)-1}$.

Consequently there exists a vector $y \in M_{r, t_{0}}$ with property

$$
\begin{equation*}
\sharp\left(g_{r\left(t_{0}+1\right)+(l-1) t_{0}}^{*}\right)^{-1}(y)>2^{(k+l-1)-1} . \tag{4.1}
\end{equation*}
$$

Let $z=f_{r\left(t_{0}+1\right)+(l-1) t_{0}-k+1}^{*}(y)$. Using (4.1) we get

$$
\sharp\left(f[g]_{\left(t_{0}+1\right)(r+l-1)-k+1}^{*}\right)^{-1}(z)>2^{(k+l-1)-1},
$$

i.e., a function $f[g]$ is not perfectly balanced. This contradiction proves the theorem.

Using Theorem 4.1, we can construct perfectly balanced functions in $\mathcal{D}_{n} \backslash$ $\left(\mathcal{L}_{n} \cup \mathcal{R}_{n}\right)$.

Example 4.2. Let $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2} x_{3} \in \mathcal{L}_{3}$ and $g\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \oplus$ $x_{3} \in \mathcal{R}_{3}$. Then

$$
\begin{aligned}
& h\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=f\left(g\left(x_{1}, x_{2}, x_{3}\right), g\left(\left(x_{2}, x_{3}, x_{4}\right), g\left(x_{3}, x_{4}, x_{5}\right)\right)\right. \\
& \quad=x_{1} x_{2} \oplus x_{3} \oplus x_{2} x_{3} x_{4} \oplus x_{2} x_{3} x_{5} \oplus x_{3} x_{4} \oplus x_{4} x_{5} \in \mathcal{D}_{5} \backslash\left(\mathcal{L}_{5} \cup \mathcal{R}_{5}\right) .
\end{aligned}
$$

References

[1] S. N. Sumarokov. Defects of Boolean functions and invertability of a certain class of coding circuits. Obozrenie prikladnoi i promyshlennoi matematiki, v. 1, no. 1, 1994, p. 33-55 (in Russian).
[2] F. P. Preparata. Convolutional transformations of binary sequences: Boolean functions ande their resynchronizing properties. IEEE Trans. Electron. Comput., 1966, v. 15, no. 6, p. 898-909.
[3] O. A. Logachev, A. A. Sal'nikov, V. V. Yashchenko. Boolean functions in coding theory and cryptology. MCCME, Moscow, 2004 (in Russian).

