
Private Locally Decodable Codes∗

Rafail Ostrovsky Omkant Pandey Amit Sahai

Department of Computer Science
University of California, Los Angeles 90095

{rafail,omkant,sahai}@cs.ucla.edu

Abstract

We consider the problem of constructing efficient locally decodable codes in the presence of a
computationally bounded adversary. Assuming the existence of one-way functions, we construct
efficient locally decodable codes with positive information rate and low (almost optimal) query
complexity which can correctly decode any given bit of the message from constant channel er-
ror rate ρ. This compares favorably to our state of knowledge locally-decodable codes without
cryptographic assumptions. For all our constructions, the probability for any polynomial-time
adversary, that the decoding algorithm incorrectly decodes any bit of the message is negligible in
the security parameter.

1 Introduction

When a message x is sent over a channel C, the channel might introduce some errors so that the
received message differs from the original message x. To deal with this, the sender typically encodes
the given message to obtain a codeword y so that x can be recovered even if the received codeword
y′ differs from the original encoding y in some of the places.

The message is represented by a sequence of k symbols from alphabet Σ. The codeword is also
represented as a sequence of K symbols from the same1 alphabet Σ. The encoding function is
denoted by S : Σk → ΣK and the decoding function is denoted by R : ΣK → Σk. The information
rate (or simply rate) of the code is k/K and measures the amount of extra information needed by
the code for correctly decoding from errors. Such a coding scheme is called a (K, k)q-coding scheme,
where q = |Σ|.

When the whole message x should be recovered from the corrupted codeword y′, the decoding
algorithm reads y′ entirely. If one is interested in reading only one bit of x, more efficient coding
schemes are possible. In particular, it is possible to construct codes which can decode a single bit of
x by reading only a few bits of y′. Such codes are called locally decodable codes (LDCs) [1, 24, 13].

Informally, a locally decodable code with query complexity `, error rate ρ, and error correction
probability p is a pair of algorithms (S,R), where S is the encoding algorithm and R is the decoding
algorithm, such that the decoding algorithm makes at most ` queries into the corrupted codeword
y′ and recovers any given bit j of x with probability p or more if y′ differs from y in at most a ρ
fraction of alphabets. For brevity, such a code is sometimes written as (`, ρ, p)-LDC and we require

∗Part of this work was done when all the authors were at IPAM. The first author is supported in part by NSF
Cybertrust grant No. 0430254, Xerox Innovation group Award and IBM Faculty Award. The second and third authors
were supported in part from grants from the NSF ITR and Cybertrust programs (including grants 0627781, 0456717,
and 0205594), a subgrant from SRI as part of the Army Cyber-TA program, an equipment grant from Intel, and an
Alfred P. Sloan Foundation Research Fellowship.

1For simplicity we assume that the two alphabets are the same, although they can be different.

1

that p > 0.5. An LDC is called adaptive if the queries of R depend upon the answers of previous
queries. It is called non-adaptive if they depend only on the random coins of R.

Of course, locally decodable codes with high information rate, high error rate, high error cor-
rection probability, and low query complexity are most desirable. Low alphabet sizes (q = |Σ|) are
desirable too as most channels are best at transmitting only bits.

Locally decodable codes have found several notable applications. In complexity theory they have
been useful in self-correcting computations [7, 8], probabilistically checkable proof systems [1], worst-
case to average-case hardness reductions in the constructions of pseudo-random generators [2, 25],
and so on. In cryptography they have been useful due to their interesting connection with private
information retrieval protocols [5, 15, 18, 3]. Their interesting properties make them applicable in
several database applications such as fault-tolerant data storage [13]. It is tempting to say that
constructions of good locally decodable codes can yield benefits to several related fields of computer
science.

Modeling the Noisy Channel. The nature of channel errors plays an important role in the design
of good error correcting codes. Historically, there are two popular ways of modeling a noisy channel:
Shannon’s model and Hamming’s model. In Shannon’s symmetric channel model, each symbol
is changed to a random different one independently with some fixed probability. In Hamming’s
adversarial channel model, symbols get changed in the worst possible manner subject to an upper
bound on the number of errors (such as a constant fraction of the size of the codeword). It should
be noted that Hamming’s channel are computationally unbounded. As a consequence, good error-
correcting codes in Hamming’s model ensure robustness of the coding scheme. But at the same time,
constructing error correcting codes becomes more challenging in this model. In particular, good2

locally decodable codes are not known to exist in this model.
An interesting idea due to Lipton [17], models the noisy channel as a computationally bounded

adversarial channel. That is, the channel C is modeled as a probabilistic polynomial time algorithm
which can change symbols in the worst possible manner subject to an upper bound on the number of
errors. Thus, Lipton’s channels are essentially Hamming channels restricted to feasible computation.
Modeling channels in this way makes a lot of sense as all real world channels are actually computa-
tionally bounded. The codes designed in this model guarantee that if a channel can cause incorrect
decoding with high probability, it can also be used to break standard hardness assumptions.

Working with such computationally bounded channels has led to several interesting results of
late. In particular, Gopalan, Lipton, and Ding [11] develop a technique called code scrambling which
recovers from high error rates by using few shared random bits. Similarly, Micali, Peikert, Sudan,
and Wilson construct codes that can uniquely decode from error-rates beyond the classical bounds.
Other notable results that use the idea of shared randomness in particular, are the results of Lang-
berg [16] and Smith [23]. We remark that all these results are for standard error correcting codes and
not for locally decodable codes. In this paper we continue in this important direction and construct
good LDCs against computationally bounded noisy channels. We shall summarize our results shortly.

Previous Work On Locally Decodable Codes. In order to understand the significance of our
results, it is important that we shed some light on previous work related to locally decodable codes.
Mainly, there has been two important research directions in this area: proving lower bounds on the
size of LDCs and constructing good LDCs. All prior work in this area deals with computationally
unbounded channels.

The first direction investigates the relation between the code length K and the message length k
for (`, ρ, p)-LDCs. Katz and Trevisan [13] first started investigating this direction and showed that

2By good LDCs we mean LDCs with high information rate and high probability of error correction with small query
size and constant error rate.)

2

for non-adaptive LDCs, K is at least k1+ 1
`−1 (suppressing the dependence on ρ and p). Deshpande et

al [6] showed that this bound holds even for adaptive LDCs. Currently, the best known lower bounds

for general locally decodable codes are due to Woodruff [27] who shows that K = Ω
(

k
1+ 2

`−1

log k

)
. A

series of papers [10, 20, 21, 14, 26] concentrated on LDCs with ` = 2 (or 3) and established exponential
lower bounds. In particular for 2-query LDCs K = exp(Ω(ρ

2−2pk)).
The other direction focussed on constructing the locally decodable codes. Important construc-

tions in this direction for constant query length appeared in [3, 4]. Unfortunately, all these construc-
tions yield codes that are exponentially long in ki. Currently, the best known construction is due to
Yekhanin [28] who achieves locally decodable codes of sub-exponential length. For super-constant
number of queries, however, better constructions are known. In particular, for ` = (log k)O(1

p−0.5
)

Babai et al [1] constructed LDCs of size K = k1+(p−0.5).
We derive following important conclusions from these results: all known constructions in the

literature are either exponential in k or the query complexity is a huge polynomial in log k. Further-
more, most of these constructions are able to provide only a constant probability of error correction
which does not vanish with the size of the message.

Our Results. We consider the construction of locally decodable codes against computationally
bounded channel. Under the minimal cryptographic assumption that one-way functions exist, we
show how to construct asymptotically good locally decodable codes over a binary alphabet. Notice
that small alphabet size is usually a requirement as most channels are best at transmitting only bits.
Thus we have achieved locally decodable codes over binary alphabets with constant information rate.
This is already much better than all the known constructions in the literature. Our constructions
require that the encoding and decoding algorithms share a secret key that is not known to the
channel. For this reason we call our codes private locally decodable codes.

By reading at most ` = ω(log2 κ) bits in the codeword, our codes can correctly recover any given
bit with probability p ≥ 1 − κ−ω(1), where κ is the security parameter, as long as the number of
errors are less than a suitably chosen (constant) fraction. Thus, the probability of incorrect decoding
is κ−ω(1) which is negligible in the security parameter.3 Furthermore, if we allow the sender and the
receiver to share a (synchronized) shared (such as a public counter), then our codes can have query
complexity only ω(log κ). We also show that ` = ω(log κ) is necessary in order to achieve negligibly
small probability of incorrect decoding. Thus, our codes have (almost) optimal query complexity.

Our codes are non-adaptive in nature. That is, the decoding procedure can make all its ` queries
at once without any dependence on the answers received from the corrupted word. This is a feature
that might be desirable in some applications.

In some sense our results are incomparable to previous work because we work only against a
computationally bounded adversary. But, a series of lower bound results and the poor information
rate of best known constructions from previous work provide good motivation to study the problem
in this new (weak yet reasonable) model.

Organization. The rest of this article is organized as follows. The next section presents relevant
background from coding theory and cryptography. We then describe our model which is followed
by our constructions. We then conclude the paper by noting that the computationally bounded
channel model is a promising model where we can go beyond the classical bounds in the theory of
error-correcting codes.

3We can also choose the length of the input instead of the security parameter and then the error probability will
be negligible in the length of the input.

3

2 Definitions

In this section we will present relevant coding theory and cryptography. When dealing with codes,
small alphabet size is usually preferred. Thus, unless specified otherwise, from now onwards we de-
scribe our constructions only for binary alphabets. It is straightforward to see their general version
that has larger alphabet size. First we present some notations.

Notation. Vectors over {0, 1} will be represented in bold, e.g., x,y. Because we are working over
binary alphabets, occasionally we may refer to vectors over {0, 1} as (bit) strings. Concatenation of
two vectors x,y is denoted by x ◦ y. By [n] we denote the set of positive integers smaller than or
equal to n: {1, 2, . . . , n}. A function ν(n) is negligible in n if it vanishes faster than the inverse of
every polynomial P (n) for a sufficiently large choice of n. Notation ∆(x,y) represents the hamming
distance between vectors x and y which is the number of alphabet positions in which they differ.
By x[j] we denote the jth bit of x. If S is a set then the process of selecting an element e from

S uniformly at random, is denoted by: e
$← S. By π we denote a permutation (or a map) which

permutes the bits of a given string x by sending its jth bit to the position π(j). We will abuse the
notation and denote by π(x) the string obtained by applying π to x as above.

We now present some standard definitions, mostly taken from existing literature, e.g. [19].

Definition 1 (Coding Scheme) An (K, k)q-coding scheme C = (S,R) over the alphabet Σ is a
pair of encoding and decoding functions S : Σk → ΣK and R : ΣK → Σk for some positive integers
K > k, q = |Σ| ≥ 2. The (information) rate of the scheme, denoted R, is defined as R = k

K . The
(minimum) distance of the coding scheme, denoted δ, is defined as δ = minx1,x2∈Σk ∆(S(x1),S(x2))

In this paper we will be interested in asymptotic behavior of our codes. This requires us to
consider infinite families of codes. Thus, we augment our current notation by indexing them and
redefine the parameters such as the rate of the code.

Definition 2 (Family of Coding Schemes) Let C = {Ci}∞i=1 be an infinite family of coding
schemes where Ci is a (Ki, ki)qi-coding scheme and limi→∞Ki = ∞.

The asymptotic information rate and minimum distance of C, denoted R(C) and δ(C) respec-
tively, are defined as R(C) = lim infi→∞ ki/Ki and δ(C) = lim infi→∞ δi/Ki.

If {Si} and {Ri} can be computed by two uniform probabilistic polynomial time algorithms, we
say that the coding scheme is efficient.

In our constructions, as the encoding and decoding function do not change with i and only the
parameters such as message length, code length etc. vary with i, we will drop the index i from S,R.
Now we turn to the definition of standard locally decodable codes:

Definition 3 (Locally Decodable Code) An `-locally decodable code over a binary alphabet for
error rate ρ and error-correction probability p > 1

2 , abbreviated as (`, ρ, p)-LDC, is a pair of prob-
abilistic algorithms (S,R), where S : {0, 1}ki → {0, 1}Ki and R are the encoding and decoding
algorithms respectively. If x ∈ {0, 1}ki is the message and y ← S(x) is its encoding then we require
that on input j ∈ [ki], the algorithm R reads at most ` bits from a given word y′ and outputs a bit b
such that Pr[b = x[j]] ≥ p provided that ∆(y,y′) ≤ ρKi for some constant ρ.

Notice that locally decodable code is also a coding scheme as defined above but with the exception
that the decoding algorithm does not have the whole codeword as input. It rather takes a single
bit-position as input and is given oracular access to the codeword. Thus, terms such as a family of
locally decodable coding schemes and asymptotic information rate are also defined analogously for
locally decodable codes.

4

3 Our Model

We work in a shared key model where the encoding and decoding algorithms share some small secret
information not known to the channel. In particular, this information will be the secret key to the
pseudorandom permutation generator.

Deviating from traditional goals, we focus on constructing codes with high probability of recov-
ering any given bit rather than some constant probability larger than 1/2. In particular, we require
the probability of incorrect decoding to be negligible in the message length. Of course small query
complexity is desirable too along with negligible probability of incorrect decoding.

Because the encoding and decoding algorithms must share a key in our model, our codes are
named private locally decodable codes. We present the definition of a private locally decodable code
below.

Definition 4 (Private `-Locally Decodable Code) Let κ be the security parameter. A private
`-locally decodable code for a family of parameters {(Ki, ki)}∞i=1 is a triplet of probabilistic polynomial
time algorithms (K,S,R) such that:

• K(1κ) is the key generation algorithm that takes as input the security parameter κ and outputs
a secret key sk.

• S(x, sk) is the encoding algorithm that takes as input the message x of length ki = poly(κ)
and the secret key sk. The algorithm outputs y ∈ {0, 1}Ki that denotes an encoding of x.

• R(j, sk) denotes the decoding algorithm, which takes as input a bit position j ∈ [ki] and the
secret key sk. It outputs a single bit b denoting the decoding of x[j] by making at most `
(adaptive) queries into a given a codeword y′ possibly different from y.

The information rate of the scheme is lim infi→∞ ki/Ki.

Parameter ` is called the query complexity of the code. Notice that in our definition, the decoding
algorithm is supposed to have the same secret key sk as was used to encode the message. Obviously
this definition does not make sense until we introduce the probability of correctly obtaining x[j]
using the decoding procedure. But before that, we need to explain the game between the channel
and the encoding and decoding algorithms.

A computationally bounded adversarial channel C with error rate ρ is a probabilistic polynomial
time algorithm which repeatedly interacts with the encoding algorithm S and the decoding algorithm
R polynomially many times until it terminates. Each iteration takes place as follows:

1. Given a security parameter κ, the key generation algorithm outputs a secret key sk ← K(1κ).
The secret is given to both S,R but not to the channel. The channel is given κ.

2. In hth iteration, the channel C chooses a message x(h) ∈ {0, 1}ki and hands it to the sender.

3. The sender computes y(h) ← S(x(h), sk) and hands the codeword y(h) ∈ {0, 1}Ki back to the
channel.

4. The channel corrupts at most a fraction ρ of all Ki bits in y(h) to output the corrupted
codeword y

′(h), i.e., ∆(y(h),y
′(h)) ≤ ρKi. It gives y

′(h) and a challenge bit j to the receiver R.

5. The receiver makes at most ` (possibly adaptive) queries into the new codeword y
′(h) and

outputs b ←R(j, sk).

5

We say that a code (K,S,R) correctly decodes from error rate ρ with high probability if for all
probabilistic polynomial time algorithms C in the above experiment, for all messages x ∈ {0, 1}ki ,
and for all j ∈ [ki] we have that Pr

[
b 6= x(h)[j]

]
= ν(κ), where the probability is taken over the

random coins of K,S,R, and C.
In above definition, we have that maximum value of h is bounded from above by a value poly-

nomial in the length of the input. If we have a code that only works (i.e., correctly decodes from
error rate ρ with high probability) once (i.e., only for h = 1) and guarantees nothing for repeated
executions, we call such a private locally decode to be one time.

In the above definition, we assume that the adversary always sends messages of the same length
known a priori both to the sender and receiver. We stress that it is merely a technicality. If one wants
that the adversary be given the flexibility to choose the message lengths, then also our constructions
work but with a slight technical modification4.

4 Our Constructions

In this section we provide our constructions. We do this in two stages. First we provide two
constructions which work only once, i.e., they are one-time. First such construction is a simple
repetition code with log2 κ query complexity5 and the second one is based on any asymptotically
good code and has the same query complexity but a better (i.e., asymptotically positive) information
rate. In the second stage, we show how to uplift our construction so that we get a code that works
for polynomially many invocations, i.e., satisfies our actual definition.

Although we describe our construction for log2 κ query complexity, they actually work for any
query complexity that grows faster than log κ, (i.e., ω(log κ)). We also show that ω(log κ) query
complexity is essential if we want decoding error to be negligible in κ. Thus our constructions have
optimal query length.

4.1 Constructions for One-time Codes

A Simple Repetition Code. Our first code is a very simple repetition code. Let x be the string
we want to encode. Our repetition code (KREP,SREP,RREP) is as follows.

Algorithm KREP(1κ) This is a randomized algorithm which simply outputs a truly random per-
mutation π and a truly random mask r both of size Ki (the code length, to be stated later)6.
Thus, sk ← (π, r).

Algorithm SREP(x, sk) The algorithm works as follows:

• Compute x′ by repeating each bit of x for log2 κ times.

• Compute y1 ← π(x′) and output y = y1 ⊕ r.

Notice that the size of codeword y is Ki = ki log2 κ.
4Jumping ahead, in our constructions the key generation algorithm needs to output a permutation π and a mask r

truly randomly which are shared by the sender and the receiver as part of their secret keys and their length depends
on the message length to be encoded. When the adversary is given the flexibility of choosing message lengths, then
our algorithms will instead output a key to a pseudorandom function [9] which will then be used by the encoding
and decoding algorithms to compute π and r pseudorandomly depending upon the message length. Avoiding this
technicality renders a clean presentation.

5Technically, the query complexity is actually dlog2 κe, but in order to avoid the cluttering in presentation, we shall
drop floors and ceiling in formulas. This does not affect our analysis.

6

6

Algorithm RREP(j, sk) To decode, the algorithm simply reads all ` = log2 κ bit positions of cor-
rupted word y′ that correspond to bit position j of the original message x, and decides by
majority after unmasking them with r. Note that computing these bit positions requires read-
ing only ` entries from the stored permutation π and hence has polylogarithmic running time.
The algorithm works as follows:

• Let j1, j2, . . . , j` denote the ` bit positions of x′ that have the copies of x[j]. Compute
ih ← π(jh) for h = 1, 2, . . . , `.

• Compute y′[i1]⊕ r[i1],y′[i2]⊕ r[i2], . . . ,y′[i`]⊕ r[i`] and output the majority bit.

Notice that the query complexity is ` = log2 κ.

In the above, instead of ` = log2 κ we can choose any ` = ω(log κ).

Theorem 1 There exists a constant ρ such that (KREP,SREP,RREP) is a one-time private ω(log κ)-
locally decodable code that correctly decodes from error rate ρ with high probability.

Proof. It is easy to see that a bit is decoded incorrectly if and only if at least λ = `/2 of its ` copies
were corrupted. From Lipton’s theorem [17], it follows that if the permutation π and the mask r
are truly random, then the adversarial channel C behaves like a binary symmetric channel which
corrupts at most a fraction ρ of all bits. Thus, the probability p of incorrect decoding for a given
bit position j can be calculated by a simple combinatorial analysis:

p <

(
`
λ

)(
n−λ
m−λ

)
(

n
m

) <

(
256

`

λ
· eb+1ρ

)λ

(see appendix)

which is less than 2−` = ν(k) for ρ = 1
211eb+1 and ` = ω(log κ). Because probability of incorrectly

decoding a given bit is negligible and there are only ki bits, we conclude that probability of incor-
rectly decoding any bit is negligible given that the permutation π and r are truly random (which is
the case). ¥

Construction based on Any Asymptotically Good Code. In this section we present the
construction of a locally decodable code based on any asymptotically good code. We will present a
general construction and its analysis without setting the parameters explicitly. Later on, we will set
the parameters suitably so as to obtain a locally decodable code satisfying our goals. We start with
the definition of asymptotically good codes.

Definition 5 (Asymptotically Good Codes) A family of codes C = {Ci}∞i=1 is said to be as-
ymptotically good if R(C), δ(C) > 0.

We remark that efficient asymptotically good codes are known [12, 22]. Sometimes we may simply
use R and δ and drop the argument C when it is clear from the context. Also, from now on, in our
constructions we will only refer to C = (S,R) which is a (A, a)q coding scheme from the family of
asymptotically good codes. Let 1

β be the rate of the code so that A ≤ βa, where β is a constant. Let
γ denote the constant fraction such that C can recover from error rate γ (i.e. the number of errors
allowed is equal to γA symbols). Because we are working over an alphabet of size q, let c = log q,
and we will sometimes say that the message x is a sequence of c · a bits and the codeword y is a
sequence of c ·A bits. A symbol is considered corrupted if any of its c bits gets corrupted and hence
number of bit-errors e from which C can recover is still at most γA.
Our Construction. On a high level, we visualize the message x as a series of ni messages each
of which will contain a symbols from Σ, or in other words each message will contain a blocks of
c = log q bits each. That is,

x =

1︷ ︸︸ ︷
(x1 ◦ x2 ◦ . . . ◦ xa) ◦

2︷ ︸︸ ︷
(xa+1 ◦ xa+2 ◦ . . . ◦ x2a) ◦ . . . ◦

ni︷ ︸︸ ︷
(x(ni−1)a+1 ◦ x(ni−1)a+2 ◦ . . . ◦ xnia)

7

Now each message (contained in parentheses) will be encoded using the encoding function S of the
asymptotically good coding scheme C and all such encodings will be concatenated together. The
resulting string will be permuted according to a pseudo-random permutation π and XORed with
a pseudorandom string r to yield the final code. Notice that the message length for our locally
decodable code is: ki = |x| = c · a · ni. We will choose the parameters A, a for the asymptotically
good code C in such a way that we will achieve locally decodable codes with desirable properties.
Following is the formal description of our code.

Let C be the asymptotically good (aG) code with a = log2 κ where κ is the security parameter.
Let the rate of the code be 1/β and error-tolerance γ so that code length A = βa and it can correct
up to γA errors. Following is the set of algorithms.

Algorithm KaG(1κ) Same as for the repetition code: sk ← (π, r)

Algorithm SaG(x, sk) The algorithm works as follows:

• Let x = w1 ◦w2 ◦ . . .◦wni , where ws = x(s−1)a+1 ◦x(s−1)a+2 ◦ . . .◦xsa for s = 1, 2, . . . , ni.
Notice that ki = ca · ni.

• Each ws is a sequence of a symbols from Σ. Encode each ws using the encoding function
S of C to get encoded words w′

s. That is, for each s, compute:

w′
s ← S(ws)

• Let x′ = w′
1 ◦w′

2 ◦ . . . ◦w′
ni

. Compute y1 ← π(x′) and output y1 ⊕ r.

Notice that the size of codeword y is Ki = cAni = A
a ki = βki.

Algorithm RaG(j, sk) The jth bit of message x lies in ws where s = d j
ace. The decoding algorithm

simply reads all the cA bits (corresponding to w′
s) from the (possibly) corrupted encoding y′

using ` = cA queries, unmasks them using r and then decodes using the decoding algorithm
R to obtain the complete subsequence ws. Notice that positions of all cA bits corresponding
to w′

s can be computed using π in sublinear time.

• Let j1, j2, . . . , j` be the bit positions corresponding to the bits of w′
s. Then for all h =

1, 2, . . . , ` compute ih ← π(jh).

• Compute y′[i1] ⊕ r[i1],y′[i2] ⊕ r[i2], . . . ,y′[i`] ⊕ r[i`] and obtain points w′
s (possibly cor-

rupted).

• Apply the decoding algorithm R instance on possibly corrupted w′
s to obtain ws. Output

that bit of ws which corresponds to the jth bit of x.

Notice that the query complexity is ` = cA.

Above code is a private locally decodable code with positive information rate lim infi→∞ ki
Ki

= 1
β and

query complexity ` = cA = log q · β log2 κ = O(log2 κ). Notice that instead of using a = log2 κ it is
also possible to use a = ω(log κ) and then the query complexity would be ω(log κ) and information
rate would still be 1

β . Let us now prove the following.

Theorem 2 There exists a constant ρ such that (KaG,SaG,RaG) is a one-time private ω(log κ)-
locally decodable code with constant information rate that correctly decodes from error rate ρ with
high probability.

8

Proof. We have already proved the claims about information rate and query complexity. We only
need to show that the code indeed correctly recovers from some constant error rate ρ with high
probability.

Notice that the algorithm may decode a given bit j incorrectly only if w′
s is corrupted in at least

λ = γA bit positions. This is because C can correctly recover from error rate γ. We thus need to
bound the probability that more than λ bits of w′

s are flipped by any adversary. As π and r are
truly random we can use Lipton’s theorem, and bound this probability just by analyzing the code
represented by x′ in the presence of a binary symmetric channel7 which only corrupts at most a ρ
fraction of all Ki bits. Now the probability p of incorrectly decoding bit j can be bounded by a
simple combinatorial argument:

p <

(
cA
λ

)(
n−λ
m−λ

)
(

n
m

) <

(
256

cA

γA
· eb+1ρ

)λ

(see appendix)

which is less than 2−` = ν(κ) for ρ = γ

c·28+ c
γ eb+1

and ` = ω(log κ). Because there are only ki = poly(κ)
bits, it follows that the probability of incorrectly decoding any bit is ν(κ). ¥

4.2 Final Construction

In this section, we now show how to uplift our one-time constructions so that they work for poly-
nomially many times. Suppose that we had multiple independent permutations π every time we
needed to encode a message. In that case, our one-time construction will work for multiple times.
But we do not want to keep any synchronized state. So how can we make our constructions work?
The idea is to divide the codeword obtained from one-time code into small chunks and then encrypt
each chunk using a suitable encryption scheme. This way, we hide the permutation π behind the
encryption scheme and hence can use just that permutation every time we encode.

There are two small issues with this. First, we cannot use an off-the shelf encryption scheme
because it might blow up the size of the chunk by a factor of the security parameter κ. Thus,
we instead encrypt the chunk by a pseudorandom one-time pad obtained from a pseudorandom
function [9]. Exact details will be given in the description to follow. Second problem is that we even
if a single bit gets corrupted in the ciphertext, the whole ciphertext gets corrupted. Thus, we use an
off-the-shelf error-correcting code to further encode the ciphertext obtained from each chunk. We
require that this error-correcting code be asymptotically good, otherwise our final code will not have
constant information rate. Details follow.

Let fkey denote a pseudorandom function with the key key. Let (KaG,SaG,RaG) be the one-
time coding scheme that we will use as our base. Let log2 κ where κ is the security parameter.8 Our
final private locally decodable code (KFIN,SFIN,RFIN) is as follows:

Algorithm KFIN(1κ) This algorithm first runs KaG((1κ)) to obtain sk′ and then chooses a truly
random seed key of size log2 κ for the pseudorandom function f . It sets sk ← (sk′,key).

Algorithm SFIN(x, sk) The algorithm works as follows:

• Obtain y′ ← SaG(x, sk′). Let K ′
i = |y′|. Divide y′ into chunks B1, B2 . . . , Bz of size a

each where z = K ′
i/a. Now, encrypt each Bh as Eh = (rh, fkey(rh) ⊕ Bh) where h ∈ [z]

and rh is a string of length a chosen uniformly at random.

• Now, encode each ciphertext Eh using an asymptotically good code of information rate
1/β1: Fh ← S(Eh). Let y = F1 ◦ F2 ◦ . . . ◦ Fz. Notice that |y| = 2β1K

′
i. Output y.

Notice that the size of codeword y is Ki = 2β1K
′
i = 2ββ1ki.

7Recall that BSC introduces errors randomly with some fixed error probability.
8Any a=ω(log κ) would also work for our constructions.

9

Algorithm RFIN(j, sk) The decoding algorithm will first run the RaG(j, sk) and let j1, j2, . . . , j
′
`

denote the indexes queried by RaG (where `′ is query length of the one-time code). From
the construction, these queries are actually queries into the intermediate code y′. Let Bjh

,
0 ≤ h ≤ `, denote that chunk of y′ in which the jth

h bit of y′ lies. Then, RFIN reads all bits of
y′ corresponding to each block Fjh

, for j1, j2, . . . , j`. Thus the query length is ` = a`′. Note
that these blocks may be corrupted. Now algorithm proceeds as follows:

• Decode each block Fjh
using the decoding algorithm R to obtain (possibly incorrect)

blocks Ejh
= (rjh

, E′
jh

). Now compute Bjh
= E′

jh
⊕ fkey(rjh

). Notice that Bjh
may be

totally different from what it was originally when encoded. Read that bit of Bjh
that

corresponds to jth
h bit of y′ and give it to RaG when asked.

• Return whatever is returned by RaG.

Notice that the query complexity is ` = a`′.

Above code is a private locally decodable code with positive information rate lim infi→∞ ki
Ki

= 1
2ββ1

and query complexity ` = a`′. As, `′ = ω(log κ) we could have used any a = ω(log κ), we have a
code with query complexity ω(log2 κ) and information rate would still be 1

2ββ1
. Let us now prove

the following.

Theorem 3 There exists a constant ρ such that (KFIN,SFIN,RFIN) is a private ω(log2 κ)-locally
decodable code with constant information rate that correctly decodes from error rate ρ with high
probability.

Proof (Sketch). We have already proved the claims about information rate and query complexity.
We only need to show that the code indeed correctly recovers from some constant error rate ρ with
high probability.

We will prove this theorem by a hybrid argument. Consider the game played by the channel
with sender and receiver in the definition of correct decoding with high probability. First assume
that in this game whenever adversary asks to encode a message, the one-time encoding algorithm
always uses a new π and a new mask r both chosen uniformly at random. We will then show that
there exists a constant ρ such that RFIN) decodes correctly with high probability from error rate ρ.

Let ρ1 and ρ2 be the error-tolerance of coding schemes (KaG),SaG),RaG) and (S,R) used by
the final code. Now, notice that, channel can corrupt at most ρKi bits. Because corrupting each
block Fh in the final code requires corrupting at least ρ2|Fh| bits of Fh, the channel can corrupt
at most ρKi

rho2|Fh| blocks which cannot be recovered by R. Let S denote the index of these blocks.
Now consider an adversary A for the one-time coding scheme who divides y′ into blocks of size a
each and corrupts exactly those blocks (by flipping all a bits) whose index appears in S. Total
bits corrupted by this adversary are a · |S|. If a · |S| ≤ ρ1|y′| then A causes incorrect decoding for
the one-time coding scheme whenever the channel causes incorrect decoding for our final code. By
setting ρ = ρ1ρ2 (a constant) we can ensure that a · |S| ≤ ρ1|y′|.

Now we turn to prove that above holds even if the encoding algorithm uses a fixed π and r
every time which were chosen once (uniformly at random). We will reduce it to the security of the
encryption scheme.

Suppose that the adversary can cause incorrect decoding when a fixed permutation and a fixed
mask are used every time. Using a standard hybrid argument it can be shown that there will exist a
point (during conversion from one hybrid to another) where the adversary will distinguish whether
the permutation used inside is a truly random one or the one that has been used before. But
because the message gets encrypted after permuting, by the security of the encryption scheme, all
permutations should look the same for a computationally bounded adversary. Thus, if the adversary
distinguishes between the two case, it breaks the encryption scheme. We omit the details. ¥

10

4.3 Remarks

First we would like to remark that superlogarithmic query length is essential for correctly decoding
with high probability. That is,

Lemma 1 Private locally decodable codes with query complexity O(log κ) (or smaller) that decode
from constant error rate with high probability do not exist.

Proof. Let ` = O(log κ). Following is a very simple adversarial strategy which succeeds in incorrect
decoding with non-negligible probability. The channel C chooses ρKi bit positions in the encoded
word uniformly at random and corrupts them, where ρ is some constant. Now it chooses an index
j ∈ [ki] uniformly at random and asks us to decode the jth bit of the message. Let us compute
the probability of incorrect decoding. Let i1, i2, . . . , i` be the bit positions that the decoding algo-
rithm would have queried. Then probability that the ρKi corrupted bits include the bit positions
i1, i2, . . . , i` is (ρKi > `): (

Ki − `

ρKi − `

)
/

(
Ki

ρKi

)
≈ ρ` = κ−O(1)

which is non-negligible. ¥

Thus, query complexity of our constructions is already optimal up to a logarithmic factor. Fur-
thermore, if we are willing to allow sender and receiver share a small synchronized state then our
constructions can achieve the query complexity ω(log κ) which will be essentially optimal. This is
done by choosing the permutation and the mask pseudorandomly based on a shared key for pseudo-
random generator and the synchronized state. Details are straightforward and hence omitted.

Usually, the shared state model is not considered an interesting model. However, in our con-
struction, because the state need not be secret and can be implemented by something as simple as
a counter, we believe it to be reasonable. In particular it does not require any secret storage or
advance sharing of messages that we want to encode!

5 Conclusion

In this paper, we constructed efficient locally decodable codes against a computationally bounded
adversarial channel. Our codes can recover any given bit of the message with negligible probability
of incorrect decoding and make an optimal number of queries into the corrupted codeword in order
to do so. Our results compare favorably to our state of knowledge locally-decodable codes without
cryptographic assumptions and are illustrative of the powers of computationally bounded channel
model.

References

[1] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In STOC, pages 21–31, 1991.

[2] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. Bpp has subexponential time
simulations unless exptime has publishable proofs. Computational Complexity, 3:307–318, 1993.

[3] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified
construction. In ICALP, pages 912–926, 2001.

[4] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Raymond. Breaking the
o(n1/(2k-1)) barrier for information-theoretic private information retrieval. In FOCS, pages
261–270, 2002.

11

[5] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information re-
trieval. J. ACM, 45(6):965–981, 1998.

[6] Amit Deshpande, Rahul Jain, Telikepalli Kavitha, Jaikumar Radhakrishnan, and Satya-
narayana V. Lokam. Better lower bounds for locally decodable codes. In IEEE Conference
on Computational Complexity, pages 184–193, 2002.

[7] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In STOC, pages 32–42, 1991.

[8] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf. Process.
Lett., 43(4):169–174, 1992.

[9] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[10] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower bounds
for linear locally decodable codes and private information retrieval. In IEEE Conference on
Computational Complexity, pages 175–183, 2002.

[11] Parikshit Gopalana, Richard J. Lipton, and Y.Z. Ding. Error correction against computationally
bounded adversaries. In Manuscript, 2004.

[12] Jørn Justesen. A class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18:652–656, 1972.

[13] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC, pages 80–86, 2000.

[14] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. In STOC, pages 106–115, 2003.

[15] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, pages 364–373, 1997.

[16] Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In FOCS,
pages 325–334, 2004.

[17] Richard J. Lipton. A new approach to information theory. In STACS, pages 699–708, 1994.

[18] E Mann. Private Access to Distributed Information. 1998. Master’s Thesis, Technion.

[19] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal Error Correction
Against Computationally Bounded Noise. In TCC’06. Springer-Verlag, 2006.

[20] Kenji Obata. Optimal lower bounds for 2-query locally decodable linear codes. In RANDOM,
pages 39–50, 2002.

[21] Dungjade Shiowattana and Satyanarayana V. Lokam. An optimal lower bound for 2-query
locally decodable linear codes. Inf. Process. Lett., 97(6):244–250, 2006.

[22] Michael Sipser and Daniel A. Spielman. Expander codes. In FOCS, pages 566–576, 1994.

[23] Adam Smith. Scrambling adversarial errors using few random bits. In SODA, 2007.

[24] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approximation
Problems. 1992. PhD Thesis, University of California at Berkley.

12

[25] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the xor
lemma (extended abstract). In STOC, pages 537–546, 1999.

[26] Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes and
private information retrieval. In ICALP, pages 1424–1436, 2005.

[27] David Woodruff. New lower bounds for general locally decodable codes. In ECCC TR07-006,
2007.

[28] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. In STOC,
2007. Also appears on ECCC as TR06-127 under a different title.

A Probability of incorrect decoding

Here we provide calculations that we used in our proofs for bounding the probability of incorrect
decoding. Let n be the length of the code and m = nρ be the number of errors. In the following we
assume that ` and λ are quite small ((e.g. polylogarithmic in n)) compared to n and ` < λ. First
notice that, (

`

λ

)
≤

(
`e

λ

)λ

where e is Euler’s constant. Next we have the following using Stirling’s approximation:
(

n− λ

m− λ

)
≤ 16 ·

(
n− λ

n−m

)n (
n−m

m− λ

)m (
m− λ

n− λ

)λ

= 16 ·
(

1
1− aρ

)n (
1− aρ

aρ

)m

(aρ)λ where a =
1− λ

m

1− λ
n

< 1

= 16 · S1 · (aρ)λ where S1 =
(

1
1− aρ

)n (
1− aρ

aρ

)m

Similarly,
(

n

m

)
≥ 1

16
· S2 · where S2 =

(
1

1− ρ

)n (
1− ρ

ρ

)m

Now notice that,

S1

S2
= a−m

(
1− ρ

1− aρ

)n−m

< a−m (as a < 1) =

(
1− λ

n

1− λ
m

)m

=

(
1− ρ λ

m

1− λ
m

)m

=

(
1 +

(1− ρ) λ
m

1− λ
m

)m

=
(

1 +
1
x

)m

where
1
x

=
1− ρ
m
λ − 1

=
(

1 +
1
x

)xy

where y =
m

x
< bλ (for some constant b)

< ebλ

Finally, using all the above relations we get

p <

(
`
λ

)(
n−λ
m−λ

)
(

n
m

) < 256
(

`e

λ

)λ

(aρ)λebλ <

(
256

`

λ
· eb+1ρ

)λ

as a < 1

13

