
Private Locally Decodable Codes

Rafail Ostrovsky Omkant Pandey Amit Sahai

Department of Computer Science
University of California, Los Angeles 90024

{rafail,omkant,sahai}@cs.ucla.edu

Abstract

We consider the problem of constructing efficient locally decodable codes in the presence of a
computationally bounded adversary. Assuming the existence of one-way functions, we construct
efficient locally decodable codes with constant information rate and low (in fact, optimal) query
complexity which can uniquely decode any given bit of the message from constant-fraction channel
error rate ρ. This compares favorably to our state of knowledge locally-decodable codes without
cryptographic assumptions. For all our constructions, the probability for any polynomial-time
adversary, that the decoding algorithm incorrectly decodes any bit of the message is negligible.

1 Introduction

When a message x is sent over a channel C, the channel might introduce some errors so that the
received message differs from the original message x. To deal with this, the sender typically encodes
the given message to obtain a codeword y so that x can be recovered even if the received codeword
y′ differs from the original encoding y in some of the places.

The message is represented by a sequence of ki symbols from alphabet Σ1 and the codeword
is represented as a sequence of Ki symbols from (a possibly different) alphabet Σ2. The encoding
function is denoted by S : Σki

1 → ΣKi
2 and the decoding function is denoted by R : ΣKi

2 → Σki
1 . The

information rate (or simply rate) of the code is ki/Ki and measures the amount of extra information
needed by the code for correctly decoding from errors.

When the whole message x should be recovered from the corrupted codeword y′, the decoding
algorithm reads y′ entirely. If one is interested in reading only one bit of x, more efficient coding
schemes are possible. In particular, it is possible to construct codes which can decode a single bit
of x by reading only a few bits of y′. Such codes are called locally decodable codes (LDCs). They
were explicitly discussed most notably in [1, 27] in the contexts of probabilistically checkable proofs.
They were explicitly defined by Katz and Trevisan in [15].

Informally, a locally decodable code with query complexity `, error rate ρ, and error correction
probability p is a pair of algorithms (S,R), where S is the encoding algorithm and R is the decoding
algorithm, such that the decoding algorithm makes at most ` queries into the corrupted codeword
y′ and recovers any given bit j of x with probability p or more if y′ differs from y in at most a ρ
fraction of alphabets. For brevity, such a code is sometimes written as (`, ρ, p)-LDC and we require
that p > 0.5. An LDC is called adaptive if the queries of R depend upon the answers of previous
queries. It is called non-adaptive if they depend only on the random coins of R.

Of course, locally decodable codes with high information rate, high error rate, high error correc-
tion probability, and low query complexity are most desirable. Low alphabet sizes (|Σ1|, |Σ2|) are
desirable too, and indeed most channels are best at transmitting only bits.

1

Locally decodable codes have found several notable applications. In complexity theory they
have been useful in self-correcting computations [9, 10], probabilistically checkable proof systems [1],
worst-case to average-case hardness reductions in the constructions of pseudo-random generators [2,
28], and so on. In cryptography they have been useful due to their interesting connection with pri-
vate information retrieval protocols [6, 18, 22, 3]. Their interesting properties make them applicable
in several database applications such as fault-tolerant data storage [15]. It is tempting to say that
constructions of good locally decodable codes can yield benefits to several related fields of computer
science.

Modeling the Noisy Channel. The nature of channel errors plays an important role in the design
of good error correcting codes. Historically, there are two popular ways of modeling a noisy channel:
Shannon’s model and Hamming’s model. In Shannon’s symmetric channel model, each symbol
is changed to a random different one independently with some fixed probability. In Hamming’s
adversarial channel model, symbols get changed in the worst possible manner subject to an upper
bound on the number of errors (such as a constant fraction of the size of the codeword). It should
be noted that Hamming’s channel are computationally unbounded. As a consequence, good error-
correcting codes in Hamming’s model ensure robustness of the coding scheme. But at the same time,
constructing error correcting codes becomes more challenging in this model. In particular, good1

locally decodable codes are not known to exist in this model.
An interesting idea due to Lipton [20], models the noisy channel as a computationally bounded

adversarial channel. That is, the channel C is modeled as a probabilistic polynomial time algorithm
which can change symbols in the worst possible manner subject to an upper bound on the number of
errors. Thus, Lipton’s channels are essentially Hamming channels restricted to feasible computation.
Modeling channels in this way makes a lot of sense as all real world channels are actually computa-
tionally bounded. The codes designed in this model guarantee that if a channel can cause incorrect
decoding with high probability, it can also be used to break standard hardness assumptions.

Working with such computationally bounded channels has led to several interesting results of
late. In particular, Gopalan, Lipton, and Ding [12] develop a technique called code scrambling which
recovers from high error rates by using few shared random bits. Similarly, Micali, Peikert, Sudan,
and Wilson construct codes that can uniquely decode from error-rates beyond the classical bounds.
Other notable results that use the idea of shared randomness in particular, are the results of Lang-
berg [19] and Smith [26]. We remark that all these results are for standard error correcting codes and
not for locally decodable codes. In this paper we continue in this important direction and construct
good LDCs against computationally bounded noisy channels. We shall summarize our results shortly.

Previous Work On Locally Decodable Codes. In order to understand the significance of our
results, it is important that we shed some light on previous work related to locally decodable codes.
Mainly, there has been two important research directions in this area: proving lower bounds on the
size of LDCs and constructing good LDCs. All prior work in this area deals with computationally
unbounded channels.

The first direction investigates the relation between the code length Ki and the message length ki

for (`, ρ, p)-LDCs. Katz and Trevisan [15] first started investigating this direction and showed that

for non-adaptive LDCs, Ki is at least k
1+ 1

`−1

i (suppressing the dependence on ρ and p). Deshpande
et al [7] showed that this bound holds even for adaptive LDCs. Best known lower bounds for general

locally decodable codes are due to Woodruff [30] who shows that Ki = Ω

(
k
1+ 2

`−1
i
log ki

)
. A series of

papers [11, 24, 25, 16, 29] concentrated on LDCs with ` = 2 (or 3) and established exponential lower
1By good LDCs we mean LDCs with high information rate and high probability of error correction with small query

size and constant error rate.)

2

bounds. In particular for 2-query LDCs Ki = exp(Ω(ρ
2−2pki)).

The other direction focussed on constructing the locally decodable codes. Important construc-
tions in this direction for constant query length appeared in [3, 4]. The best known construction is
due to Yekhanin [31]. Unfortunately, all these constructions yield codes that are exponentially long
in ki. For super-constant number of queries, however, better constructions are known. In particular,
for ` = (log ki)

O(1
p−0.5

) Babai et al [1] constructed LDCs of size Ki = k
1+(p−0.5)
i .

We derive following important conclusions from these results: all known constructions in the liter-
ature are either exponential in ki or the query complexity is a huge polynomial in log ki. Furthermore,
most of these constructions are able to provide only a constant probability of error correction which
does not vanish with the size of the message.

Our Results. We consider the construction of locally decodable codes against computationally
bounded channel. Under the minimal cryptographic assumption that one-way functions exist, we
show how to construct locally decodable codes with Ki = O(ki) over a binary alphabet with a fairly
small constant hidden inside the O-notation. Notice that small alphabet size is usually a requirement
as most channels are best at transmitting only bits. Thus we have achieved locally decodable codes
over binary alphabets with constant information rate. This is already much better than all the
known constructions in the literature. Our constructions require that the encoding and decoding
algorithms share a secret key that is not known to the channel. For this reason we call our codes
private locally decodable codes.

Our codes can correctly recover any given bit with probability p ≥ 1 − 2−O(`), where ` is the
query complexity chosen beforehand, as long as the number of errors are less than a suitably chosen
(constant) fraction. Thus, by setting ` = ω(log ki), we achieve the probability of incorrect decoding
to be k

−ω(1)
i which is negligible in ki. Furthermore, we show that ` = ω(log ki) is necessary in order

to achieve negligibly small probability of incorrect decoding. Thus, our codes have optimal query
complexity.

Our codes are non-adaptive in nature. That is, the decoding procedure can make all its ` queries
at once without any dependence on the answers received from the corrupted word. This is a feature
that might be desirable in some applications.

Organization. The rest of this article is organized as follows. The next section presents relevant
background from coding theory and cryptography. We then describe our model which is followed
by our constructions. We provide two constructions of locally decodable codes in this section and
prove the optimality of our results. We then conclude the paper by noting that the computationally
bounded channel model is a promising model where we can go beyond the classical bounds in the
theory of error-correcting codes.

2 Preliminaries

In this section we will present relevant coding theory and cryptography. When dealing with codes,
small alphabet size is usually preferred. Thus, unless specified otherwise, from now onwards we de-
scribe our constructions only for binary alphabets. It is straightforward to see their general version
that has larger alphabet size. First we present some notations.

Notation. Vectors over {0, 1} will be represented in bold, e.g., x,y. Because we are working over
binary alphabets, occasionally we may refer to vectors over {0, 1} as (bit) strings. Concatenation of
two vectors x,y is denoted by x ◦ y. By [n] we denote the set of positive integers smaller than or
equal to n: {1, 2, . . . , n}. A function ν(n) is negligible in n if it vanishes faster than the inverse of
every polynomial P (n) for a sufficiently large choice of n. Notation ∆(x,y) represents the hamming

3

distance between vectors x and y. By x[j] we denote the jth bit of x. If S is a set then the process

of selecting an element e from S uniformly at random, is denoted by: e
$← S.

Standard locally decodable codes are defined as follows:

Definition 1 (Locally Decodable Code) An `-locally decodable code over a binary alphabet for
error rate ρ and error-correction probability p > 1

2 , abbreviated as (`, ρ, p)-LDC, is a pair of prob-
abilistic algorithms (S,R), where S : {0, 1}ki → {0, 1}Ki and R are the encoding and decoding
algorithms respectively. If x ∈ {0, 1}ki is the message and y ← S(x) is its encoding then we require
that on input j ∈ [ki], the algorithm R reads at most ` bits from a given word y′ and outputs a bit b
such that Pr[b = x[j]] ≥ p provided that ∆(y,y′) ≤ ρKi for some constant ρ.

We now turn our attention to pseudo-random permutations π that permute the bits of a given
input x. By π(x) we shall denote the process of permuting bits of x according to π and outputting
the resulting string. Assuming that the sender and the receiver share some common randomness sk
(sometimes called the secret key), such permutations π and their inverses π can be constructed from
pseudorandom generators [5], which in turn can be constructed from any one way function [14] (The
assumption that one-way functions exist, is the minimal cryptographic assumption).

The pseudorandom generator takes a small secret randomness sk
$← {0, 1}κi , where κi is a

security parameter, and converts it into a polynomially long pseudorandom bit sequence. Thus, it
provides a common source of randomness to the parties who share sk. Using this randomness we
can easily choose a pseudorandom permutation π that permutes the bits of a given input.

Informally, pseudorandom permutations have the property that for all probabilistic polynomial
time algorithms A, it is hard to distinguish the operation of pseudorandom permutations from the
operation of uniformly random ones. That is, for all bit sequences x, if π1 is a pseudorandom
permutation and π2 is a truly random permutation then for all efficient algorithms A:

|Pr [y ← π1(x);A(y) = 1]− Pr [y ← π2(x);A(y) = 1]| = ν(κi)

For notation, by π
(Ki)
sk we shall denote the pseudorandom permutation output by some pseudorandom

permutation generator algorithm PRP that takes as input a secret randomness sk and message
length Ki: π

(Ki)
sk ← PRP(sk,Ki). The secret randomness sk is output by a key generation algorithm

depending upon a security parameter κi: sk ← K(1κi). We require that Ki = poly(κi). Denote by
π̃

(Ki)
sk , modification of the permuting algorithm π

(Ki)
sk that takes as input a bit position j ∈ [Ki] and

outputs its permuted position j′ ∈ [Ki] according to π
(Ki)
sk).

Remark 1 The pseudorandom permutations described here should not be confused with pseudoran-
dom permutations introduced by Luby and Rackoff [21]. Our permutations permute the bits of a
given input, whereas permutations in [21] are 1-1 and onto functions that do not necessarily permute
the bits of the input.

3 Our Model

We work in a shared key model where the encoding and decoding algorithms share some small secret
information not known to the channel. In particular, this information will be the secret key to the
pseudorandom permutation generator.

Deviating from traditional goals, we focus on constructing codes with high probability of recov-
ering any given bit rather than some constant probability larger than 1/2. In particular, we require
the probability of incorrect decoding to be negligible in the message length. Of course small query
complexity is desirable too along with negligible probability of incorrect decoding.

4

Because the encoding and decoding algorithms must share a key in our model, our codes are
named private locally decodable codes. We present the definition of a private locally decodable code
below.

Definition 2 (Private `-Locally Decodable Code) Let κi be the security parameter. A private
`-locally decodable code for a family of parameters {(Ki, ki)}∞i=1 is a triplet of probabilistic polynomial
time algorithms (K,S,R) such that:

• K(1κi) is the key generation algorithm that takes as input the security parameter κi and outputs
a secret key sk.

• S(x, sk) is the encoding algorithm that takes as input the message x of length ki = poly(κi)
and the secret key sk. The algorithm outputs y ∈ {0, 1}Ki that denotes an encoding of x.

• R(j, sk) denotes the decoding algorithm, which takes as input a bit position j ∈ [ki] and the
secret key sk. It outputs a single bit b denoting the decoding of x[j] by making at most `
(adaptive) queries into a given a codeword y′ possibly different from y.

The information rate of the scheme is lim infi→∞ ki/Ki.

Parameter ` is also called the query complexity of the code. Notice that in our definition, the decoding
algorithm is supposed to have the same secret key sk as was used to encode the message. Obviously
this definition does not make sense until we introduce the probability of correctly obtaining x[j]
using the decoding procedure. But before that, we need to explain the game between the channel
and the encoding and decoding algorithms.

A computationally bounded adversarial channel C with error rate ρ is a probabilistic polynomial
time algorithm which interacts with the encoding algorithm S and the decoding algorithm R as
follows:

1. Given a security parameter κi, the key generation algorithm outputs a secret key sk ← K(1κi).
The secret is given to both S,R but not to the channel. The channel is given κi.

2. The channel C chooses a message x ∈ {0, 1}ki and hands it to the sender.

3. The sender computes y ← S(x, sk) and hands the codeword y ∈ {0, 1}Ki back to the channel.

4. The channel corrupts at most a fraction ρ of all Ki bits in y and outputs the corrupted
codeword y′, i.e., ∆(y,y′) ≤ ρKi. It gives y′ and a challenge bit j ∈ [ki] to the receiver R.

5. The receiver makes at most ` (adaptive) queries into the new codeword y′ and outputs b ←
R(j, sk).

We say that a code (K,S,R) uniquely decodes from error rate ρ if for all probabilistic polynomial
time algorithms C in the above experiment, for all messages x ∈ {0, 1}ki , and for all j ∈ [ki] we have
that Pr [b 6= x[j]] = ν(ki), where the probability is taken over the random coins of K,S,R, and C.

Later on, we consider a stronger definition where the channel is allowed to repeatedly make many
encoding requests adaptively before it actually causes an incorrect decoding. We show that with a
slight modification, our constructions work against such a stronger adversarial channel too. In fact
all we need to do is keep a small state information (such as a counter) that helps in choosing a fresh
pseudorandom permutation for every encoding request. Other than this, all construction details
remain just the same. Due to the space limitations, these details are given in the appendix.

5

4 Our Constructions

In this section we will give various constructions of private locally decodable codes. We will start
with a simple repetition code with 2 log2 ki query complexity.2 Later we will provide codes with
same query complexity but with a better (constant) information rate. Although we describe our
construction for 2 log2 ki query complexity, they actually work for any query complexity that grows
faster than log ki, (i.e., ω(log ki)). We also show that ω(log ki) query complexity is essential if we
want decoding error to be negligible in ki. Thus our constructions have optimal query length.

4.1 A Simple Repetition Code

Let x be the string we want to encode. Let x denote the string obtained by flipping each bit of x.
Let PRP be a pseudorandom permutation with the key selecting algorithm KPRP. Our repetition
code (KREP,SREP,RREP) is as follows.

Algorithm KREP(1κi) This is just the KPRP() algorithm that outputs the secret randomness sk ←
KPRP(1κi).

Algorithm SREP(x, sk) The algorithm works as follows:

• Compute x′ by repeating each bit of x for 2 log2 ki times, where ki = |x|. Now let
x′′ = x′ ◦ x′. Notice that Ki = |x′′| = ki · 4 log2 ki.

• Let π
(Ki)
sk ← PRP(sk, Ki). Compute and output y ← π

(Ki)
sk (x′′).

Notice that the size of codeword y is Ki = 4ki log2 ki.

Algorithm RREP(j, sk) To decode, the algorithm simply reads all ` = 2 log2 ki bit positions of y
that correspond to bit position j of the original message x, and decides by majority. Computing
these bit positions can be done easily by the restricted algorithm π̃

(Ki)
sk . The algorithm works

as follows:

• Let j1, j2, . . . , j` denote the ` bit positions of x′′ that have the copies of x[j]. Compute
ih ← π̃

(Ki)
sk (jh) for h = 1, 2, . . . , `.

• Read y[i1],y[i2], . . . ,y[i`] and output the majority bit.

Notice that the query complexity is ` = 2 log2 ki.

Theorem 1 There exists a constant ρ such that (KREP,SREP,RREP) is a ω(log ki)-private locally
decodable code that uniquely decodes from error rate ρ.

Proof. It is easy to see that a bit is decoded incorrectly if and only if at least half of its ` = 2 log2 ki

copies were corrupted. Assuming that the permutation π
(Ki)
sk is truly random, the probability of

incorrect decoding for a given bit position j is thus:

Pr[jth bit decodes incorrectly] =
2 log2 ki∑

h=log2 ki

(
2 log2 ki

h

)
ph(1− p)2 log2 ki−h

where p is the probability that a given copy of the original bit is corrupted. Now notice that total
number of corrupted bits is ρKi. Notice that the final codeword y contained Ki/2 0s and the same
number of 1s. Thus probability that any given bit of x′ gets corrupted is less than ρKi

Ki/2 = 2ρ. Thus,

2Technically, the query complexity is actually d2 log2 kie, but in order to avoid the cluttering in presentation, we
shall drop floors and ceiling in formulas. This does not affect our analysis.

6

we conclude that 0 ≤ p ≤ 2ρ. Now setting ρ = 1/34, noticing that the binomial coefficient
(
n
r

)
is

maximum when r = n/2, and using Stirling’s approximation we conclude that:

Pr[jth bit decodes incorrectly] <

(
4 · 22 log2 ki

√
π log ki

·
(

p

1− p

)log2 ki

· 1
)
× log2 ki = ν(ki)

Because probability of incorrectly decoding a given bit is negligible and there are only ki bits, we
conclude that probability of incorrectly decoding any bit is negligible given that the permutation
π

(Ki)
sk of x′′ is truly random. We now show that the probability of incorrect decoding remains

negligible in ki even if π
(Ki)
sk is pseudorandom.

To prove this, suppose that the probability of incorrect decoding is p̂ when π
(Ki)
sk is pseudorandom.

We show that if p̂ is not negligible then we can compromise the security of the pseudorandom
permutation π

(Ki)
sk . To do so, we construct an adversary A which can decide, with non-negligible

probability, whether a given string is being permuted according to a pseudorandom permutation
just by querying the challenge permutation once. The adversary A is given access to the challenge
oracle which will permute a given input string according to a permutation (either pseudorandom or
random).

The adversary works as follows. On input the security parameter κi, it instantiates our locally
decodable code with κi and gives κi to the channel C. When the channel gives a message x for
encoding, A computes the intermediate message x′′ according to the encoding algorithm SRM but
does not permute it. Instead, it asks the permuting oracle to permute x′′ and receives the answer,
say y. It gives y to C and receives the corrupted codeword y′ and a challenge bit position j. Now A
performs the role of the RRM and decodes the jth bit according to the normal decoding procedure.
A outputs 0 if the decoding is correct and 1 otherwise.

Standard probability calculations show that the probability of A’s success is at least |p̂− ν(ki)|,
which is non-negligible unless p̂ is also negligible in ki. Hence the theorem. ¥

4.2 Construction based on Reed-Muller codes

In this section we present the construction of a locally decodable code based on Reed-Muller codes.
We will present a general construction and its analysis without setting the parameters explicitly.
Later on, we will set the parameters suitably so as to obtain a locally decodable code satisfying our
goals. We start with a review of Reed-Muller codes.

Reed-Muller Codes. In Reed-Muller codes, the message x defines an m-variate polynomial
P (t1, t2, . . . , tm) of degree d over a finite field Fq. Here, the message is considered as a sequence
of a symbols from Fq. As we are working with binary alphabets, we will sometimes say that the
message m is a sequence of c · a bits where c = log q. The message is encoded by evaluating the
polynomial P at suitably chosen A points in Fm

q . Once again notice that the encoded message will
have c · A bits. Such a code is called an (A, a)q-Reed-Muller code. Parameters m, q, d, a, and A are
all related with each other in certain fashion. It is immediately obvious that qm ≥ A > a.

For the sake of concreteness, we consider a specific instance of Reed-Muller codes which will be
helpful in understanding our further explanations. Let q be a constant and a prime power (e.g.,
q = 25). Let the degree d < q also be a constant. In such a case, the message length is: a =

(
m+d

m

)
symbols from Fq. Let A = βa for some constant β and let u1, u2, . . . , uA be (suitably chosen) points
in Fm

q . The parameter m will be chosen later on and we will ensure that qm > A. The encoding of
x is the evaluation of polynomial P (t1, t2, . . . , tm) at points u1, u2, . . . , uA where P is defined by x.
The minimum distance of this code is (1 − d

q)A symbols3 and it can correct errors e ≤ α(1 − d
q)A

where α < 1/2 is a positive constant. We will refer to this specific instance of Reed-Muller codes as
3In this description, as the construction is over a field of q elements, the minimum distance means that each code

7

the RM-instance.

Our Construction. On a high level, we visualize the message x as a series of ni messages each
of which will contain a symbols from Fq, or in other words each message will contain a blocks of
c = log q bits each. That is,

x =

1︷ ︸︸ ︷
(x1 ◦ x2 ◦ . . . ◦ xa) ◦

2︷ ︸︸ ︷
(xa+1 ◦ xa+2 ◦ . . . ◦ x2a) ◦ . . . ◦

ni︷ ︸︸ ︷
(x(ni−1)a+1 ◦ x(ni−1)a+2 ◦ . . . ◦ xnia)

Now each message (contained in parentheses) will be encoded using the RM-instance of Reed-Muller
code and all such encodings will be concatenated together. The resulting string will be concatenated
with its complement and then permuted according to a pseudo-random permutation π to yield the
final code. Notice that ki = |x| = c · a · ni. Later on, we will choose m in the RM-instance in such a
way that we will achieve locally decodable codes with desirable properties. Following is the formal
description of our code.

In the RM-instance, select m to be such that a =
(
m+d

m

)
= log2 ki where ki is the length of the

message that we want to encode using our private locally decodable code. It can be done, for example,
by choosing d = 2,m = O(log ki). Let κi be the security parameter. Other quantities implicitly
defined by RM are q, α, β, A,Fq etc. Following is the set of algorithms.

Algorithm KRM(1κi) This is just the KPRP() algorithm that outputs the secret randomness sk ←
KPRP(1κi).

Algorithm SRM(x, sk) The algorithm works as follows:

• Let x = w1 ◦w2 ◦ . . .◦wni , where ws = x(s−1)a+1 ◦x(s−1)a+2 ◦ . . .◦xsa for s = 1, 2, . . . , ni.
Notice that ki = ca · ni.

• Each ws is a sequence of a symbols from Fq. Encode each ws using the RM-instance to
get encoded words w′

s. That is, for each s, compute:

w′
s = Ps(u1) ◦ Ps(u2) ◦ . . . ◦ Ps(uA)

• Let x′ = w′
1 ◦w′

2 ◦ . . . ◦w′
ni

. Compute x′′ = x′ ◦ x′. Let Ki = |x′′|.
• Let π

(Ki)
sk ← PRP(sk). Compute and output y ← π

(Ki)
sk (x′′).

Notice that the size of codeword y is Ki = cAni · 2 = 2A
a ki = 2βki.

Algorithm RRM(j, sk) The jth bit of message x lies in ws where s = d j
ace. The corresponding

polynomial is thus Ps. The decoding algorithm simply reads all the A points of Ps from the
(possibly) corrupted encoding y′ using ` = cA queries and decodes using the normal Reed-
Muller decoding algorithm to obtain the complete subsequence ws. Notice that positions of
all cA bits corresponding to the A points of Ps can be computed using π̃

(Ki)
sk .

• Let j1, j2, . . . , j` be the bit positions corresponding to the bits of w′
s. Then for all h =

1, 2, . . . , ` compute ih ← π̃
(Ki)
sk (jh).

• Read y′[i1],y′[i2], . . . ,y′[i`] and obtain points Ps(u1), Ps(u2), . . . , Ps(uA) some of which
may be corrupted and hence may not lie on the polynomial Ps.

differs from every other code in at least (1 − d
q
) symbols. But originally we are working on bits (field of 2 elements),

thus for us the distance would be (1− d
q
) bits and a symbol (or point) will be considered corrupted if any of its c bits

gets corrupted.

8

• Apply the decoding algorithm of RM-instance on these points to obtain ws. Output that
bit of ws which corresponds to the jth bit of x.

Notice that the query complexity is ` = cA.

Above code is a private locally decodable code with constant information rate ki
Ki

= 1
2β and query

complexity ` = cA = log q · β log2 ki = O(log2 ki). Notice that instead of using a = log2 ki it is also
possible to use a = ω(log ki) and then the query complexity would be ω(log ki) and information rate
would still be 1

2β . Let us now prove the following.

Theorem 2 There exists a constant ρ such that (KRM,SRM,RRM) is a ω(log ki)-private locally
decodable code with constant information rate that uniquely decodes from error rate ρ.

Proof. We have already proved the claims about information rate and query complexity. We only
need to show that the code indeed uniquely recovers from some constant error rate ρ.

Let us recall the construction of our locally decodable code y for message x with the RM-
instance of Reed-Muller codes. The code y was a permutation of x′′ = x′ ◦ x′. Furthermore x′

contained A points on each polynomial Ps for s = 1, 2, . . . , ni. Because RM-instance can correct up
to e ≤ α(1− d

q)A symbol errors, any given bit j of message x can decode incorrectly only when more
than α(1− d

q)A points of polynomial Pd j
ca
e out of its A points become corrupted. For convenience,

let γ = α(1− d
q) and λ = α(1− d

q)A = γA.
Thus, in order to calculate the probability of incorrect decoding we need to calculate the proba-

bility that more than λ points of any given polynomial Ps will be corrupted. Consider the A points
of any given polynomial Ps in the encoding: Ps(u1), Ps(u2), . . . , Ps(uA). Any of these points, say
Ps(u1), gets corrupted if any of its c = log q bits gets flipped. We know that the corrupted word y′
is such that ∆(y,y′) ≤ ρKi. Because there are equal number of 0s and 1s in y, probability that any
given bit of Ps(u1) is corrupted in y′ is less than ρKi

Ki/2 = 2ρ assuming that the permutation π
(Ki)
sk to

be truly random. Thus, the probability of Ps(u1) being good is more than (1− 2ρ)c. Hence,

p = Pr [A given point of Ps is corrupted] ≤ 1− (1− 2ρ)c

Now, the probability that a given bit j of the message is corrupted, is equal the probability that at
least λ points of Pd j

ca
e are corrupted. This can be upper bounded by:

Pr
[
jth bit decodes incorrectly

]
<

A∑

e=λ

(
A

e

)
pe(1− p)A−e

As we did in the proof of repetition code, using Striling’s approximation this value can be upper
bounded by: √

32A

π

(
2

(
p

1− p

)γ)A

≤
√

2β log2 ki

π

(
2

(
1

(1− 2ρ)c
− 1

)γ)β log2 ki

which is negligible in ki if we set
(
2

(
p

1−p

)γ)β
= 1

2 . Which in turn implies that for an appropriate
constant ρ the probability of incorrect decoding is negligible in ki. Furthermore, notice that this
claim remains true for any A = ω(log ki). Because there are only polynomially many bits, it follows
that probability of incorrectly decoding any bit is ν(ki) if the permutation π

(Ki)
sk is truly random.

From here on, using exactly the ideas used in the proof of repetition code, we conclude that the
probability of incorrect decoding is negligible in ki for this code. Thus, the code uniquely decodes
from error rate ρ. ¥

9

4.3 Two Remarks

Here we would like to remark two important observations. Firstly we show that the query length in
our constructions is optimal. That is,

Lemma 1 Private locally decodable codes for parameters (Ki, ki) and with query complexity O(log ki)
(or smaller) that uniquely decode from constant error rate do not exist.

Proof. Let ` = O(log ki). Following is a very simple adversarial strategy which succeeds in incorrect
decoding with non-negligible probability. The channel C chooses ρKi bit positions in the encoded
word uniformly at random and corrupts them, where ρ is some constant. Now it chooses an index
j ∈ [Ki] uniformly at random and asks us to decode the jth bit of the message. Let us compute
the probability of incorrect decoding. Let i1, i2, . . . , i` be the bit positions that the decoding algo-
rithm would have queried. Then probability that the ρKi corrupted bits include the bit positions
i1, i2, . . . , i` is (ρKi > `): (

Ki − `

ρKi − `

)
/

(
Ki

ρKi

)
≈ ρ` = k

−O(1)
i

which is non-negligible. ¥

Next, we want to remark about our Reed-Muller construction. Why did we not work with
Reed-Solomon codes instead of Reed-Muller? This is because an analogous construction with Reed-
Solomon code would not have worked. The problem comes with the field size. For the decoding error
to be negligible in ki, we need A = aω(log ki). This requires that the field size be q > ω(log ki) so
that we will have enough number of points to evaluate the polynomial at. But this q is not a constant
anymore and this messes up the probability calculations. Reed-Muller codes instead allow us to vary
the number of variables in the polynomials and thus it was possible to base our construction on
Reed-Muller codes.

Because the field size is the only reason why we could not base our construction on Reed-Solomon
codes, it seems that algebraic geometric (AG) codes [13] can help. Indeed, it is possible to base our
construction on AG-codes. In fact the construction based on AG-codes is very similar to our Reed-
Muller based construction and a rough sketch is given in the appendix.

5 Conclusion

In this paper, we constructed efficient locally decodable codes against a computationally bounded
adversarial channel. Our codes can recover any given bit of the message with negligible probability
of incorrect decoding and make an optimal number of queries into the corrupted codeword in order
to do so. Our results compare favorably to our state of knowledge locally-decodable codes without
cryptographic assumptions and are illustrative of the powers of computationally bounded channel
model.

References

[1] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In STOC, pages 21–31, 1991.

[2] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. Bpp has subexponential time
simulations unless exptime has publishable proofs. Computational Complexity, 3:307–318, 1993.

[3] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified
construction. In ICALP, pages 912–926, 2001.

10

[4] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Raymond. Breaking the
o(n1/(2k-1)) barrier for information-theoretic private information retrieval. In FOCS, pages
261–270, 2002.

[5] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo
random bits. In FOCS, pages 112–117, 1982.

[6] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information re-
trieval. J. ACM, 45(6):965–981, 1998.

[7] Amit Deshpande, Rahul Jain, Telikepalli Kavitha, Jaikumar Radhakrishnan, and Satya-
narayana V. Lokam. Better lower bounds for locally decodable codes. In IEEE Conference
on Computational Complexity, pages 184–193, 2002.

[8] A. Garcia and H. Stichtenoth. A tower of artin-schreier extensions of function fields attaining
the drinfelf-vladut bound. Invent. Math., 121:211–222, 1995.

[9] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In STOC, pages 32–42, 1991.

[10] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf. Process.
Lett., 43(4):169–174, 1992.

[11] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower bounds
for linear locally decodable codes and private information retrieval. In IEEE Conference on
Computational Complexity, pages 175–183, 2002.

[12] Parikshit Gopalana, Richard J. Lipton, and Y.Z. Ding. Error correction against computationally
bounded adversaries. In Manuscript, 2004.

[13] V.D. Goppa. Algebraic geometric codes. Math. USSR-Izv, 21(1):75–93, 1983.

[14] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[15] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC, pages 80–86, 2000.

[16] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. In STOC, pages 106–115, 2003.

[17] Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for blacklisting
problems without computational assumptions. In CRYPTO, pages 609–623, 1999.

[18] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, pages 364–373, 1997.

[19] Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In FOCS,
pages 325–334, 2004.

[20] Richard J. Lipton. A new approach to information theory. In STACS, pages 699–708, 1994.

[21] Michael Luby and Charles Rackoff. Pseudo-random permutation generators and cryptographic
composition. In STOC, pages 356–363, 1986.

[22] E Mann. Private Access to Distributed Information. 1998. Master’s Thesis, Technion.

11

[23] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal Error Correction
Against Computationally Bounded Noise. In TCC’06. Springer-Verlag, 2006.

[24] Kenji Obata. Optimal lower bounds for 2-query locally decodable linear codes. In RANDOM,
pages 39–50, 2002.

[25] Dungjade Shiowattana and Satyanarayana V. Lokam. An optimal lower bound for 2-query
locally decodable linear codes. Inf. Process. Lett., 97(6):244–250, 2006.

[26] Adam Smith. Scrambling adversarial errors using few random bits. In SODA, 2007.

[27] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approximation
Problems. 1992. PhD Thesis, University of California at Berkley.

[28] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the xor
lemma (extended abstract). In STOC, pages 537–546, 1999.

[29] Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes and
private information retrieval. In ICALP, pages 1424–1436, 2005.

[30] David Woodruff. New lower bounds for general locally decodable codes. In ECCC TR07-006,
2007.

[31] Sergey Yekhanin. New locally decodable codes and private information retrieval schemes. In
ECCC TR06-127, 2006.

A Construction based on Algebraic Geometric Codes

Let us provide a brief sketch of a construction based on AG-codes. Recall that our construction
based on Reed-Muller codes divides the message into smaller subsequences of size a each and then
encodes each one of them by a properly chosen instance (the RM-instance) of Reed-Muller codes. All
such encodings are then concatenated together and the resulting string is again concatenated with
its complement. The string so received is then permuted according to a pseudorandom permutation
to yield encoding. The construction based on AG-codes is exactly the same except that the RM-
instance will now be replaced by a suitable instance of AG-codes in order to encode each subsequence.
Thus, we only need to sketch a proper instance of AG-codes and argue that it gives us a private
locally decodable code with the desired properties.

First let us recall how AG-codes (also known as Goppa codes [13]) are defined. Following [17],
let K/Fq be an algebraic function field of one variable with field of constants Fq and genus g. Let
us denote the places of degree one of K by P(K). As in the case of RM-instance, we will need an
AG-code with constant information rate and hence we choose A = βa for some constant β. As a
consequence we need |P(K)| > A + 1. For µ < A and Q a place of degree one, let L(µQ) denote the
set of all f ∈ K which have no poles except one at Q of order at most µ. Then,

Definition 3 (AG codes) Let Q,u1, u2, . . . , uA ∈ P(K) be distinct. The AG code C(µQ;u1, u2, . . . , uA)
is given by the subspace {f(u1), f(u2), . . . , f(uA)|f ∈ L(µQ)}.
The minimum distance of the code is at least A − µ and the message length is at least µ − g + 1.
Thus, by carefully choosing parameters µ, g we can have a = log2 ki and A = βa for constant β. In
particular, using the methods of Garcia-Stichtenoth [8] we can easily construct a function field by
FA by extending Fq2 so that it will have enough places of degree one and an appropriate genus. We
refer the reader to [8, 17] for complete details.

12

Once we have such an AG-code, we can see that our private locally decodable codes will have to
read {f(u1), f(u2), . . . , f(uA)} in order to decode. Thus query complexity will be cA = ω(log ki))
and the information rate will be constant. The same analysis will also work out for unique decoding
and for some constant ρ as the size of field Fq is constant.

B The Definition of Unique Decoding

We defined the unique decoding via a game between the channel and the encoding and decoding
algorithms. However, our game did not allow the channel to access the encoding algorithm multiple
times before actually attempting to cause a decoding error. Here we present a game that allows the
adversary to adaptively make several attempts in order to cause decoding error.

In this setting however, we allow the sender and the receiver to share a synchronized state st.
Like in previous works [23], we require that the channel does not drop or reorder the messages. The
state need not be secret from the channel and usually a simple counter would be enough for it. The
encoding and decoding algorithms should be able to update the state information by themselves
during multiple interactions. We now present the security game below.

The channel C interacts with the sender S and receiver R repeatedly until it terminates. Each
iteration of interaction takes place as follows:

1. In hth iteration, the channel C chooses a message x(h) ∈ {0, 1}ki and hands it to the sender.

2. The sender computes (y(h), st(h+1)) ← S(x(h), sk, st(h)) and hands the codeword y(h) ∈ {0, 1}Ki

back to the channel.

3. The channel corrupts at most a fraction ρ of all Ki bits in y(h) to output the corrupted
codeword y

′(h), i.e., ∆(y(h),y
′(h)) ≤ ρKi. It gives y

′(h) and a challenge bit j to the receiver R.

4. The receiver makes at most ` (adaptive) queries into the new codeword y
′(h) and outputs

(b, st(h+1)) ←R(j, sk, st(h)).

We say that a code (K,S,R) uniquely decodes from error rate ρ if for all probabilistic polynomial
time algorithms C in the above experiment, for all messages x ∈ {0, 1}ki , and for all j ∈ [ki] we have
that Pr

[
b 6= x(h)[j]

]
= ν(ki), where the probability is taken over the random coins of K,S,R, and C.

We now argue that the constructions presented in this paper achieve the claimed parameters even
under this definition as long as the state information shared by S and R remains synchronized. This
is because, first notice that S and R have a common source of randomness which can provide them
polynomially as many random bits as they want. Now the shared state variable allows them to pick
a new set of random bits and hence a new pseudorandom permutation every time. Hence, as long
as the number of queries are polynomial in the security parameter, by the security of pseudorandom
permutation we conclude that our claims still hold.

13

