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Abstract - We present a novel technique for verifying the integrity of data stored in an untrusted
memory with a small number of memory accesses. Memory integrity verification, which enables detection
of tampering of data stored in untrusted memory, is an essential requirement of secure processors that
provide private and tamper-proof computation. Limited on-chip storage in a secure processor makes it
necessary for it to store data (including program code) in an untrusted external memory where it is easily
susceptible to adversarial tampering. Thus, to ensure validity of computation, it is extremely important to
have techniques that can verify integrity of data stored in untrusted memory. Existing memory integrity
verification techniques, like Merkle trees, impose very high communication overhead, i.e., large number
of queries from processor to memory, in order to perform data integrity verification. Given that memory
latency is very high compared to execution speed of the processor, this imposes a significant running time
penalty for applications executing on the processor. Our proposed technique, which is based on Chinese
remaindering theorem, performs integrity verification with low communication overhead while incurring
a modest increase in on-chip storage requirement. We present the details of the proposed technique and
provide corresponding proofs of security and correctness. Our technique can not only be used by itself,
but can also be incorporated into existing techniques, like Merkle trees, to reduce their communication
overhead.

1 Introduction

Memory integrity verification refers to the process of detecting any unauthorized tampering of data
stored in external memory. This verification is an important component of secure and trusted processing
architectures. Most of the proposed architectures for secure and trusted computing comprise a tamper-
proof processor enclosing on-chip memory for storing cryptographic keys, and highly sensitive code and
data (e.g., that of the trusted kernel), and special-purpose cryptographic hardware for carrying out
efficient cryptographic computations [1, 2, 3]. However, code and data of trusted applications that
cannot be stored in the limited trusted on-chip memory is sent to the external memory which is outside
the secure perimeter imposed by the tamper-resistant processor casing. Thus, it is imperative to have a
memory integrity verification scheme that can detect any unauthorized tampering of data between the
time it is written into and read back from the external memory by the secure processor.

The external memory, containing program code and data, is assumed to be in total control of an
adversary who can alter values in any memory location in any manner. Memory integrity verification
is done through a program running on the secure processor and ensures the integrity of code and data
requested by any program in the course of its normal execution. In order to verify the integrity of external
memory values requested by a program, the verification program makes queries to the external memory
for additional data. The number of additional queries made by the verification program is referred to as
its communication complexity. The verification program has dedicated on-chip private memory for storing
values used for checking the integrity of untrusted external memory. The size of on-chip private memory
used by the verification program is referred to as its space complexity. The two main requirements of any
effective memory integrity verification program are as follows:

• It should detect any form of adversarial corruption of values stored in external memory.

• Since integrity verification is done on code and data requested by an executing program, it is
important that verification should not impose a significant execution time overhead.
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For the sake of efficient performance, the communication complexity of an integrity verification program
should be as low as possible (since memory accesses are quite time-consuming). However, reducing
communication complexity comes at the cost of increased space complexity. This observation can be
formally described as follows. Given an external memory of size n blocks that is partitioned into sets of
size m blocks each, cryptographic hashing is applied to all the d n

me sets, and the resulting d n
me hash values

are stored in the on-chip private memory of the verification program. When a memory block belonging
to set i is read by an executing program, in order to verify the integrity of the block read, the remaining
(m− 1) blocks in set i have to be read so that the hash value of set i can be computed. This computed
hash value is compared with the pre-computed hash value (of set i) stored safely on the processor, and a
match implies that the set (and, thereby the block) was not tampered with. The space complexity of this
scheme is O( n

m), and the communication complexity is O(m). They are inversely related. An ingenious
solution with O(1) space complexity is offered by Merkle tree [4] for applications which require low space
overhead. A Merkle tree is a tree data structure in which the memory sets comprise leaf nodes of the
tree, and every internal node holds the hash of the concatenation of contents of all its children. Only the
hash in the root node is stored securely on the processor. In order to verify the integrity of a block read
from partition i, the contents of every node and its siblings lying on the path from the leaf node (holding
partition i) to the root node have to be read, in order to compute the root hash. The computed root
hash is compared with the pre-computed root hash value stored on the processor. The communication
complexity of Merkle tree-based scheme is O(m+ log2(

n
m)) which can be quite significant for large values

of n. Moreover, reducing m decreases one factor of Merkle tree communication complexity, but increases
the other. Thus, there is a limit to performance gained by reducing m. However, with continuing trend
towards rapidly widening gap between processor and memory speeds, high communication complexity of
a memory integrity scheme can significantly increase the latency of memory accesses. Due to increasing
processor die sizes, we can afford to tolerate space complexity. However, it is highly desirable that the
communication complexity of a memory integrity verification scheme be low.

1.1 Contribution of the paper

We propose a memory integrity verification technique that significantly reduces the communication com-
plexity without incurring a corresponding increase in space complexity (as indicated by the inverse re-
lationship between communication and space complexities). Our technique achieves its stated goal by
employing the Chinese remainder theorem (CRT) [5].

As before, let us assume that n blocks of main memory are divided into d n
me sets each having m

blocks. In the proposed method, the hash of a set is calculated in such a manner that in order to verify
the integrity of a block belonging to it, we only need a small subset of blocks (say, k) rather than all the
m blocks in the set. Here, each set i, 1 ≤ i ≤ d n

me, is further sub-divided into dm
k e partitions of size k

blocks each. The hash value of set i, H i, is computed as a function of the hash values of the contents of
the dmk e partitions, H i

j, 1 ≤ j ≤ dm
k e, in such a manner that there is an invariant relation between H i

and each H i
j. This invariant relation is established by CRT. When a block is read from partition j of set

i, its integrity is verified as follows:

• Read the remaining (k − 1) blocks from partition j.

• Compute the hash value, H i
j, of partition j.

• Check if the partition hash value H i
j satisfies the invariant relation with the hash value of the set

i, H i (which is pre-computed and stored in the private on-chip memory).

• If the property is satisfied then it implies that the block was not tampered with.

The salient feature of the proposed scheme is that the communication complexity is independent of
memory size (n) and set size (m), and is dependent only on a constant k which is independent of n
and m. The scheme achieves this reduction in communication complexity with O( n

m ) space complexity.
Table 1 summarizes the complexities of the three memory integrity verification schemes described above:
store hashes (of the sets), Merkle tree and the proposed scheme.
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Table 1: Comparison of space and communication complexity

Scheme Communication Space
complexity complexity

Store hashes O(m) O( n

m
)

Merkle tree O(m + log2(
n

m
)) O(1)

Proposed O(k) O( n

m
)

1.2 Related work

Most of the previous work in memory integrity verification has relied on the use of Merkle tree (or
hash tree) [4] which was originally proposed as a way of authenticating data between untrusted entities
using a minimum amount of memory. Blum et al. [6] were the first to propose the use of hash tree for
verifying the correctness of data stored in large untrusted memories and provided theoretical proofs of
security. Subsequently, hash tree-based memory integrity verification has been used in various scenarios:
for building secure databases using untrusted storage [7], managing the persistent state in digital rights
management systems [8], verifying data structures, like stacks and queues, stored in untrusted memory
by memory-constrained embedded systems such as smartcards [9], and certifying program execution on
a trusted processor [10]. Though the space complexity of hash tree-based schemes is small (O(1) since
only the root hash is stored securely), the communication complexity is O(logmN) where m is number
of children per node and N is the number of leaf nodes in the hash tree (also, the number of blocks in
the memory if there is a block per leaf node). Wide usage of hash trees prompted research aimed at
mitigating the performance drawback of hash-tree based memory integrity verification schemes. Gassend
et al. [11] proposed cache-centric architectural enhancements directed at reducing the latency of tree-
based integrity verification. Williams and Sirer [12] use analytical modeling to determine the size of the
leaf node, i.e., the number of memory blocks per leaf, that will result in an optimal performance. Both
these works [11, 12] improve performance by fine-tuning implementation-specific parameters, and do not
propose any conceptual changes. Any architectural recommendations which involve increasing the size
of on-chip storage will also improve the performance of the proposed scheme. On the theoretical side,
there are some works which propose hash functions that enable fast incremental hash recomputation on
modified data which find application in memory integrity checking [13, 14, 15]. However, these works
are broad in scope, and they do not specifically target reducing communication complexity of memory
integrity checking. Our proposal significantly reduces communication complexity compared to the existing
techniques by proposing a conceptual advancement based on a number-theoretical construct. In addition,
the space overhead for realizing this reduction in communication complexity is modest.

The rest of the paper is organized as follows. Section 2 provides formal definitions of the routines used
by the proposed technique, and their corresponding security definitions. Section 3 gives a brief description
of some cryptographic tools and the manner in which they can be used to obtain concrete implementations
of the abstract formulations given in the previous section. It also enumerates the security proof of the
implementation. Section 4 presents results comparing communication complexity of the proposed scheme
with existing methods for a typical system configuration. Section 5 concludes with some observations
and directions for future work.

2 Definitions

In this section, we begin by giving a formal description of a memory integrity verifier (or checker), and
follow it up with a formal definition of the sub-routines used by our proposed scheme. We end the section
by formulating the security requirements to be satisfied by our technique in order for it to be considered
secure against adversarial attacks.

2.1 Basic model and definitions

A memory integrity checker is a program that detects any corruption of data stored in a large untrusted
memory. The checker runs within a secure and tamper-proof perimeter while an adversary is assumed to
have total control over the external memory. As part of its operation, the checker maintains a state of the
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external memory in a much smaller private memory, and uses this state value to detect any corruption
of values stored in the untrusted memory. The checker program handles the loads and stores issued by
the processor in the following manner:

• STORE(x,y): The checker updates its state variable to reflect that value y was written into memory
location x.

• LOAD(x): Using its state variable, the checker verifies if value z read from memory location x is
the same as the value last written into it. If the checker determines with sufficiently high confidence
that value z is uncorrupted, then it passes it to the processor with the signal “accept”. Else, it
sends a “reject” signal to the processor.

Processor
Memory
integrity
checker

Trusted 
memory

Tamper-proof casing Untrusted external
memory

LOAD(x) 

Read (x)
Write (x, y)

Memory location x

STORE(x,y)

Figure 1: Memory integrity checker

Figure 1 illustrates the working of a memory integrity checking program. The size of the trusted
memory used by the checker to store the state variable determines its space complexity. The functioning
of a memory checker can be formally specified as follows:

Definition 1: A memory integrity checker is a probabilistic program C that maintains a private value
state which is updated on writes to an untrusted memory M . If y is a value written to location x in M ,
and z the value read subsequently from the same location, then the following conditions hold:

• Completeness: Pr[∀x, y, z: y = z 3 C(state, x, z) = accept] ≥ (1− ε).

• Soundness: Pr[∀x, y, z: y 6= z 3 C(state, x, z) = accept] < ε

Completeness implies that valid inputs are accepted by C with overwhelming probability, and soundness
implies that wrong inputs are accepted by C with negligible probability. A challenge is to compute the
state in such a way that its size is reasonable while being able to detect corruption of values in memory
with a high probability, i.e., make ε as small as possible.

The proposed memory integrity checking technique comprises two routines: UPDATE() and CHECK().
The UPDATE() routine constructs and updates the state of the checker to reflect new additions and
modifications to existing values in untrusted memory, and CHECK() utilizes the state of the checker to
determine whether the values read in from external memory are corrupted. Given the functionality of
the two routines, we can see that they have asymmetric constraints: UPDATE() can afford to incur a
time penalty in order to construct and maintain the checker state such that it accurately encapsulates
the characteristics of legitimate changes made to values in the memory while CHECK() has to have low
latency as it is called on every load instruction issued by a program executing on the processor (assuming
loads are much more frequent than stores which is usually the case). We now proceed to formally define
both the routines.

Definition 2: Let M i = {M i
1,M

i
2, . . . ,M

i
n} be a set of n equal-sized partitions. UPDATE() takes set

M i as input, and outputs a pair of values, HASHM i and STATEM i, i.e., (HASHM i , STATEM i) ←
UPDATE(M i). HASHM i is the public hash value of set M i while STATEM i is a private state value (stored
securely in on-chip memory) used by the checking procedure to detect any corruption in the partitions of
set M i. Then, the CHECK() procedure should satisfy the following properties:
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• Completeness: Pr[∀M i, (HASHM i , STATEM i)←UPDATE(M i),
∀M i

j ∈M i 3 CHECK(HASHM i, STATEM i , j,M i
j)= 1] ≥ (1− ε)

• Soundness: Pr[∀M i, (HASHM i , STATEM i) ← UPDATE(M i),
∀M i

j′ /∈M i 3 CHECK(HASHM i, STATEM i , j′,M i
j′)= 1] < ε

A subtler form of soundness is the property of collision resistance which says that two different
sets of n partitions, M i and M j , should not be mapped by UPDATE() to the same hash value, i.e.,
Pr[∀M i,M j , M i 6= M j, (HASHM i , STATEM i)← UPDATE(M i), (HASHMj , STATEMj )←
UPDATE(M j) 3 HASHM i = HASHMj ] is negligible. Collision resistance is related to soundness
because if M i 6= M j collide, then the hash value and state generated for M i can be used successfully to
fool the checking routine for input M j .

2.2 Security definitions

We make the assumption that routines UPDATE() and CHECK() are executed securely, and an adversary
cannot interfere with their operation. However, it is possible that an adversary can gather enough
information by observing the inputs and outputs of the memory integrity checker program to be able to
successfully simulate its operation. Such an adversary is known as a passive adversary. In contrast, an
active adversary is one who is able to provide inputs of his choice to the checker program and observe the
corresponding outputs with the aim of being able to successfully simulate the memory checker program.
The two routines, UPDATE() and CHECK(), are considered to be secure against an adversary (passive or
active) if he is successful in simulating the memory checker program with only a negligible probability.

Definition 3: A memory integrity checker C comprising routines UPDATE() and CHECK() is said to be
(p, k)-secure against a passive attack by a computationally bounded adversary A if

Pr







A

(

T k

(

(XM i , YM i)← OUPDATE(M i),

OCHECK(Y
Mi)(XM i , j,M i

j )

))

= (X ′, j′,M i
j′)

3 OCHECK(YMi)(X ′, j,M i
j′) = 1






< p

where M i = {M i
1,M

i
2, . . . ,M

i
n} is a set of n partitions, OUPDATE(M i) indicates A’s black-box access

to the UPDATE() routine with M i provided as input to generate the corresponding hash value and state
(XM i , YM i, respectively), and OCHECK(Y

Mi)(XM i , j,M i
j ) represents A’s black-box access to the CHECK()

routine such that the secret parameter YM i is not revealed, however, it can observe the result of run-
ning the routine on public inputs (XM i , j,M i

j ). T k(., .) is a random variable comprising k samples of

independent executions of UPDATE() and CHECK() on uniformly generated values of set M i and index j
(M i

j is dependent on M i and j), and A(T k(., .)) = (X ′, j′,M i
j′) indicates A’s ability to generate a tu-

ple (X ′, j′,M i
j′) (different from values observed in the k samples) after observing the k executions such

that the tuple successfully fools the CHECK() routine, and p is the upper bound on the probability of A
generating a successful tuple.

A formal definition of security against an active adversary can be similarly defined wherein adversary
A has the additional ability to generate his choice of set M i and observe the execution of UPDATE() and
CHECK() on these inputs. The number of samples k is assumed to be polynomially bounded. Also, in
each case, the adversary is assumed to be computationally bounded, i.e., is a probabilistic polynomial
time algorithm. Security against an active adversary is a much stronger notion than security against a
passive adversary.

3 CRT-based memory integrity verification

In this section, we present concrete details regarding the working of the proposed memory integrity
verification technique. We begin by enumerating the mathematical tools which form the underpinning of
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our method (Section 3.1), followed by a high-level description of the proposed method (Section 3.2), and
a discussion on security intuition (Section 3.3). Next, we give implementation details of two routines,
UPDATE() and CHECK(), which are built using the mathematical tools previously described and form the
building blocks of the proposed method (Section 3.4). Then we provide the description of the proposed
memory integrity verification method which uses the two routines described (Section 3.5). We conclude
the section with an analysis and discussion of the security properties of the proposed method (Section 3.6).

3.1 Mathematical tools

The proposed technique employs four mathematical tools: cryptographic hashing, fingerprinting func-
tion, universal hashing and CRT [5]. We enumerate the essential features of these concepts and their
functionality in the proposed scheme.

• Cryptographic hashing: A cryptographic hash is a collection of functions parameterized on a key K
that maps arbitrary-length strings to fixed-length strings, i.e., {HK : {0, 1}∗ → {0, 1}a}, in a way
such that the following three properties are satisfied,

– Pre-image resistance: It should be computationally infeasible to find an input value which
hashes to the specified output value (also called non-invertibility).

– Second pre-image resistance: It should be computationally infeasible to find a second input
value that hashes to the same output value as the specified input value.

– Collision resistance: It should be computationally infeasible to find two input values that
hash to the same output value, i.e., Pr[∀m,m′ ∈ {0, 1}∗,m 6= m′ 3 HK(m) = HK(m′)] is
negligible.

Construction of most of the standard cryptographic hash functions is based on the Merkle-Damgard
method [13]. In our method, a hash function is used to map contents of arbitrary-sized partitions
of main memory blocks to fixed-length strings. Any of the standard cryptographic hash functions
(SHA-1, MD5, RIPEMD-160, etc.) would suffice for our scheme.

• Fingerprinting function: A fingerprinting function is a collection of functions parameterized on
a key P which produces short tags (fingerprints) for a collection of larger objects, i.e., {FP :
Ω → {0, 1}b} where Ω is the set of all possible objects of interest and b is the length of the
fingerprint [16]. For any set S ⊂ Ω of n distinct objects, and function f chosen randomly from the
family of fingerprint functions, f(x) 6= f(y) implies x 6= y for any x, y ∈ S. However, in adversarial
situations, fingerprinting functions are not as collision-resistant as cryptographic hashes. We use
fingerprinting in our method to map the cryptographic hashes to smaller-length strings with the
aim of reducing the size of output generated by subsequent CRT computation. We use the Rabin
fingerprinting technique which maps an m-bit binary input value A = (a1, a2, . . . , am), represented
as a polynomial of degree m− 1, A(x) = a1x

m−1 + a2x
m−2 + . . .+ am, to a b-bit fingerprint F (x) =

A(x)modP (x) where P (x) is an irreducible polynomial of degree b [17]. The operation of division
modulo a polynomial over GF (2) is implemented through a simple linear feedback shift register
whose feedback connections are determined by the coefficients of the dividing polynomial P (x).

• Universal hashing: A family of functions H from domain D to range R is said to be ∆-universal if
for all x, y ∈ D with x 6= y and all δ ∈ R (an Abelian group), Prh∈H [h(x) − h(y) = δ] ≤ 1/|R|.
We use a ∆-universal hash function to make the selection of primes used in the CRT computation
dependent on a randomly chosen subset of the cryptographic hash function. This improves the
overall security of the proposed technique (explained further in the next section). In the proposed
scheme, we realize strongly universal hashing through the use of the square hash [18] which is

defined as hx(m) =
∑k

i=1(mi + xi)
2 mod q, where x = (x1, . . . , xk),m = (m1, . . . ,mk) ∈ Zk

q and q
is prime.

• CRT: CRT states that given n relatively prime positive integers, p1, p2, . . . , pn, and integers r1, r2,
. . . , rn such that ri ∈ Zpi , there exists a unique integer X ∈ Z∏n

i=1
pi

such that X ≡ ri modpi.

This property of CRT, which establishes a well-defined invariant relation between the value X, and
each member of the set {r1, r2, . . . , rn}, is pivotal for our method, i.e., every ri is a residue of X
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reduced with modulus pi. In the proposed method, the modular residues ri’s are fingerprints of
cryptographic hashes of contents of the memory partitions in a set, and the integrity of memory
partition i is verified iff its fingerprint ri = X mod pi (where pi is the prime corresponding to
partition i and was used in the CRT computation of X).

3.2 Overview of the proposed technique

We provide an overview of the proposed technique by illustrating the manner in which the tools described
in the previous section are used to achieve the desired objective of memory integrity verification with
low communication complexity. At the same time, we do not want to impose a high space overhead for
achieving this goal. Let M i = {M i

1,M
i
2, . . . , M i

n} be a set of n equal-sized partitions such that |M i
j | = l1,

1 ≤ j ≤ n (|x| = b(log2 x + 1)c indicates the bit-width of x). We want to generate the hash value for
set M i, and its corresponding state information which is used to verify the integrity of any partition
M i

j ∈M i independently of the other partitions in M i. To keep the space overhead low, we need to make
the size of the state information as small as possible. The generation of hash value and state information
corresponding to set M i is done as follows:

1. First, a cryptographic hash function is used to map the large memory partitions into much smaller
fixed-size hash values which satisfy the above-mentioned cryptographic properties. The crypto-
graphic hash function HKi(), parameterized on key Ki, is defined as H: {0, 1}l1 × {0, 1}|Ki | →
{0, 1}l2 , l1 > l2, which maps l1-bit contents of the jth partition M i

j to an l2-bit hash value hi
j =

HKi(M
i
j), 1 ≤ j ≤ n.

2. In the second step, the cryptographic hashes are mapped to smaller-sized fingerprints. This is done
primarily to reduce the size of the state information of set M i which is generated by combining
the n partition fingerprints using CRT. Also, the smaller-sized fingerprints reduce the complexity
of the CRT computation. The Rabin fingerprinting function FPi(), parameterized on an l3-degree

irreducible polynomial Pi, is defined as F : {0, 1}l2 × {0, 1}|Pi | → {0, 1}l3 , where l2 > l3, which
reduces an l2-bit cryptographic hash hi

j to an l3-bit fingerprint f i
j = FPi(h

i
j), 1 ≤ j ≤ n.

3. Finally, the partition fingerprints f i
j (1 ≤ j ≤ n) are combined by CRT to generate the state

information of set M i. To enable CRT computation, a distinct prime is associated with each
fingerprint. Let P = {p1, p2, . . . , pq} be a set of q primes where q > n and |pj| = (l3+1) (1 ≤ j ≤ q).
For set M i, the 1-1 mapping πi: {1, 2, . . . , n} → {1, 2, . . . , q} is used to select n distinct primes
from set P (the πi mapping has a security implication which is explained in the next section).
The CRTp

πi(1)
,p

πi(2)
,...,p

πi(n)
() function defined as CRT : {0, 1}n·l3 × {0, 1}n·(l3+1) → {0, 1}l4 where

l4 < n · (l3 + 1), generates an l4-bit output X i such that X i ≡ f i
j mod pπi(j). Xi is the state

information of set M i which is stored securely in a trusted memory, and HKi(X
i) is the hash value

that is made public.

In a conventional scheme, where the hashes of the sets are stored, the contents of set M i would be hashed,
and the hash value (length l2) stored securely. In order to keep the space complexity of the proposed
scheme comparable, it is desirable that l4 (size of state X i) is within a factor of l2 (hash value length),

i.e., l4 = σ · l2, 1 ≤ σ < 2. Since l4 < n · (l3 + 1), we have n · (l3 + 1) > σ · l2, and l3 > bσ·l2n − 1c. Thus,
the value of l3 (fingerprint size) is chosen so that l4 = σ · l2 for a given σ (alternately, for given values of

σ and l3, the number of partitions n can be determined by n > b σ·l2
l3+1c ≈ b

σ·l2
l3
c ).

The verification process is much simpler than state information generation. In order to verify the
integrity of a block belonging to partition M i

j ∈ M i, only partition M i
j is read from memory, and its

contents are hashed and fingerprinted to yield value f , i.e., f = FPi(HKi(M
i
j)). The integrity is verified

by checking whether f is equal to X i mod pπi(j) (where state X i is stored securely in a trusted memory).
Thus, we see that the communication complexity of integrity verification is equal to a constant, i.e., the
size of partition M i

j , and is independent of the size of set M i. Also, only the state information of the set
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is needed for integrity verification. The hash value of the set is computed so that the proposed technique
can be incorporated into memory integrity verification schemes which require such a value.

3.3 Security intuition

In this section, we explain the πi() mapping, and the intuition behind employing it for improving the
security of the proposed scheme. A cryptographic hash function HKi() has very low collision proba-
bility. However, this collision probability is increased by composing it with the fingerprint function,
i.e., FPi(HKi()), which is motivated by the need to keep the space complexity overhead of the proposed

scheme low. Thus, given a partition M i
j ∈ M i, it might be possible to modify it to M i′

j such that

HKi(M
i) 6= HKi(M

i′
j ), but f i

j = f i′
j , where f i

j = FPi(HKi(M
i
j)) and f i′

j = FPi(HKi(M
i′
j )). In such a

case, CRT(p1,p2,...,pn)() (where pj, 1 ≤ j ≤ n, is statically assigned) would give the same result X i for

sets M i and M i′ (where set M i′ is set M i with the jth partition M i
j modified to M i′

j ). In the pro-
posed method, the pj’s used in the CRT computation are selected by a ∆-universal hash function-based
mapping πi() which takes as its input a random subset of bits from the partition hash value HKi(M

i
j).

We use a random subset (rather than a pre-determined one) to make it difficult for the adversary to

have any influence on the output of the πi() mapping. Thus, if partition M i
j is modified to M i′

j , then

there is a high probability that πi() will map j to different values in both the cases (thereby assigning

different pπi(j)’s). Then, function CRT(pπi(1),pπi(2),...,pπi(n)
() will map sets M i and M i′ to different values,

thereby reducing the adversary’s chances of fooling the memory checker with malicious inputs like M i′
j

(this probability is analyzed in a later section). For a set M i having n partitions, the mapping πi(j) for

partition j (1 ≤ j ≤ n) is given by hx(mj) =
∑k

i=1(mji +xi)
2 mod q, where mj is a k.|q|-bit chunk chosen

randomly from the partition cryptographic hash value hi
j = HKi(M

i
j), and mji, xi ∈ Z

k
q . There are two

optimizations possible to make the implementation of the π i() mapping more efficient with respect to
space and time:

• If prime q is chosen to be of the form 2l − 1 (for example, l = 5), then the mod q operation can be
performed using a shift, add, compare, and, if needed, a subtract.

• A prime pi is called a Sophie Germain prime if (2pi + 1) is also prime. There exist many such
primes, and they have been used in various cryptographic protocols [19]. Thus, instead of storing
q primes, we can store only bq/2c+ 1 Sophie Germain primes, and the remaining bq/2c primes can
be generated by a simple computation (2pi + 1), where 1 ≤ i ≤ bq/2c.

3.4 UPDATE() and CHECK() implementation details

UPDATE() is responsible for generating the hash value and the state corresponding to a set of partitions and
recomputing the hash and state information when contents of one or more of the partitions is modified.
CHECK() is responsible for verifying whether contents of any of the partitions in the set have been illegally
modified by an adversary. The routine does this with the aid of state information computed for the set
by UPDATE()).

Figure 2 shows the pseudo-code of UPDATE(). This routine takes as its input the set M i and outputs the
corresponding state information X i and hash value HKi(X

i). Initially, the hash values and fingerprints of
all the partitions in the set are generated (steps 1−4). Next, the mapping π i(j) (1 ≤ j ≤ n) is computed
(steps 5 − 14). In order to do this, initially a random index is generated (step 8), and a k.|q|-bit chunk
beginning at that random index is extracted (circularly, if needed) from the hash value hi

j (step 9). This

value is input to the strongly universal hash function hx() (step 10) to generate the mapped value, i.e.,
πi(j). If this value is different from all the values generated for indices 1 to (j − 1) (step 11), then
the prime pπi(j) ∈ P is stored in set P i (step 13), else the computation is repeated. Next, the CRT

computation is used to calculate state X i (step 15), and its hash is computed (step 16). The state is
securely stored on the processor while the hash is stored in the untrusted memory. The CRT computation
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UPDATE (Primes P = {p1, . . . , pq}, Set M i = {M i
1, . . . , M i

n},
Key Ki, Polynomial Pi)

1 : for (j = 1; j ≤ n; j = j + 1)
2 : hi

j ← HKi(M
i
j);

3 : f i
j ← FPi(h

i
j);

4 : endfor

5 : P i = {∅};
6 : for (j = 1; j ≤ n; j = j + 1)
7 : do{
8 : indexi[j] ← rand();
9 : seed ← hi

j [indexi[j] · · · (indexi[j] + k.|q| − 1)];

10 : πi(j) ← hx(seed);
11 : while (πi(j) ∈ {πi(1), πi(2), . . . , πi(j − 1)})
12 : end do

13 : P i = P i ⋃ pπi(j) ;

14 : endfor

15 : X i ← CRT(P i, f i
1, f i

2, . . . , f i
n);

16 : Z i ← HKi(X
i);

17 : return (Z i, Xi);

Figure 2: Pseudo-code for UPDATE()

allows incremental updates to state X i. If a partition M i
j is modified to M i′

j , then updated state X i′

can be computed from old state (X i), old partition (M i
j) and updated partition (M i′

j ) rather than by
repeating the entire CRT computation. Figure 3 shows the pseudo-code for CHECK(). This routine takes
as inputs, the contents of a partition and the state corresponding to the set which the partition belongs
to (along with the hash value of the state, keys, indices, and list of primes), and verifies whether the
partition was tampered with since the last time it was legally modified. Initially, an optional sanity check
is performed by checking whether hash of the state value equals the set hash value, else it aborts (steps
1 − 4). Then the hash value and the fingerprint of the partition are calculated (steps 5 − 6). Next, the
index associated with partition j of set i is obtained from the array filled in by UPDATE() (step 7), and
k.|q| bits beginning at index are read (circularly, if needed) from the hash value as the seed (step 8).
The mapping corresponding to partition j of set i, πi(j), is obtained by giving seed as input to the hash
function hx() (step 9). Finally, the state information is modular-reduced with prime pπi(j), and checked

to see whether the result is equal to the fingerprint calculated (steps 10− 14). Equality guarantees non-
corruption of the contents of partition M . Illegal tampering of the partition will be detected with a high
probability since it will either produce a wrong fingerprint or a wrong mapping for choosing the prime
associated with the partition.

We can see that UPDATE() is more expensive than CHECK(). However, since in a program execution,
loads are more frequent than writes, and the CHECK() routine is called on every load operation, it should
have the minimum possible latency to perform quick verification of data integrity. Also, the higher
performance penalty of CHECK() can be amortized by the lower cost incurred for updating the state for
subsequent modifications to the data in the set.

3.5 Memory integrity verification using UPDATE() and CHECK()

In this section, we illustrate the working of our proposed memory integrity verification scheme which uses
routines UPDATE() and CHECK() as its building blocks. As mentioned in Section 2.1, the processor issues
LOAD() and STORE() instructions to the memory integrity checker which, in turn uses the CHECK() and
UPDATE() routines to perform the required integrity verification on the addressed data, respectively. If
the integrity verification is successful, the LOAD() and STORE() routines are handled in the normal way.
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CHECK (Primes P = {p1, . . . , pq}, Hash Z i, State X i,
Set index i, Partition M i

j , Partition index j,

Key Ki, Polynomial Pi)
1 : Z ′ ← HKi(X

i);
2 : if (Z i 6= Z ′)
3 : exit(“error”);
4 : endif

5 : r1 ← HKi(M
i
j);

6 : r2 ← FPi(r1);
7 : index ← indexi[j];
8 : seed ← r1[index · · · (index + k.|q| − 1)];
9 : πi(j) ← hx(seed);

10 : s ← X i mod pπi(j);

11 : if (r2 == s)
12 : return 1;
13 : else

14 : return 0;
15 : endif

Figure 3: Pseudo-code for CHECK()

Let M be the untrusted (external) memory which is divided into m sets, {M 1, M2, . . . ,Mm} where
each set M i is further divided into n equal-sized partitions, {M i

1, M i
2, . . . , M i

n}. If each partition has p
memory blocks, then the size of untrusted memoryM = m∗n∗p blocks. A set of q distinct primes (only
bq/2c Sophie Germain primes are used), P = {p1, p2, . . . , pq}, where q > n, is pre-computed and stored
in the trusted memory. A subset of n primes, P i ⊂ P , is obtained using the πi() mapping and assigned
to every set M i. To reduce the space overhead, the same hashing key (Ki) and irreducible polynomial
(Pi) can be used for all sets M i, 1 ≤ i ≤ m. Thus, the space overhead incurred for each set M i is its
state information X i.

LOAD (Memory block x)
1 : Determine set (i) and its constituent partition (j) to which block x belongs
2 : Read partition M i

j from untrusted memory M

3 : Read public hash value HASHM i from untrusted memory M
4 : Read secret state STATEM i from trusted memory
5 : Run CHECK(P ,HASHM i , STATEM i ,i,M i

j ,j,Ki,Pi)

6 : If (CHECK(.) returned 1)
7 : Pass contents of block x to processor
8 : Else
9 : Abort with error message

Figure 4: LOAD() instruction with integrity checking

Figure 4 shows the steps executed during the LOAD() instruction which requests memory block x while
Figure 5 enumerates the operations executed for the STORE() instruction which writes data y to memory
block x. STORE() is more complicated than LOAD() due to the extra overhead incurred in constructing
and maintaining the secret state associated with a set. In line 15 in Figure 5, even though it is not
indicated, UPDATE() is run in an incremental fashion (as described in the previous section).
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STORE (Memory block x, Data y)
1 : Determine set (i) and its constituent partition (j) to which block x belongs
2 : If (partition M i

j is being written to for the first time)

3 : Read in the non-empty partitions of set M i from untrusted memory M
4 : Write data y into block x in M i

j

5 : Run UPDATE(P , M i, Ki, Pi)
6 : Write STATEM i in trusted memory
7 : Write HASHM i and M i

j in external memory

8 : Else
9 : Read partition M i

j from external memory M

10 : Read hash value HASHM i from untrusted memory M
11 : Read state STATEM i from trusted memory
12 : Run CHECK(P , HASHM i , STATEM i , i, M i

j , j, Ki, Pi)

13 : If (CHECK(.) returned 1)
14 : Write data y into block x in M i

j

15 : Run UPDATE (P , M i, Ki, Pi)
16 : Write updated STATEM i to trusted memory
17 : Write updated HASHM i and partition M i

j to untrusted memory M

18 : Else
19 : Abort with error message

Figure 5: STORE() instruction with integrity checking

3.6 Security analysis

In this section, we present a discussion related to the security properties of the proposed method. We
begin by presenting some lemmas related to the properties of different components used for realizing
the proposed method. Then we present an analysis related to the completeness and soundness of the
proposed method, and its resistance to adversarial attacks.

Lemma 1 [16]: Given that the adversary chooses a set of n distinct binary strings each of length m,
and then a degree-l irreducible polynomial is chosen, the probability of collision in Rabin fingerprinting

scheme is < m·n2

2l

Proof: Let H = {h1, h2, . . . , hn} be a set of n distinct m-bit binary strings where each string is repre-
sented as an (m− 1)-degree polynomial, i.e., hi(x) = hi1x

m−1 +hi2x
m−2 + . . . + him−1x +him , 1 ≤ i ≤ n,

and P (x) be an l-degree irreducible polynomial. Define A(x) =
∏n

i,j=1,i6=j(hi(x)− hj(x)). Then

degree(A(x)) ≤ (m− 1) ·
n(n− 1)

2
< m · n2

Without loss of generality, let us assume two distinct strings hi(x) and hj(x) map to the same fingerprint
f(x). We have
(hi(x)− hj(x))
= (qi(x)P (x) + f(x))− (qj(x)P (x) + f(x)), for some qi(x) and qj(x)
= (qi(x)− qj(x))P (x)
Thus, for any hi(x), hj(x) ∈ H, P (x)|(hi(x) − hj(x)) ⇒ P (x)|A(x), if hi(x) and hj(x) map to the same
fingerprint. The maximum number of l-degree irreducible factors in A(x) is degree(A(x))/l < (m ·n2)/l,

and the total number of l-degree irreducible polynomials with coefficients in Z2 is (2l − 2l/2)/l. Thus, we
have
Pr[ Distinct strings in H map to the same fingerprint ] =
Pr[ Randomly chosen l-degree irreducible polynomial divides A(x) ]

11



< m·n2

l / 2l−2l/2

l = m·n2

l · l
2l−2l/2 = m·n2

2l−2l/2 = m·n2

2l/2(2l/2−1)
≈ m·n2

2l (for large l)

Lemma 2: [18] Hash function family hb,x: Z
k
q → Zq, where q is prime, b, x ∈Zq, where hx(m) =

∑k
i=1(mi + xi)

2 mod q, is ∆-universal.

Proof: Let m,n ∈ Zk
q , m 6= n, with m = (m1, . . . ,mk) and n = (n1, . . . , nk) and a ∈ Zq. Since m 6= n,

without loss of generality assume that m1 6= n1.
Pr[hx(m)− hx(n)]

= Pr[
∑k

i=1(mi + xi)
2 −

∑k
i=1(ni + xi)

2 ≡ a (mod q)]

= Pr[2(m1 − n1)x1 ≡ a− (m2
1 + m2

2)−
∑k

i=2((mi + xi)
2 + (ni + xi)

2) (mod q)]
= 1/q (since m1 6= n1 and there is a unique x which satisfies the equation)

Theorem 1: The function composition CRT(π(p1),π(p2),...,π(pn)) ◦ FP ◦HK is complete and sound.

Proof: For any set M i = {M i
1,M

i
2, . . . ,M

i
n}, the function composition CRT(π(p1),π(p2),...,π(pn)) ◦ FP ◦

HK(M i) generates a value X i such that X i
j ≡ FP (HK(M i

j))(modpπ(j)). The completeness property says
that the function accepts legitimate inputs with very high probability. Since CRT is a bijection from
(Zp1 ×Zp2 . . .×Zpn) to Z∏n

i=1
pi

, the function composition uniquely maps set M i to value X i such that

Xi(modpπ(j)) = FP (HK(M i
j)) for any legitimate partition M i

j ∈ M i. Thus, the function is determinis-
tically complete. The soundness property says that invalid input values are accepted successfully with a
negligible probability. Without loss of generality, assume that set M i′ is set M i with the jth partition
modified. We bound the probability of M i and M i′ colliding under function composition, i.e., resulting
in the same value X i. Assuming l1 is the hash value length, l2 the signature length, and q the total
number of primes such that q = 2l − 1 for some l, we have
PrM i 6=M i′ [CRT(p

πi(1)
,p

πi(2)
,...,p

πi(n)
) ◦ FP ◦HK(M i) = CRT(p

πi(1)
,p

πi(2)
,...,p

πi(n)
) ◦ FP ◦HK(M i′)]

= PrM i 6=M i′ [FP ◦HK(M i) = FP ◦HK(M i′)] ∗ PrM i 6=M i′ [(πi(j) forM i
j ) = (πi(j) forM i′

j )] (since CRT is

a bijection, and for fixed moduli a collision of CRT output values occurs only when input values to CRT
are the same).

= (PrM i 6=M i′ [HK(M i) = HK(M i′)]+PrM i 6=M i′ [(HK(M i) 6= HK(M i′))
∧

(FP ◦HK(M i) = FP ◦HK(M i′))])

∗ PrM i 6=M i′ [(πi(j) forM i
j ) = (πi(j) forM i′

j )]

≤ ( 1
2l1/2 ) + ((1− 1

2l1/2 )(n2l1
2l2

)) ∗ ( 1
2l−1

) (follows from Lemmas 1 and 2)

≤ (n2l1
2l2

)) ∗ ( 1
2l−1

) (assuming l1 is large enough).

Thus, the collision probability increases from 1
2l1/2 to (n2l1

2l2
)) ∗ ( 1

2l−1
). By making l2 and l sufficiently

large, we can make the collision probability of the function composition acceptably small. However,
increasing the sizes of l2 and l increases the space requirement.

Theorem 2: Routines UPDATE() and CHECK() are (p,k)-secure against passive and active adversaries.

Proof: Figure 6 shows the experiments carried out by active adversary Aactive (on the right) and passive

adversary Apassive (on the left). OUPDATE(Ki,Pi)() indicates black-box access to routine UPDATE() with

keys (Ki, Pi) embedded (and not divulged to the adversary). Similarly, OCHECK(XMi ,Ki,Pi)() represents
oracle access to the CHECK() routine where the secret state XMi is embedded along with the keys and
unobservable to the adversary. Apassive observes the UPDATE() and CHECK() routines on uniformly random
inputs (set M i and partition number j) while the Aactive generates its inputs according to a distribution of
its choice and gives them to the routines. The secret state value XMi which is generated by the UPDATE()
routine is hidden from the adversary. α and β represents information about the state gained by Apassive

and Aactive, respectively. The experiment is repeated k times. Finally, based on the observations from the
k runs, each adversary generates a hitherto unseen pair, partition and its hash value, with the intention
of successfully fooling the CHECK() routine.
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Experiment EXPApassive () Experiment EXPAactive ()

M i = {M i
1, . . . ,M

i
n}

R
← {0, 1}n·l M i = {M i

1, . . . ,M
i
n} ← Aactive(1

n·l)

HM i ← OUPDATE(Ki,Pi)(M i) HM i ← OUPDATE(Ki,Pi)(M i)

j
R
← {0, 1}|j| j ← Aactive(1

|j|)

α ← OCHECK(XMi ,Ki,Pi)(M i
j) β ← OCHECK(XMi ,Ki,Pi)(M i

j)

(N,HN ) ← Apassive((α,M i,HM i , j)k) (N,HN ) ← Aactive((β, (M i,HM i , j)k)

Figure 6: Passive and active adversarial experiments

We show that if k (the number of queries by the adversaries to the black-box routines) is polynomially-
bounded, then the probability of generating a tuple which successfully fools the CHECK() routine is negli-
gible. First, let us consider EXPApassive . It has been proven that sets ΩP ⊂ ZP created from sets Ωpi ⊂ Zpi

(where P =
∏n

i=1 pi) by CRT appear to be randomly (Poisson) distributed for large primes [20]. Thus,
for uniformly random sets M i, state value XMi is uniformly distributed. In EXPApassive , adversary Apassive

can only observe the hash of uniformly distributed state value XMi which in turn is uniformly distributed
(due to the property of hash functions). Thus, the information revealed to Apassive is negligible, and so is
the probability of Apassive successfully fooling the CHECK() routine. Now, let us consider EXPAactive . Aactive

can not only observe the hash of the state value, but has the additional capability of generating its own
input values. Given X ≡ ri (modpi), 1 ≤ i ≤ n, Aactive has to either guess the ri’s with respect to (wrt)
primes pi, 1 ≤ i ≤ n, or find r′i’s wrt a different set of primes p′i’s, 1 ≤ i ≤ n, such that X ≡ r′i (modp′i).
Recall that there are q primes out of which n primes are chosen by the π() mapping. Thus, there are
(

q
n

)

ways of choosing n primes. Also, since CRT is a bijection from (Zp1 ×Zp2 . . .×Zpn) to Z∏n

i=1
pi

,

for each X there is exactly one tuple (r1, . . . , rn) wrt to primes pi, 1 ≤ i ≤ n, such that X ≡ ri(modpi).
We have
p = Pr[Adversary guessing ri wrt pi such that X ≡ ri(modpi), 1 ≤ i ≤ n ]
=
∑

(i1,...,in)∈[1..q]
1

(

q
n

) · 1
(pi1

·pi2
···pin)

=

(

q
n

)

· 1
(

q
n

) · 1
(pi1

·pi2
···pin )

= 1
(pi1

·pi2
···pin)

< 1
232·n (since |pij | ≥ 32, 1 ≤ j ≤ n)

Thus, the probability p of active adversaries breaking the proposed scheme with k polynomially-
bounded queries is negligible (which is also true for the less powerful passive adversaries).

4 Results

In this section, we present results comparing communication complexity of the proposed method with
two existing methods, store hash and Merkle tree. We analytically derive the communication complexity
of the three schemes for a typical memory configuration. Usually, memory integrity verification is applied
only to the portion of memory storing secure code and data (termed secure memory) rather than to the
entire memory. Based on typical secure applications, e.g., digital rights management programs, we set
the size of secure memory to N = 1 MB (220 B). For memory block size of 64 B (26 B), N = 214 blocks.
Assuming that secure memory is divided into sets of size 512 B (23 blocks), the number of sets S = 211

(214/23). With the above system parameter values, the working of three memory integrity schemes to be
compared can be summarized as:
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• Store hash: The S sets of secure memory are hashed, and the hash values are stored in on-chip
storage. Hence, when a block belonging to a set is read, the entire set has to be read in order to
verify its integrity.

• Merkle tree: A Merkle tree of height log2(2
11) = 11 is constructed whose leaf nodes hold the sets

while the internal nodes hold the hash values. Only the root hash is stored in on-chip storage.
When a block is read from a set, the set and its sibling set along with 2 ∗ 11 = 22 hash values are
read in order to verify the integrity of the block (by computing the root hash, and comparing it
with the stored value).

• Proposed: We assume σ = 1 (σ is defined in Section 3.2), and fingerprint length to be 32 bits.
Then, a set is divided into n = (L/32) partitions where L is the hash length in bits, and the
number of blocks per partition b = d23/ne. In this scheme, the state values (each of length L since
σ = 1) are computed for all the S sets and stored in on-chip storage. When a block is read, only
the partition holding it is read from memory. Thus, the communication complexity is b blocks.

Table 2 shows the communication complexity results of the three schemes for three hash value lengths
(16 Bytes, 20 Bytes, and 32 Bytes). The store hash scheme imposes an overhead which is independent of
the hash size, and equal to the set size. The Merkle tree scheme has very high communication complexity
which increases with hash size. In contrast, the proposed scheme imposes a much lower communication
overhead compared to the other two, and moreover, the overhead deceases with increasing hash size.

Table 2: Communication complexity of the three schemes

Scheme Communication
complexity (Bytes)

16 Byte 20 Byte 32 Byte
hash hash hash

Store hash 512 512 512
Merkle tree 2*(512+11*16) 2*(512+11*20) 2*(512+11*32)

= 1376 = 1464 = 1728
Proposed d(8/((16*8)/32))e*64 d(8/((20*8)/32)/4)e*64 d(8/((32*8)/32)/4)e*64

= 128 = 128 = 64

Both store hash and proposed schemes impose a space overhead of 211 · L to store the hash and state
values in an on-chip storage, respectively, while the Merkle tree scheme only stores the root hash of length
L on-chip. Hence, it would be fair to examine the factor by which the communication complexity of the
Merkle tree scheme would improve if it is provided with on-chip storage for storing all the hash values
held in its internal nodes. A Merkle tree with 211 leaf nodes has 1 + 2 + 22 + . . . + 210 = 211 − 1 internal
nodes. Thus, an on-chip storage of (211 − 1) · L bits is enough to store all the hash values. With this
storage, the communication overhead in a Merkle tree pertaining to reading in 11 hash values vanishes,
i.e., the factors 2*(11*16), 2*(11*20) and 2*(11*32) vanish from columns, corresponding to 16 B, 20 B
and 32 B hash lengths in Table 2. However, this still leaves an overhead of 2*512 B related to reading
in the sets. Thus, even when the storage complexity of Merkle tree is made comparable to that of the
proposed scheme, the proposed scheme has much lower communication complexity.

5 Conclusion

In this paper, we proposed a novel memory integrity verification technique which achieves a constant
communication complexity overhead while incurring a modest cost in space complexity. The scheme
is based on CRT used in conjunction with standard hashing tools: cryptographic, universal and poly-
nomial hashing. Our security analysis shows the proposed scheme is sound and complete and resist
computationally-bounded adversarial attacks.

14



References
[1] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz, “Architectural support for copy and tamper

resistant software,” in Proc. Intl. Conf. Arch. Support Prog. Lang. and Operating Sys. (ASPLOS), pp. 169–177, Nov. 2000.

[2] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS: Architecture for tamper-evident and tamper-resistant
processing,” in Proc. USENIX Operating Sys. Design and Impl. Symp., pp. 135–150, Oct. 2000.

[3] R. B. Lee, P. Kwan, J. McGregor, J. Dwoskin, and Z. Wang, “Architecture for protecting critical secrets in microprocessors,” in
Proc. Intl. Symp. Comp. Arch., pp. 2–13, May 2005.

[4] R. Merkle, “A certified digital signature,” in Proc. Crypto ’89, pp. 218–238, Aug. 1989.

[5] W. Stallings, Cryptography and Network Security: Principles and Practice. Prentice Hall, 1998.

[6] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor, “Checking the correctness of memories,” in Proc. Symp. Foundations
of Comp. Science, pp. 90–99, Oct. 1991.

[7] U. Maheshwari, R. Vingralek, and W. Shapiro, “How to build a trusted database system on untrusted storage,” in Proc. USENIX
Operating Sys. Design and Impl. Symp., pp. 135–150, Oct. 2000.

[8] W. Shapiro and R. Vingralek, “How to build a trusted database system on untrusted storage,” in Proc. Digital Rights Management
Wkshp., pp. 176–191, Jan. 2001.

[9] P. T. Devanbu and S. G. Stubbleline, “Stack and queue integrity on hostile platforms,” Software Engineering, vol. 28, pp. 100–108,
Jan 2002.

[10] B. Chen and R. Morris, “Certifying program execution with secure processors,” in Proc. USENIX HotOS Wkshp., May 2003.

[11] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches and merkle trees for efficient memory authentication,”
in Proc. Intl. Symp. High Perf. Comp. Arch., pp. 295–306, Feb. 2003.

[12] D. Williams and E. G. Sirer, “Optimal parameter selection for efficient memory integrity verification using merkle hash trees,” in
Proc. Intl. Symp. Network Comp. and Appl., pp. 383–388, July 2004.

[13] M. Bellare and P. Rogaway, “Collision-resistant hashing: Towards making UOWHFs practical,” in Proc. Crypto ’97, pp. 470–484,
Aug. 1997.

[14] M. Bellare and D. Micciancio, “A new paradigm for collision-free hashing: Incrementality at reduced cost,” in Proc. EuroCrypt
’97, pp. 163–192, May 1997.

[15] D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E. Suh, “Incremental multiset hash functions and their applications to
memory integrity checking,” in Proc. AsiaCrypt ’03, pp. 188–207, Nov. 2003.

[16] A. Z. Broder, “Some applications of rabin’s fingerprinting method,” Sequences II: Methods in Communications, Security, and
Computer Science, pp. 143–152, 1993.

[17] M. O. Rabin, “Fingerprinting by random polynomials,” Tech. Rep. TR 15-81, Harvard University, 1981.

[18] M. Etzel, S. Patel, and Z. Ramzan, “Square hash: Fast message authentication via optimized universal hash functions,” in Proc.
Crypto ’99, pp. 234–251, Aug. 1999.

[19] H. Riesel, Prime Numbers and Computer Methods for Factorization. Birkhauser, 1985.

[20] A. Granville and P. Kurlberg, “Poisson statistics via the Chinese remainder theorem,” Tech. Rep.
http://arxiv.org/abs/math.NT/0412135, 2005.

15


