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Abstract. This work builds on earlier work by Rogaway at Asiacrypt 2004 on tweakable block cipher
(TBC) and modes of operations. Our first contribution is to generalize Rogaway’s TBC construction by
working over a ring R and by the use of a masking sequence of functions. The ring R can be instantiated
as either GF (2n) or as ZZ2n . Further, over GF (2n), efficient instantiations of the masking sequence of
functions can be done using either a Linear Feedback Shift Register (LFSR), a powering construction or
a cellular automata map. Rogaway’s TBC construction was built from the powering construction over
GF (2n). Our second contribution is to use the general TBC construction to instantiate constructions
of various modes of operations including authenticated encryption (AE) and message authentication
code (MAC). In particular, this gives rise to a family of efficient one-pass AE mode of operation. Such
modes of operations have great practical utility. 3
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1 Introduction

Symmetric ciphers form the backbone of encryption technology since all bulk encryptions are done
using symmetric ciphers. A block cipher has to be used in an appropriate mode of operation for
performing such encryption. Thus, designing efficient and secure modes of operations is as important
as developing a secure block cipher.

Liskov, Rivest and Wagner [11] introduced the concept of tweakable block cipher, which is a
block cipher with an additional input called a tweak. The tweak is meant to provide variability and
not security. They also showed that it is possible to build secure modes of operations starting from
a TBC. This theme was developed by Rogaway in [17] where efficient constructions of TBC and
different modes of operations were presented.

Of special practical importance are modes of operations for authenticated encryption (AE).
This allows both confidentiality and authentication in transmission of messages over an insecure
channel. Conventional approaches to this problem require two block cipher invocations per block
of the message. In recent years, there have been several proposals for AE which requires one
invocation per block of the message. This yields an efficiency improvement by a factor of two over
conventional approaches. The known one-pass proposals are IACBC, IAPM by Jutla [8]; XCBC,
XECB by Gligor-Donescu [6]; and OCB, OCB1 by Rogaway [17]. All these proposals are patented.
This has prevented their adoption in NIST standards. In fact, NIST [1] has standardised a two-pass
algorithm for achieving AE. Another undesirable effect of the patent claims is that this has led to
some researchers proposing new two-pass AE protocols [3, 12]. An important practical aspect of
3 An abridged version of this paper appears as [5].



our work is to uncover a new family of efficient one-pass AE modes of operations. This provides a
designer with a greater choice of algorithms.

1.1 Our Contributions

In this paper, we develop the work on construction of efficient TBC and modes of operations based
on it. Our work depends heavily on the work of Rogaway [17]. Below we mention our specific
contributions and relate to the work of [17].

Tweakable block cipher: We define a sequence f1, f2, . . . , f2n−2, with fi : {0, 1}n → {0, 1}n,
of functions with a particular set of properties to be a masking sequence. Given block cipher
E : K × {0, 1}n → {0, 1}n and a masking sequence, we define a TBC having tweak space T =
{0, 1}n × {1, . . . , 2n − 2} by either the XE or the XEX constructions.

In the XE construction: ẼN,i
K (M) = EK(M + fi(N )); whereas in the XEX construction:

ẼN,i
K (M) = EK(M + fi(N )) − fi(N ), where (N, i) is the tweak and N = EK(N). Addition (and

subtraction) is over a commutative ring R = ({0, 1}n,+, ·) with identity. Typical instantiations of
R are as GF (2n) and ZZ2n .

In the case where R is GF (2n), we use a primitive polynomial τ(x) to represent GF (2n) and
consider N to be an n-bit vector. The map fi(N ) is defined to be fi(N ) = NGi, where G is an n×n
matrix over GF (2) having τ(x) as its characteristics polynomial. Efficient realization of G can be
done by a linear feedback shift register (LFSR), a powering construction used in [17] or as a cellular
automata (CA) map. In the case where R is ZZ2n , we define fi(N ) = ((i + 1)N mod p) mod 2n,
where p = 2n + δ is the least prime greater than 2n.

The XE and the XEX constructions were presented in [17] over GF (2n) using the powering
construction. The abstraction of the ring R, the use of LFSR and CA and the instantiation of R
as ZZ2n are new to this paper.

Authenticated Encryption (AE): Given a TBC with an appropriate tweak space, Rogaway [17]
showed how to construct an AE protocol. Rogaway instantiates his AE construction with his TBC
construction. This method requires the computation of a discrete logarithm over GF (2n).

We show two methods to instantiate Rogaway’s AE construction with our general TBC con-
struction. The first method, which we call linear separation, is based on Rogaway’s technique. Thus,
as in the case of Rogaway, when we work over GF (2n), the linear separation method requires the
computation of a discrete logarithm (as a one-time design stage activity). The second method,
which we call interleaved separation, is introduced in this paper. This method does not require the
discrete log computation and hence is more generally applicable.

In [17], Rogaway also presents constructions of pseudorandom function (PRF), message authen-
tication code (MAC) and authenticated encryption with associated data (AEAD) protocols from
TBCs with appropriate tweak spaces and shows how to instantiate these with his TBC construc-
tion. We show how to instantiate the PRF, MAC and AEAD protocols of Rogaway with the general
TBC construction using the techniques of linear and interleaved separation.

In summary, our generalization of Rogaway’s work comes in two parts.

Tweakable block cipher: Rogaway describes the XE and the XEX constructions over GF (2n) using
the powering construction. We generalize this by working over a ring R which can be instantiated
as either GF (2n) or as ZZ2n . Further, over GF (2n), we show that there are other efficient
alternatives to the powering construction.



Modes of Operations: Rogaway presents constructions of several modes of operations from TBCs
with appropriate tweak spaces and shows how to instantiate these with his TBC constructions.
We generalize his method of instantiation and also present a new way of instantiation of the
different modes of constructions with the generalized TBC constructions.

A net effect of our generalization is to uncover a family of efficient, previously unknown protocols for
AE, PRF, MAC and AEAD. In terms of efficiency, all constructions in the family (which includes
Rogaway’s construction) have similar efficiency. Actually, the constructions differ in how masks are
being generated. In all the constructions in the family, the time required to generate a mask (from
the previous one) is a negligible fraction of the time required for one block cipher invocation.

1.2 Practical Significance of Our Work

Rogaway’s work [17] on AE, MAC and AEAD provides very efficient constructions with tight
security bounds. For example, the AE construction is fully parallelizable; makes (m + 2) block
cipher calls for an m-block message; and uses a highly efficient method to generate the masks
required. The security bound is already tight and it is quite unlikely that the efficiency can be
improved. So, what can one hope to achieve in the context of such excellent prior work?

The starting point of our work is that Rogaway presents a single example of each mode of
operation. A natural question that we ask is whether there are other constructions with comparable
security and efficiency. Our results show that there are indeed such constructions. We uncover a
whole family of constructions which provides a developer with a wide variety of choices. This, by
itself, may be considered to be of some practical importance.

Further, while the security and efficiency of [17] cannot be improved (because they are already
tight), one of our constructions offers a flexibility of usage which is not available in Rogaway’s
work [17]. This has to do with the design stage discrete log computation required in [17]. The
discrete log computation is required for different block sizes. More importantly, even for a fixed
block size, the discrete log computation is required if the field representing polynomial is changed.

Easily Reconfigurable Family of Modes of Operations: Let us consider the AE protocol,
though the discussion below applies equally well to the other protocols. As mentioned earlier, the
ring R that we work over can be instantiated as GF (2n). The idea is to view the AE mode of
operation over GF (2n) as being parameterized by the primitive polynomial τ(x) which represents
the field. As a result, for every choice of τ(x) one obtains a specific mode of operation. Security is
not affected – the security bound does not depend on τ(x) and remains the same for every choice
of τ(x). There are situations where such a parameterized family of AE modes of operations may
be useful. We outline one such possibility.

Consider the following scenario: A crypto company which develops AE modes of operations
has many customers. All customers want a provably secure single-pass AE solution. However, they
also require that the specific design that they will be using should be kept secret. In the paranoid
world of crypto customers, especially from different national defence establishments, this can be a
practical requirement.

Is it possible to satisfy such a customer requirement? The answer is yes, at least to a certain
extent. The customer can randomly choose the primitive polynomial τ(x) and keep it a secret.
By doing this, the customer does not loose either provable security or efficiency. Basically, in this
context, provable security tells him that even if τ(x) is known, the protocol is as secure as the
underlying block cipher. Now, by keeping τ(x) unknown, he gains an extra level of confidence, since
knowledge of τ(x) is required to attack the system. The only condition on τ(x) is that it should
be primitive. Since the number of primitive polynomials of degree n is quite large (for n = 128,



there are around 2119 primitive polynomials), the customer can be assured that an adversary has
a rather high uncertainty (about 119 bits) about the specific polynomial he is using.

First, suppose our crypto company wants to use Rogaway’s construction to satisfy the needs
of the customers. In Rogaway’s construction, for each change of τ(x), a discrete log computation
needs to be performed. The purpose of this computation is to ensure that the discrete log of (x+1)
modulo τ(x) should be “large” since otherwise, the proof of security breaks down. This requirement
of a discrete log computation per change of polynomial makes Rogaway’s construction unsuitable
for the above application.

Now consider the technique of interleaved separation (introduced in this paper) to construct an
AE mode of operation with R instantiated as GF (2n). Unlike Rogaway’s AE mode of operation,
this mode of operation does not require any discrete log computation in the design phase. It is due
to this difference, that one can obtain a greater flexibility of usage. Our crypto company creates
a single product with τ(x) as a parameter. In software, this can be provided as an n-bit string,
while in hardware, this is kept in a register of length n. This single product is given to a customer.
The customer “customizes” this product by choosing a random primitive polynomial of degree n
and plugging it into the design. No discrete log computation is required at any stage. Further, in a
manner somewhat like a regular key change, the polynomial can also be changed by the customer
at regular intervals. This idea can satisfy the customer’s apparently conflicting requirements of
provable security and obscurity.

We feel that the above practical issue will be attractive to crypto companies who actually
develop crypto protocols. They gain a lot of flexibility at no extra cost and at no loss in security.
On the other hand, theoreticians might not appreciate this advantage (and may consider the above
application as artificial). For them, the abstraction of the masking sequence and the generalized
versions of the XE and the XEX constructions will be of more interest.

1.3 Previous and Related Work

The formal model of security for AE was independently proposed by [9] and [2]. Jutla [8] proposed
constructions for single-pass AE, including one fully parallelizable protocol. Independent work due
to Gligor and Donescu [6] also proposed single-pass AE protocols. A refinement and extension of
Jutla’s parallelizable protocol was done by Rogaway [18] and was called the OCB.

In a separate development, the notion of TBCs and their application to modes of operations
was proposed by Liskov, Rivest and Wagner [11]. The construction of TBC in [11] was not very
efficient. The first efficient construction of TBC was given by Rogaway [17]. As discussed earlier,
our work is a development on the work of [17].

Construction of MAC and AEAD protocols are also of equal importance. There has been a lot
of research on the security model and design of these protocols [4, 16]. A separate line of research
has consisted of developing two-pass AE protocols (some examples are [13, 3, 12]). The work [12]
presents an AE protocol which is somewhere between one and two pass protocols.

In a recent work, Minematsu [14] revisits the work on TBC appearing in [11] and [17]. The
work [14] provides some improvements to the construction given in [11]. The XEX construction
in [17] is presented in a more general form than what has been mentioned earlier in this paper.
However, in its application to the construction of modes of operations, this generality is not required
and a much more simpler form is used. In this paper, we have generalised this simpler form. In
contrast, Minematsu [14] presents a new analysis of the XEX description as given in [17]. We would
like to emphasize that none of the techniques for XEX construction introduced in this paper is
present in [14]. Also, none of the techniques for constructing modes of operations is present in [14].
Thus, this work and that of [14], though on the similar topics, are really of independent interest.



2 Preliminaries

Our notation and definitions closely follow [17].
A block cipher is a map E : K × {0, 1}n → {0, 1}n, where K is a finite non-empty set called

the key space and for all K ∈ K, E(K, ·) = EK(·) is a permutation of {0, 1}n. A TBC is a map
Ẽ : K × T × {0, 1}n → {0, 1}n, where T is a finite non-empty set called the tweak space and
Ẽ(K,T, ·) = ẼT

K(·) is a permutation of {0, 1}n. The inverse D of a block cipher is a map D = E−1

such that D(K,E(K,X)) = X. Similarly, the inverse of a TBC satisfies D̃(K,T, Ẽ(K,T,X)) = X.
Perm(n) denotes the set of all permutations of {0, 1}n and Perm(T , n) denotes the set of all

mappings from T to Perm(n). Similarly Rand(n) denotes the set of all n bit to n bit functions

and Rand(T , n) denotes the set of all mappings from T to Rand(n). The notation π
$← Perm(n)

denotes the choice of a random permutation on n bits while π $← Perm(T , n) denotes the choice of
a random permutation π(T, ·) = πT (·) for each element T ∈ T .

An adversary is a probabilistic algorithm with possible access to encryption and/or decryption
oracles. The notation AO1,O2 ⇒ 1 denotes the event that an adversary A outputs 1 after interacting
with the oracles O1 and O2. We will assume that an adversary does not ask a query for which it
can easily obtain the answer. Thus, it never repeats a query; does not ask for the decryption of a
ciphertext which it has previously received as an output of an encryption query; and neither does
it ask for the encryption of a plaintext which it has previously received as output of a decryption
query. The notation Adv(A) denotes the advantage of an adversary A. The definitions of various
advantages are as follows.

Definition 1. Let EK(·) and ẼT
K(·) be a block cipher and a TBC respectively and let A be an

adversary. We define the following advantages.

Advprp
E (A) = Prob[K $← K : AEK(·) ⇒ 1]− Prob[π $← Perm(n) : Aπ(·) ⇒ 1].

Adv±prp
E (A) = Prob[K $← K : AEK(·),DK(·) ⇒ 1]− Prob[π $← Perm(n) : Aπ(·),π−1(·) ⇒ 1].

Advp̃rp

Ẽ
(A) = Prob[K $← K : AẼK(·,·) ⇒ 1]− Prob[π $← Perm(T , n) : Aπ(·,·) ⇒ 1].

Adv±p̃rp

Ẽ
(A) = Prob[K $← K : AẼK(·,·),D̃K(·,·) ⇒ 1]− Prob[π $← Perm(T , n) : Aπ(·,·),π−1(·,·) ⇒ 1].

Here D and D̃ denote the inverses of E and Ẽ respectively.

The extension of these advantages to resource bounded advantages are done in the usual manner:
Advxxx

Π (R) = supA{Advxxx
Π (A)} over all adversaries A that use resources at most R. The re-

sources of interest are the number of queries q made by the adversary, the total number σn of n-bit
blocks provided by the adversary in all its queries and the running time t.

3 Construction of Tweakable Block Ciphers

Let R = ({0, 1}n,+, ·) be a commutative ring with identity. We define a sequence of functions.

Definition 2 (Masking Sequence). Let f1, f2, . . . , fm be a sequence of functions where each
fs : {0, 1}n → {0, 1}n. We say that the sequence is an (n,m, µ) masking sequence if the following
properties hold for a fixed element α of {0, 1}n.

(1) Prob[fs(N ) = α] ≤ 1
µ , for 1 ≤ s ≤ m.

(2) Prob[fs(N ) = N + α] ≤ 1
µ , for 1 ≤ s ≤ m.

(3) Prob[fs(N ) = ft(N ) + α] ≤ 1
µ , for 1 ≤ s, t ≤ m and s 6= t.

(4) Prob[fs(N ) = ft(N ′) + α] ≤ 1
µ , for 1 ≤ s, t ≤ m.



Here the operation “+” is over R. The probabilities are taken over independent and random choices
of N and N ′ from {0, 1}n.

In our constructions of fs’s we will have µ to be either equal to or slightly less than 2n. There is
an efficiency consideration while defining the f ’s. Given the value of fs(N ), it should be “easy” to
compute fs+1(N ).

Property (3) of a masking sequence is reminiscent of the definition of almost universal hash
functions. This is a keyed family of hash functions, such that for a randomly chosen key from the
key space, the probability that two distinct messages collide for the corresponding hash function is
low. If Property (3) is viewed in this way, N will correspond to the key of the hash function family,
whereas s and t will be the distinct messages. Thus, the correspondence is not very natural and
hence we do not explore it any further.

The construction of a TBC that we present below is a natural generalization of the construction
given in [17]. We construct a TBC

Ẽ : K × ({0, 1}n × {1, 2, . . . , 2n − 2})× {0, 1}n → {0, 1}n.

The tweak space T = {0, 1}n × {1, 2, . . . , 2n − 2}. We write ẼN,l
K (M) to denote Ẽ(K, (N, l),M).

XE Construction: In this construction, ẼN,l
K (M) is defined as follows.

ẼN,l
K (M) = EK(M +∆), where ∆ = fl(N ) and N = EK(N). (1)

XEX Construction: In this construction, ẼN,l
K (M) is defined as follows.

ẼN,l
K (M) = EK(M +∆)−∆, where ∆ = fl(N ) and N = EK(N). (2)

The operations “+” and “−” in the XE and the XEX constructions are over the ring R. Further,
the function fl() is from an (n, 2n − 2, µ) masking sequence.

The ∆’s act as masks. In the XE construction, the message block is masked, while in the XEX
construction both the message block and the output of the encryption are masked. The XE and
the XEX constructions were introduced by Rogaway [17]. We generalize by working over R and
the use of the masking sequence of functions. Later we show that there are several different ways
of efficiently instantiating R and the masking sequence.

We next prove the security of the XE and the XEX constructions. The proof of the XE con-
struction is very similar to that given in [17]. The proof of the XEX construction was not given
in [17] and it was remarked that the proof is similar to that of the XE construction. However, the
proof of the XEX construction requires an additional consideration of the range set of a random
function and collisions in the range set. Avoiding such collisions requires a little more subtlety than
the proof of the XE construction given in [17]. The following result generalizes the XE and the
XEX construction of Rogaway by the use of the masking sequence of functions.

Theorem 1 (Security of XE and XEX Constructions).
Security of XE:

Advp̃rp

Ẽ
(t, q) ≤ Advprp

E (t′, 2q) +
5q2

2n+1
+

2q2

µ
(3)

Security of XEX:

Adv±p̃rp

Ẽ
(t, q) ≤ Adv±prp

E (t′, 2q) +
5q2

2n+1
+

4q2

µ
(4)

In both the above inequalities, t′ = t+ cq + c′ for constants c, c′.

Proof :



Proof of the XE Construction: As in [17], a hybrid argument is required. The following five
hybrids were identified in [17].

1. p1 = Prob[K $← K : AẼK(.,.) ⇒ 1].

2. p2 = Prob[π $← Perm(n) : Aπ̃(.,.) ⇒ 1].

3. p3 = Prob[ρ $← Rand(n) : Aρ̃(.,.) ⇒ 1].

4. p4 = Prob[ρ $← Rand(T , n) : Aρ(.,.) ⇒ 1].

5. p5 = Prob[π $← Perm(T , n) : Aπ(.,.) ⇒ 1].

We have to bound p1 − p5 = (p1 − p2) + (p2 − p3) + (p3 − p4) + (p4 − p5). The bounds on (p1 − p2),
(p2 − p3) and (p4 − p5) obtained in [17] also hold in our case. These bounds are as follows.

1. p1 − p2 ≤ Advprp
E (t′, 2q).

2. p2 − p3 ≤ 2q2/2n.
3. p4 − p5 ≤ 0.5q2/2n.

The main part of the proof is to bound p3 − p4. We consider two games G3 and G4.

Game G3: Each adversarial query is a triple (N, l,M), where (N, l) is the tweak and M is the
message block. At the outset, a flag bad is set to false and the function ρ(·) is declared to be
undefined everywhere. As the adversary’s queries are answered, the function ρ(·) begins to get
defined at certain points of the domain. Let Domain(ρ) denote the set of points at which ρ has
currently been defined. Thus, initially Domain(ρ) is empty. The adversary then starts its queries.
The jth query is denoted by (N j , lj ,M j) and is answered as follows.

1. if N j = N i for some i < j then N j = N i;
2. else

3. N j $← {0, 1}n;

4. if N j ∈ Domain(ρ) then bad = true; N j = ρ(N j);
5. ρ(N j) = N j ;

6. Y j $← {0, 1}n; Xj = M j + flj (N j);

7. if Xj ∈ Domain(ρ) then bad = true; Y j = ρ(Xj);
8. ρ(Xj) = Y j ;
9. return Y j .

The above is similar to the algorithm given in Figure 1 of [17] with one exception. In Step 6, we
use the function flj (·) and the addition + is over the ring R.

Game G4: This game is the same as G3 except that the statement N j = ρ(N j) in Step 3 and the
statement Y j = ρ(Xj) in Step 7 are dropped.

Game G3 is an accurate simulation of the game defining the experiment associated with p3

while G4 does this for p4. The games G3 and G4 are identical until the flag bad is set to true. Thus,
we have p3 − p4 ≤ Prob[A sets bad to true in G3]. We now have to upper bound this probability.

The Y j values are returned to the adversary. These are random quantities and the adver-
sary could as well have generated these by itself. Thus, these provide the adversary with no
information and we may assume that the adversary is non-adaptive. It asks a fixed sequence
(N1, l1,M1), . . . , (N q, lq,M q) of queries hoping that some N i and Xj will collide, or some Xi

and Xj will collide. We now bound the probability of such collisions.



Case N i, Xj: Recall Xj = M j +flj (N j). Thus, Xj−N i = (M j−N i)+flj (N j) = −α+flj (N j) for
some fixed α ∈ {0, 1}n. By the first property of the masking sequence of functions (see Definition 2),
we have

Prob[N i = Xj ] = Prob[flj (N j) = α] ≤ 1
µ
.

Case Xi, Xj: This leads to two subcases.

Subcase N i 6= N j: In this case, N i and N j are chosen in the Game G3 to be independent and
uniformly distributed random quantities from {0, 1}n. We have,

Prob[Xi = Xj ] = Prob[(M i −M j) + fli(N i) = flj (N j)] ≤ 1
µ
.

Here we use the fourth property of Definition 2.

Subcase N i = N j: In this case, we have, N i = N j = N . If further li = lj , then since the adversary
does not repeat a query, we have M i 6= M j and consequently, Prob[Xi = Xj ] = 0. So consider the
case li 6= lj . We have

Prob[Xi = Xj ] = Prob[(M i −M j) + fli(N ) = flj (N )] ≤ 1
µ

by the third property of Definition 2.
In each of the above cases, we have the probability of a collision to be upper bounded by 1/µ.

The domain contains at most 2q elements and hence the probability of a collision among the domain
elements (whence bad is set to true) is at most

(2q
2

)
/µ ≤ 2q2/µ. This completes the proof of the XE

construction.

Proof of the XEX Construction: The proof of the XEX construction is more complicated, since
the adversary is allowed to make decryption queries. The idea of the proof, however, is the same. On
both encryption and decryption queries, the simulator returns random strings to the adversary and
then adjusts the internal variables in a consistent manner. For the XE construction, the probability
the adversary’s advantage is bounded above by the probability of a collision in the Domain(ρ).
For the XEX construction, the simulator needs to maintain both Domain(ρ) and Range(ρ) and
the adversary’s advantage is bounded above by the probability of a collision in either Domain(ρ)
or Range(ρ). The collision analysis for Range(ρ) is a little different from that of Domain(ρ) as we
point out later in the proof.

We assume that the adversary does not make any pointless queries. In other words, the adversary
does not query the decryption oracle with (N,C), if it had earlier obtained C as the output of an
encryption query with (N,M). The converse is also assumed to hold, i.e., it does not query the
encryption oracle with (N,M), if it had earlier obtained M as the output of a decryption query
(N,C). Further, it does not repeat a query to either the encryption or the decryption oracles.

The hybrids in the case of the XEX construction are the following.

1. p1 = Prob[K $← K : AẼK(.,.),Ẽ−1
K (.,.) ⇒ 1].

2. p2 = Prob[π $← Perm(n) : Aπ̃(.,.),π̃−1(.,.) ⇒ 1].
3. p3 = Prob[ρ1, ρ2

$← Rand(n) : Aρ̃1(.,.),ρ̃2(.,.) ⇒ 1].
4. p4 = Prob[ρ1, ρ2

$← Rand(T , n) : Aρ1(.,.),ρ2(.,.) ⇒ 1].
5. p5 = Prob[π $← Perm(T , n) : Aπ(.,.),π−1(.,.) ⇒ 1].



As before, we have to bound p1 − p5 = (p1 − p2) + (p2 − p3) + (p3 − p4) + (p4 − p5). The bounds
on (p2 − p3) and (p4 − p5) are the same as in the case of the XE construction while the bound on
(p1 − p2) is slightly different to take care of the fact that decryption queries are allowed.

1. p1 − p2 ≤ Adv±prp
E (t′, 2q).

2. p2 − p3 ≤ 2q2/2n.
3. p4 − p5 ≤ 0.5q2/2n.

Again, the main part of the proof is to bound p3 − p4.
Let us call the experiment associated with pi to be Game i. In moving from Game 2 to Game 3,

we are replacing the permutation π by the random function ρ1 and the permutation π−1 by the
random function ρ2. In Game 3, the random functions ρ1 and ρ2 are used as in the XEX construction.
In particular, ρ1 is used whenever an encryption query is made and ρ2 is used whenever a decryption
query is made.

In Game 4, ρ1 and ρ2 are from the set Rand(T , n). In other words, ρ1 (also ρ2) is a collection
of random functions, one for each tweak in T . Thus, for each (tweak, message) pair (N,M), the
adversary expects to obtain a random bit string. We now present a unified description of Games 3
and 4. The jth query is either of the form (lj , N j ,M j) or (lj , N j , Cj) according as whether the
query is an encryption or a decryption query. The set Domain is the domain of ρ1 and the range
of ρ2, while the set Range is the range of ρ1 and the domain of ρ2.

1. if N j = N i for some i < j then N j = N i;
2. else

3. N j $← {0, 1}n;

4. if N j ∈ Domain then bad = true; N j = ρ1(N j);
5. ρ1(N j) = N j ;
6. if the jth query is an encryption query then
7. Xj = M j + flj (N j);

7. Cj $← {0, 1}n; Y j = Cj + flj (N j);

8. if Xj ∈ Domain then bad = true; Y j = ρ1(Xj);
9. ρ1(Xj) = Y j ; Cj = Y j − flj (N j);
10. return Cj ;
11. if the jth query is a decryption query then
12. Y j = Cj + flj (N j);

12. M j $← {0, 1}n; Xj = M j + flj (N j);

13. if Y j ∈ Range then bad = true; Xj = ρ2(Y j);
14. ρ2(Y j) = Xj ; M j = Xj − flj (N j);
15. return M j .

Game 3 is the entire game, while Game 4 is obtained by removing the boxed entries. Both the
games are the same unless bad is set. Hence p3 − p4 is bounded above by the probability that
bad is set. Our next task is to analyse this probability. In Game 4, the adversary obtains random
strings on any input which it can generate by itself. Hence, we may assume the adversary to be
non-adaptive. It submits a sequence of encryption and decryption queries and tries to set bad to
be true. In fact, we will do more; we will allow the adversary to specify both the message and the
ciphertext in all its queries and show that the probability of bad being true is still small. Thus, the
adversaries queries are now of the form (lj , N j ,M j , Cj) for j = 1, . . . , q.



The elements of the set Domain are of the form N j ,M j + fij (N j) whereas the elements of the
set Range are of the form N j , Cj + fij (N j). Note that the N j values are never repeated in the
domain. Further, now we have each M j and Cj to be adversarily chosen and hence cannot assume
any probability distribution on these quantities.

The domain set is similar to the case of the XE construction. Hence, the collision analysis of
Domain is similar to that of the XE construction and we obtain that the probability of bad being
set due to collision in Domain is at most 2q2/µ.

We now consider collisions in Range. There are three pairs of variables to consider.

(N i,N j): Clearly, Prob[N i = N j ] = 1/2n as both N i and N j are independent and randomly
chosen quantities.

(Y i, Y j): Now

Prob[Y i = Y j ] = Prob[Ci + fli(N i) = Cj + flj (N j)] = Prob[(Ci − Cj) + fli(N i) = flj (N j)].

If (li, N i) = (lj , N j), then Ci 6= Cj (as otherwise the adversary has made a pointless query) and
fil(N l) = fij (N j . In this case, Prob[Y l = Y j ] = 0.
If (li,Ni) 6= (lj ,Nj), then as in the case of the XE construction, using Properties 1,3 and 4 of
Definition 2, we have Prob[Y i = Y j ] ≤ 1/µ.

(Y i,N j): In this case, we need to use Property 2 of Definition 2. (This property was not required
in the XE construction.)

Prob[Y i = N j ] = Prob[Ci + fli(N i) = N j ]

If i 6= j, then since N i and N j are independent random quantities and fli() is a bijective map, we
have Prob[Y i = N j ] = 1/2n.
If i = j, then we have to consider Prob[Ci + fli(N i) = N i], which by Property 2 of the masking
sequence is bounded above by 1/µ.

Thus, in all cases, we have shown that the probability of a collision in between two range elements
is bounded above by 1/µ. The range set has at most 2q elements and hence the probability of a
range collision is at most 2q2/µ. ut

Note: In the above proof, we have used Property 2 of Definition 2, namely, Prob[fl(N ) = N +α] ≤
1/µ, for any fixed string α and any randomly chosen string N . If for any l, we have fl(N ) = N ,
then clearly the above condition cannot hold. Thus, in our instantiations of the masking functions,
we have been careful to avoid fl(N ) = N for any l. A similar condition is also highlighted in [14].

4 Instantiating R

The XE and the XEX constructions and the security proofs are obtained in the abstract setting
of the ring R using a masking sequence. For efficient implementation, we have to specify R and
also define appropriate masking sequences f1, . . . , fm. The ring R can be endowed with two natural
structures: The finite field GF (2n) and the ring ZZ2n . Note that once R and the fi are specified,
both the XE and the XEX constructions become concrete.



4.1 R as GF (2n)

The set {0, 1}n can be considered to be the set of all binary polynomials of degree less than n
and made into the field GF (2n) under multiplication modulo a fixed irreducible polynomial τ(x)
of degree n. For our purpose, we will choose τ(x) to be a primitive polynomial.

Let G be an n×n matrix over GF (2) having τ(x) as its characteristic polynomial. We consider
N to be an n-bit row vector. For 1 ≤ l ≤ 2n − 2, define

fi(N ) = NGi. (5)

Proposition 1. The sequence f1, f2, . . . , f2n−2 defined by (5) is an (n, 2n−2, 2n) masking sequence
(see Definition 2).

Proof :

(1) Note that fs(N ) = NGs. Since G is invertible, the matrix Gs is also invertible. IfN is uniformly
distributed, the random variable NGs is also uniformly distributed over {0, 1}n and hence we have
the desired result.

(2) It is sufficient to show that the map N 7→ N (Gs⊕ I) is a bijection for any s ≥ 1. In (3) below
we prove a more general result from which this follows.

(3) For s 6= t, define ψs,t(N ) = fs(N )− ft(N ). We have to show that if N is uniformly distributed
over {0, 1}n, then so is ψs,t(N ). This is achieved by showing that ψs,t is a bijection. To prove
Property 3 of Definition 2, we may assume s, t ≥ 1. However, the bijective property holds even if
one of s or t is 0 (but not both). So we will assume this in the argument below, which will also
provide a proof of (2) above.

Let if possible ψs,t(N ) = ψs,t(N ′) for N 6= N ′. Then

0 = ψs,t(N )− ψs,t(N ′)
= (fs(N ))− ft(N )))− (fs(N ′))− ft(N ′)))
= N (Gs −Gt)−N ′(Gs −Gt)
= (N −N ′)(Gs −Gt).

For any non-zero element β ∈ {0, 1}n, let mβ(x) be the minimum degree polynomial such that
βmβ(G) = 0. Then mβ(x) divides any polynomial p(x) for which βp(G) = 0. By the Cayley-
Hamilton theorem τ(G) = 0 and hence mβ(x)|τ(x). By the irreducibility of τ(x), this implies
mβ(x) = τ(x). Let β = N − N ′ (under the usual identification of {0, 1}n and the elements of
GF (2n)). Then τ(x)|(xs − xt). Without loss of generality assume s > t. Then τ(x)|xt(xs−t − 1).
Since τ(x) does not divide xt, we have τ(x)|(xs−t − 1). It is well known that if τ(x) is a primitive
polynomial of degree n, then it does not divide xi − 1 for any i < 2n − 1 (see for example [10]).
Since 0 ≤ t < s ≤ 2n − 2, the fact that τ(x)|(xs−t − 1) contradicts the above property of τ(x).
Hence, we must have β = 0 and N = N ′. This shows that ψs,t() is an injection. Since it is a map
from a finite set to itself, this implies that it is also a bijection. This completes the proof of (2).

(4) Since N and N ′ are independent random quantities and the maps fs() and ft() are bijective
maps, it follows that fs(N ) and ft(N ′) are also independent and uniformly distributed random
quantities and hence their difference is uniformly distributed over {0, 1}n. ut

To specify the function fi(), it is sufficient to specify the matrix G in (5). For the proof of
Proposition 1, we only need τ(x) to be a primitive polynomial. However, a multiplication by a



general G can be costly compared to one block cipher invocation. On the other hand, if G has a
simple form then it can be very fast to implement. We point out three efficient choices of G.

Let τ(x) = xn ⊕ tn−1x
n−1 ⊕ t1x⊕ t0. Note that since τ(x) is primitive (and hence irreducible),

the constant term t0 must be 1. Define the matrix Aτ (having characteristic polynomial τ(x)) as
follows.

Aτ =


tn−1 1 0 . . . 0 0
tn−2 0 1 . . . 0 0

...
...

...
...

...
...

t1 0 0 . . . 0 1
t0 0 0 . . . 0 0

 .

Linear Feedback Shift Register (LFSR): We set G = Aτ . The matrix Aτ (and hence G) can be
implemented using a binary LFSR (see [10]).

Powering Construction: Let a(x) be a polynomial of degree less than n. The map used in [17] is
a(x) 7→ xa(x) mod τ(x). Let b(x) = xa(x) mod τ(x). If the coefficients of a(x) (resp. b(x)) are given
by a vector N (resp. N ′) then N ′ = NBτ , where Bτ is the transpose of Aτ . Thus, in this case
G = Bτ .

Cellular Automata (CA): Another (perhaps less well known) linear map is a 90/150 CA map.
In this map, the matrix G is a tridiagonal matrix of the following form: Gi,j = 1, if |i − j| = 1;
Gi,j = 0 or 1, if i = j; and Gi,j = 0 otherwise. The diagonal entries of G can be obtained from the
polynomial τ(x) using a tri-diagonalization procedure due to Tezuka and Fushimi [19].

Efficiency: All the above three methods are equally efficient to implement in both hardware and
software. Thus, the LFSR and the CA based methods should be seen as comparable rather than
better alternatives.

4.2 R as ZZ2n

The set {0, 1}n can be considered to be the set of all non-negative integers less than 2n and made
into the ring ZZ2n by performing addition and multiplication modulo 2n. Defining the masking
sequence over ZZ2n is a bit tricky. This is because ZZ2n does not form a field. We first expand ZZ2n

into a field.
Let p > 2n be a prime. Typically, we will choose the first such prime. We write p = 2n +δ. Then

p is an (n+ 1)-bit integer and δ is usually very small compared to 2n. Such primes are easy to find
using standard mathematical software packages. For example, using PARI, we obtain the following
table of primes. These cover the most typical values of n used in practical applications.

n 80 96 128 160 192 256
p 280 + 13 296 + 61 2128 + 51 2160 + 7 2192 + 133 2256 + 297

The set ZZp is a field under addition and multiplication modulo p and this field contains the integers
0, . . . , 2n − 1. For i ≥ 1, we define

fi(N ) = ((i+ 1)×N mod p) mod 2n. (6)

This idea of embedding the ring ZZ2n into a field ZZp has been earlier used in the literature [7, 20].
However, it has not been used in the context that we have used and to the best of our knowledge,
the following result has not appeared earlier.



Proposition 2. The sequence f1, f2, . . . , f2n−2 defined by (6) is an (n, 2n−2, 2n−1/(δ+1)) masking
sequence (see Definition 2).

Proof :

(1) First note that the map N 7→ (i + 1) × N mod p is an injection from ZZ2n to ZZp. We can
divide the image set of this map into two sets B1 and B2, where B1 ⊆ {0, 1, . . . , 2n − 1} and
B2 ⊆ {2n, . . . , 2n + δ − 1}. Now, when we perform the modulo 2n operation, two elements of B1

cannot collide and neither can two elements of B2 collide. The only possibility of collision is between
an element of B1 and an element of B2. Thus, any element of ZZ2n has either 0, 1 or 2 pre-images
under the map fs(). Since N is chosen uniformly from ZZ2n , we have

Prob[fs(N ) = α] ≤ 2
2n

=
1

2n−1
.

(2) Follows from the more general argument given for (3) below.

(3) We are required to prove the result for i, j ≥ 1 and i 6= j. However, the argument given below
also holds for i, j ≥ 0, though still with i 6= j. Strictly speaking fj is not defined for j = 0. However,
we extend to the case j = 0 in the natural manner by having f0(N ) = N . Then substituting j = 0
in the argument below gives the proof of (2) above.

For i 6= j, define

ψi,j(N ) = fi(N )− fj(N ) = (((i+ 1)N mod p) mod 2n − ((j + 1)N mod p) mod 2n) mod 2n.

We would like to count the maximum number of pre-images that an element in ZZ2n can have under
ψi,j . There are too many modulo operations in the definition of ψi,j . This makes it difficult to
analyze the function. We make things simpler by identifying two sets, where we can ignore some of
the modulo operations. Define

A1 = {N ∈ ZZ2n : (i+ 1)N mod p < 2n,
(j + 1)N mod p < 2n,
0 ≤ (i+ 1)N mod p− (j + 1)N mod p < 2n};

A2 = {N ∈ ZZ2n : (i+ 1)N mod p < 2n,
(j + 1)N mod p < 2n,
−2n + 1 ≤ (i+ 1)N mod p− (j + 1)N mod p < 0};

A = A1 ∪A2;
A = ZZ2n \A.

Claim: If we restrict the domain of ψi,j to A1 or A2, then we obtain an injective map.

Proof of Claim: We prove the claim for A1. The proof for A2 is similar. Let N1,N2 ∈ A1. Then we
can write

(i+ 1)N1 = qi,1p+ ri,1; (j + 1)N1 = qj,1p+ rj,1; (i+ 1)N2 = qi,2p+ ri,2; (j + 1)N2 = qj,2p+ rj,2

where 0 ≤ ri,1, rj,1, ri,2, rj,2 < 2n. Also, ψi,j(N1) = ri,1 − rj,1 ≥ 0 and ψi,j(N2) = ri,2 − rj,2 ≥ 0. Let
if possible, ψi,j(N1) = ψi,j(N2) for N1 6= N2. Then we have ri,1 − rj,1 = ri,2 − rj,2 and so

p(q1 − q2) = (i− j)(N1 −N2)



where q1 = qi,1 − qj,1 and q2 = qi,2 − qj,2. Thus, p divides (i− j)(N1 −N2) and hence, p|(i− j) or
p|(N1 −N2). Since 0 ≤ i, j,N1,N2 < 2n and p > 2n, this is not possible. This completes the proof
of the claim.

It is possible that an element from A1 and an element from A2 have the same image under ψi,j .
Thus, the number of pre-images of any element in ZZ2n under ψi,j is at most 2+ |A|. We now upper
bound |A|.

Note that

A = {N ∈ ZZ2n : (i+ 1)N mod p < 2n and (j + 1)N mod p < 2n}

and hence

A = {N ∈ ZZ2n : 2n ≤ (i+ 1)N mod p < p or 2n ≤ (j + 1)N mod p < p}
= {N ∈ ZZ2n : 2n ≤ (i+ 1)N mod p < p} ∪ {N : 2n ≤ (j + 1)N mod p < p}

Thus,

|A| ≤ |{N ∈ ZZ2n : 2n ≤ (i+ 1)N mod p < p}|+ |{N ∈ ZZ2n : 2n ≤ (j + 1)N mod p < p}|

The map (i+ 1) 7→ (i+ 1)N mod p from ZZ2n to ZZp is an injective map. Hence,

|{N ∈ ZZ2n : 2n ≤ (i+ 1)N mod p < p}| ≤ δ and |{N ∈ ZZ2n : 2n ≤ (j + 1)N mod p < p}| ≤ δ

where δ = p − 2n. Thus, |A| ≤ 2δ. This shows that the number of pre-images of any element in
ZZ2n under ψi,j is at most 2(δ + 1). Since the input N of ψi,j is chosen uniformly at random from
ZZ2n , the probability of occurrence of any element in the range of ψi,j is at most (δ+ 1)/2n−1. This
completes the proof of (2).

(4) Let X = fs(N ) and Y = ft(N ′) be the dependent random variables defined from N and N ′

respectively. Then X and Y are independent random variables having identical distribution. From
the proof of (1) they take values from the set ZZ2n with probabilities 0, 1/2n and 2/2n. The event
X − Y = α can be decomposed into the disjoint events (X = a + α mod 2n and Y = a) for all
a ∈ ZZ2n . Using the independence of X and Y , we have

Prob[X − Y = α] =
∑

a∈ZZ2n

Prob[X = a+ α and Y = a]

=
∑

a∈ZZ2n

Prob[X = a+ α]Prob[Y = a]

≤
∑

a∈ZZ2n

2
2n
× 2

2n

=
1

2n−2
.

This completes the proof of (3). ut
The security bound (obtained from the value of µ) of Proposition 2 (µ = 2n−1/(δ + 1)) is a

little weaker than that of Proposition 1 (µ = 2n). This results from the fact that we have to enlarge
the ring ZZ2n into the field ZZp. On the other hand, the slight decrease in the security bound is
immaterial from a practical point of view.



Efficiency: We will be computing the fi’s one after the other. Note that both N and fi(N ) are in
ZZ2n . We first initialize a variable X to N . The value of X will be evaluated modulo p, i.e., X can
take any value between 0 and p−1. If we denote the ith value of X by Xi, then Xi = (i+1)N mod p.
To compute fi+1(N ), we addN andX modulo p and take the last n bits of the result to be the value
of fi+1(N ). This requires only one multi-precision integer addition and at most one subtraction.
Thus, software implementation of fi(N ) will be efficient.

The exact comparative efficiency between the GF (2n) based method and the ZZ2n based method
will, to some extent, depend on the implementation details. We note though, that both the methods
will be quite efficient and the difference in speed may not be significant, especially in comparison
to one block cipher invocation. Again, we do not claim to provide a more efficient alternative to
the powering method of Rogaway; our claim is to provide another similarly efficient alternative to
the powering method.

5 Authenticated Encryption

An authenticated encryption protocol consists of an encryption and a decryption algorithm. The
encryption algorithm takes as input (the key and) a nonce and message and produces as output a
ciphertext which consists of an encryption of the message and a tag. The decryption algorithm takes
as input (the key and) a nonce and a ciphertext and produces either the corresponding message or
returns invalid. Rogaway [17] obtains an AE protocol in two steps.

1. Given a TBC F̃ : K × T × {0, 1}n → {0, 1}n where T = {0, 1}n × {1, . . . , 2n/2} × {0, 1} and an
integer τ ∈ [0..n], Rogaway provides a construction of an AE protocol.

2. The TBC F̃ is instantiated in [17] using a TBC Ẽ obtained by the powering construction over
GF (2n) from XEX.

Rogaway’s AE construction from the TBC F̃ also holds in the more general setting of R. Our
contribution is essentially to the second step above. Recall that we have provided the construction
of a TBC Ẽ : K×({0, 1}n×{1, 2, . . . , 2n−2})×{0, 1}n → {0, 1}n. Using this, we have to instantiate
the F̃ . This means that we have to map the set {1, 2, . . . , 2n/2}×{0, 1} to the set {1, 2, . . . , 2n−2}.
Let

φ : {1, 2, . . . , 2n/2} × {0, 1} → {1, 2, . . . , 2n − 2}

be this map. The requirement on φ is that it should be an injective map. (In [17], this requirement
is called unique representability in the context of the powering construction over GF (2n).)

Our contribution to the AE protocol of Rogaway [17] is in the different definitions of φ. We show
two ways of defining φ. The first method, which we call linear separation, is based on Rogaway’s
method. The second method, which we call interleaved separation, is new to this work.

Let ∆i,b(N ) = fφ(i,b)(N ). Figure 1 shows the AE protocol of [17] written using the ∆’s. The
statement on the security of the protocol is given in Section 5.4.

In Figure 1, the tweaks ∆1,0(N ),∆2,0(N ), . . . ,∆m,0(N ) are used to encrypt the m message
blocks and the tweak ∆m,1(N ) is used to encrypt the tag. Thus, for the purpose of efficiency, the
following two tasks must be efficient.

Task 1: Compute ∆i+1,0(N ) from ∆i,0(N ).
Task 2: Compute ∆m,1(N ) from ∆m,0(N ).

We next show two different methods for defining φ and efficiency of the two tasks in both the
methods.



Fig. 1. Encryption and decryption algorithms of an AE protocol over R. The encryption algorithm takes as input
(K, N, M) where K is the key, N is the nonce and M is the message. It produces as output a pair (C, tag). The
decryption algorithm takes as input (K, N, (C, tag)), where K and N are key and nonce respectively and (C, tag) is
the ciphertext and tag pair. It produces as output either the message M or says that the pair (C, tag) is invalid. Here
∆i,b(N ) = f(N ).

Algorithm Encrypt(K, N, M)
Partition M into M [1] · · ·M [m];
N = EK(N);
sum = 0n;
for i = 1 to m − 1 do

mask = ∆i,0(N );
C[i] = EK(M [i] + mask) − mask;
sum = sum + M [i];

end for;
mask = ∆m,0(N );
Pad = EK(len(M [m]) + mask) − mask;
C[m] = M [m] + Pad;
C = C[1] · · ·C[m];
sum = sum + (C[m]0∗) + Pad;
mask = ∆m,1(N );
T = EK(sum + mask) − mask;
set tag to the first τ bits of T ;
return (C, tag).

Algorithm Decrypt(K, N, (C, tag))
Partition C into C[1] · · ·C[m];
N = EK(N);
sum = 0n;
for i = 1 to m − 1 do

mask = ∆i,0(N );
M [i] = E−1

K (C[i] + mask) − mask;
sum = sum + M [i];

end for;
mask = ∆m,0(N );
Pad = EK(len(C[m]) + mask) − mask;
M [m] = C[m] + Pad;
M = M [1] · · ·M [m];
sum = sum + (C[m]0∗) + Pad;
mask = ∆m,1(N );
T = EK(sum + mask) − mask;
set tag′ to the first τ bits of T ;
if tag = tag′ then return M else return Invalid.

5.1 Linear Separation

Let L be an integer such that 2n/2 ≤ L < L+ 2n/2 ≤ 2n − 2. Define

φ(i, b) = i+ Lb. (7)

The injectivity of φ is easily verified. In Figure 1, the use of (7) implies the following.

– For the message blocks we use masks f1(N ), f2(N ), . . . , fm(N ).
– For the tag we use the mask fm+L(N ).

We now consider the two tasks.

Task 1 Recall that earlier it has been shown that it is easy to obtain fi+1(N ) from fi(N ) for both
the cases when R is realized as GF (2n) or as ZZ2n .

Task 2 We show the efficiency of this task separately for the realization of R as GF (2n) and ZZ2n .

R as GF (2n): In this case, the technique of [17] is applicable. Let L be the discrete log of (x+ 1)
in GF (2n) realized using the primitive polynomial τ(x). (For n = 64, 128, the corresponding values
of L are computed in [17] and satisfy the condition on L.) Thus, xL ≡ x ⊕ 1 mod τ(x) and so
xL ⊕ x⊕ 1 = q(x)τ(x) for some polynomial q(x).

Recall that the matrix G used to define the masking sequence of functions has τ(x) as its
characteristic polynomial. Using the Cayley-Hamilton theorem, it follows that τ(G) = 0 and hence
GL ⊕G⊕ In = q(G)τ(G) = 0. Thus, for any N ∈ {0, 1}n, we have NGL = N (G⊕ In). Hence, we
have

fm+L(N ) = NGm+L = (NGm)GL = fm(N )GL = fm(N )(G⊕ In).



In other words, given X = fm(N ) we compute Y = fm+L(N ) in the following manner: Compute
X1 = XG and set Y = X⊕X1. Computation of XG requires one application of G, which is efficient
in all the three cases – LFSR, powering and CA.

R as ZZ2n: We choose L = 2n/2. Recall that in this case Xi = (i + 1)N mod p and fi(N ) =
Xi mod 2n. Then fm+L(N ) = (Xm + 2n/2N mod p) mod 2n and can be computed from Xm using
one modulo p multiplication.

5.2 Interleaved Separation

In this case, we define φ(i, b) in the following manner.

φ(i, b) = 2i+ b. (8)

The injectivity of φ is easily verified. In Figure 1, the use of this map implies the following.

– For the message blocks we use masks f2(N ), f4(N ), f6(N ), . . . , f2m(N ).
– For the tag we use the mask f2m+1(N ).

The advantage of this method over the linear separation technique is that it does not require
the computation of a discrete log during the design stage when R is instantiated as GF (2n). The
computation of Tasks 1 and 2 are quite efficient though it is a little slower than the linear separation
method. Simple implementation tricks can speed up the mask computation.

5.3 Comparison Among the AE Protocols

At a top level, we have four single-pass AE protocols. There are two options for instantiating the
ring R (either as GF (2n) or as ZZ2n) and two options for constructing the protocol (either using
linear or interleaved separation). This gives rise to a total of four different possibilities. Further,
when we realize R as GF (2n) there are different possibilities for implementing G. We have indicated
three – as an LFSR, using the powering construction or as a CA.

The AE protocol in [17] corresponds to the instantiation of R as GF (2n); G as the powering
construction and using the technique of linear separation. Clearly, this is a special case of the suite
of AE protocols that we have developed. There are other single-pass protocols which do not fall
within the general description that we have developed. In particular, the protocols of Gligor and
Donescu [6], Jutla [8] and the earlier protocol of Rogaway [18] are not covered by our general
description.

Efficiency of Linear Versus Interleaved Separation: In the linear separation technique, the
masks f1(N ), f2(N ) . . . , fm(N ) are used for the message blocks, where as in the interleaved separa-
tion technique the masks f2(N ), f4(N ) . . . , f2m(N ) are used for the message blocks. Thus, it may
seem that the interleaved separation technique results in a much slower AE protocol compared to
the linear separation technique. We argue that this is not the case. In particular, when R is realised
as ZZ2n , both methods have same efficiency. When R is realised as GF (2n), the interleaved method
can be slightly slower but not significantly so, since the difference in the time for generating the m
masks is negligible in comparison to the time required for the m block cipher invocations.

Suppose R is realised as ZZ2n . Then fi(N ) = ((i+1)×N mod p) mod 2n. As mentioned earlier,
we will be using a variable X whose ith value is Xi = (i+1)×N mod p. Then Xi+1 = Xi+N mod p
and Xi+2 = Xi + 2N mod p. So, if we compute 2N mod p once at the beginning, then computing



Xi+2 from Xi is as efficient as computing Xi+1 from Xi. This shows that for R as ZZ2n , both linear
and interleaved separation techniques have similar efficiency.

Now consider the case when R is realised as GF (2n). There are three possibilities – LFSR,
powering and CA. For concreteness, let us consider the powering method. We have to compare the
time for computing x2N mod τ(x) (in the interleaved separation method) with that of computing
xN mod τ(x) (in the linear separation method). The first operation takes more time than the
second operation, though not necessarily twice as much time.

More importantly, however, both these operations should be seen in the context of an AE mode
of operation. Let t1 and t2 respectively be the times for these two operations and let t be the
time for one block cipher call. Then, the interleaved separation technique requires t + t1 time per
block, where as the linear separation technique requires t + t2 time per block. We argue that the
difference t1− t2 is negligible with respect to t. Our rationale is that a block cipher performs much
more operations than a few shifts and XORs needed to implement a modulo multiplication by
x. For example, AES-128 performs 160 table look-ups in addition to other operations. A careful
implementation (which we have not done) of the two methods can settle this point.

An Easily Reconfigurable Family: Consider the situation when R is implemented as GF (2n).
In this case, the field representing polynomial τ(x) can be viewed as parameterizing the mode
of operation. In other words, the construction can be viewed as a family of modes of operations,
indexed by the set of primitive polynomials over GF (2n). All constructions in the family have the
same efficiency and the same security guarantee. Choosing τ(x) selects a particular member from
the family.

The number of primitive polynomials over GF (2) of degree n is equal to Tot(2n − 1)/n, where
Tot(i) is the Euler totient which is the number of positive integers less than i and coprime to i.
The quantity Tot(2n − 1)/n is fairly large (for n = 128, this value is around 2119) and so we have
a rather large family of modes of operations.

Now, suppose we use Rogaway’s construction, i.e., the powering method with linear separation.
In this case, whenever τ(x) is changed, we need to verify that the discrete log of (x+1) with respect
to the new τ(x) is “large” as otherwise the security proof might not hold. Thus, each change of
τ(x) requires a discrete log computation.

In contrast, consider the interleaved separation technique. This does not require any discrete
log computation. Hence, we can choose any primitive polynomial τ(x) and immediately obtain
a construction. In both software and hardware implementations, the primitive polynomial can be
provided as a parameter – in software as part of a header file and in hardware as a register. Choosing
a new primitive polynomial and changing this parameter is quite simple. This provides an easily
reconfigurable design. As discussed in Section 1.2, this feature may have a practical appeal to
developers of cryptographic products.

5.4 Security of AE protocols

The security of an authenticated encryption protocol consists of two parts – privacy and authentic-
ity. The adversary is given access to the encryption oracle and is assumed to be nonce respecting,
i.e., it does not repeat a nonce in its queries to the oracle. Following Rogaway [17], the privacy of
a encryption scheme Π = (K, E ,D) against a nonce respecting adversary A is defined in the sense
of “indistinguishability from random strings” in the following manner:

Advpriv
Π (A) = Prob[K $← K : AEK(·,·) ⇒ 1]− Prob[A$(·,·) ⇒ 1]



where $(·, ·) is an oracle that takes (N,M) as input and returns |M | many random bits as output.
For defining authenticity, the adversary is said to successfully forge if it outputs a pair (N, (C, tag))
which is valid and (C, tag) was not the result of any prior (N,M) query. Formally,

Advauth
Π (A) = Prob[K $← K : AE(·,·) forges].

The result on the security of the AE protocol of Figure 1 is stated below and is a minor modification
of Corollary 14 of [15].

Theorem 2. Let AE[Ẽ, τ ] be constructed as in Figure 1. Let Ẽ be instantiated by a block cipher
E : K × {0, 1}n → {0, 1}n. Then

– Advpriv
AE[E,τ ]

(t, σn) ≤ Advprp
E (t′, σn) + 5q2

2n+1 + 4q2

µ

– Advauth
AE[E,τ ]

(t, 2σn) ≤ Adv±prp
E (t′, 2σn) + 2n−τ

(2n−1) + 5q2

2n+1 + 4q2

µ

where t′ = t + cnσn for some absolute constant c; µ = 2n if R is realized as GF (2n), and µ =
2n−1/(δ + 1) with δ = p− 2n if R is realized as ZZ2n.

6 MAC Construction

A MAC protocol consists of two algorithms. The tag generation algorithm takes as input (a key
and) a message and produces as output a tag. The verification algorithm takes as input (a key and)
a message-tag pair and returns either true (if the pair is valid) or false (if it is invalid).

In [17], the TBC obtained from the XE construction is used to construct a MAC protocol. In
fact, a more general construction of a tweakable PRF is presented in [17]. A tweakable PRF is a map
F̃ : K×V ×M→ {0, 1}τ where K 6= ∅ is the key space, V 6= ∅ is the tweak space, ∅ 6=M⊂ {0, 1}∗
is the message space and τ ≥ 1.

Under the assumption (implicit in [17]) that at most B blocks are permissible in a single message,
the general construction is described using a TBC F̃ : K × ({1, . . . , B} × {0, 1, 2} × {0, . . . ,V}) ×
{0, 1}n → {0, 1}n. The set {0, . . . ,V}, where V is a small positive integer (≤ 7), is considered to be
a tweak to the PRF (and hence MAC) algorithm itself.

For each tweak (i, j, v), the MAC algorithm associates a mask ∆i,j,v. The algorithm of [17]
written in terms of the ∆i,j,v’s is shown in Figure 2. The security statement is given in Section 6.3.
The first (m−1) message blocks are masked using∆1,0,v,∆2,0,v, . . . ,∆m−1,0,v and the last encryption
is masked using ∆m,1,v or ∆m,2,v according as whether the last block is full or partial.

The TBC F̃ is instantiated by the TBC Ẽ which in turn is instantiated by the block cipher E.
This chain of instantiations can be written as follows.

F̃ i,j,v(M) = Ẽ0n,φ(i,j,v)(M) = EK(M +∆i,j,v) = EK(M + fφ(i,j,v)(N ))

where N = EK(0n) and

φ : {1, . . . , B} × {0, 1, 2} × {0, . . . ,V} → {1, . . . , 2n − 2}

is an injective map. As in the case of AE, we identify two techniques for defining the map φ.



Fig. 2. The tag generation algorithm of a tweakable MAC protocol over R. The algorithm takes as input (K, v, M)
where K is the key, v is the tweak and M is the message. It produces as output a τ -bit tag.

Algorithm Tag-Generation(K, v, M)
Partition M into M [1] · · ·M [m];
N = EK(0n);
sum = 0n;
for i = 1 to m − 1 do

mask = ∆i,0,v;
Y = EK(M [i] + mask);
sum = sum + Y ;

end for;
if |M [m]| = n
then mask = ∆m,1,v; sum = sum + M [m];
else mask = ∆m,2,v; sum = sum + (M [m]10∗);
T = EK(sum + mask);
set tag to the first τ bits of T ;
return tag.

6.1 Linear Separation

Let L1 and L2 be two positive integers satisfying the following two conditions.

– B + 2L1 + VL2 ≤ 2n − 2.
– |L1j + L2v| > B for −2 ≤ j ≤ 2 and −V ≤ v ≤ V.

Define

φ(i, j, v) = i+ L1j + L2v. (9)

Lemma 1. The map φ defined in (9) is an injection.

Proof : Let if possible, (i1, j1, v1) 6= (i2, j2, v2) and φ(i1, j1, v1) = φ(i2, j2, v2). Then we have
i1− i2 = L1(j2−j1)+L2(v2−v1), where −B ≤ i1− i2 ≤ B, −2 ≤ j2−j1 ≤ 2 and −V ≤ v2−v1 ≤ V.
From the given condition on L1 and L2, the minimum value of |L1(j2− j1)+L2(v2− v1)| is greater
than B while |i1 − i2| ≤ B. Hence, if any one of (j2 − j1) or (v2 − v1) is not equal to zero, then
i1 − i2 = L1(j2 − j1) + L2(v2 − v1) cannot hold. If both are zeros, then i1 = i2 and we have
(i1, j1, v1) = (i2, j2, v2). This shows that φ is an injection. ut

We now consider the two possibilities for R.

R as GF (2n): The values of L1 and L2 are respectively the discrete logs of (x+1) and (x2 +x+1)
with respect to the lexicographically first primitive polynomial τ(x) of degree n over GF (2). These
values have been computed in [17] for n = 128 and n = 64 and satisfy the required condition for
B = 2n/2.

fi+jL1+vL2(N ) = NGi+jL1+vL2

= NGi(GL1)j(GL2)v

= NGi(In ⊕G)j(In ⊕G⊕G2)v

= (N (In ⊕G⊕G2)v)Gi(In ⊕G)j

= XGi(In ⊕G)j

where X = N (In⊕G⊕G2)v. Note that v is a tweak to the MAC algorithm itself and is independent
of the actual message to be authenticated. At the start, we compute X = N (In ⊕ G ⊕ G2)v. The



value N = EK(0n) is computed and then the map (In ⊕G⊕G2) is applied v times to it. This can
be done by the following algorithm.

1. N = EK(0n);
2. for i = 1 to v do
3. A = NG; B = AG; N = N ⊕A⊕B;
4. end do;

Executing the above algorithm requires a total of 2v applications of G. Recall that each application
of G is very cheap when G is realized using either an LFSR, or a powering construction or as a CA
map.

OnceX is computed, we can iteratively computeXGi by applying G to the previously generated
value. Suppose the last value that is obtained is Z. To Z we apply (In⊕G)j . The value of j is 1 or
2 and applying (In ⊕G)j is similar to applying (In ⊕G⊕G2)v shown above.

R as ZZ2n: Let B = 2n/2 − 1, L1 = (V + 1)2n/2 and L2 = 2n/2. Then the conditions on L1 and L2

are satisfied. We have

fi+jL1+vL2(N ) = ((i+ jL1 + vL2 + 1)N mod p) mod 2n

= ((vL2N mod p) + (jL1N mod p) + ((i+ 1)N mod p) mod p) mod 2n

= ((X2 +X1 + ((i+ 1)N ) mod p) mod p) mod 2n

where X2 = vL2N mod p and X1 = jL1N mod p. Since v does not depend on the message, we
start by computing Z = X2. Let Zi = X2 + (i + 1)N mod p. Then the value of fi+vL2(N ) equals
the n least significant bits of Zi. Finally, we obtain the value of fi+jL1+vL2(N ) by adding X1 to Zm

and taking the n least significant bits.

6.2 Interleaved Separation

In this case, we define

φ(i, j, v) = 3(V + 1)i+ (V + 1)j + v. (10)

The injectivity of φ is readily verified. Starting from fv(N ) it is easy to compute f3(V+1)i+v(N )
iteratively for both the cases when R is GF (2n) or ZZ2n . Finally, it is also easy to compute the
value of f3Vm+Vj+v(N ) from f3Vm+v(N ) in both the cases. This technique does not require the
integers L1 and L2 and hence in the case of R being realized as GF (2n) there is no need for any
discrete log computation. The disadvantage is that compared to the technique of linear separation,
this technique is costlier. Computing the masks is about 3(V + 1) times more costlier. In the case,
where V = 1, as in the application to the construction of AEAD, this cost is within tolerable limits.

6.3 Security

As in [17], the MAC construction is secure as a tweakable PRF. The advantage of an adversary A
with respect to a tweakable PRF F̃ is defined in the following manner.

Advp̃rf

F̃
(A) = Prob[K $← K : AF̃K(·,·) ⇒ 1]− Prob[ρ $← Rand(V ×M, τ) : Aρ(·,·) ⇒ 1]. (11)

The security result of the MAC construction is similar to that of Corollary 17 of [15]. We state the
corresponding result.



Theorem 3. Fix n ≥ 1 and τ ∈ [1..n]. Let E : K×{0, 1}n → {0, 1}n be used to instantiate the XE
construction of Ẽ as in Figure 2. Then

Advp̃rf

MAC[E,τ ]
(t, σn) ≤ Advprp

E (t′, σn) +
5q2

2n+1
+

2q2

µ

where µ = 2n−1/(δ + 1) if R is instantiated as ZZ2n and µ = 2n if R is instantiated as GF (2n).

7 Authenticated Encryption With Associated Data

An AEAD is a protocol which allows the authentication of a header (also called associated data)
without encrypting it. The encryption algorithm for an AEAD protocol takes as input (the key
and) a header, a nonce and a message. It produces as output a ciphertext which consists of the
encryption of the message and a tag which authenticates both the message and the header. The
decryption algorithm takes as input (the key and) a header, a nonce and a ciphertext. If produces
as output either the corresponding message or returns invalid. Authenticating the header without
encrypting it is of use in some practical situations. One example is internet packets which consist of
a header and a message. Both of these must be authenticated. However, if the header is encrypted,
then it will be difficult for internet routers to forward the packets. An AEAD protocol exactly fits
this application. See [16] for more details on applications of AEAD.

It has been shown in [17] that the tweakable MAC can be combined with the AE construction
to obtain an AEAD construction. The basic idea is to use the technique of ciphertext translation
from [16] and tweak the MAC construction using v = 1. The header is authenticated by the MAC
algorithm and the message is encrypted using the AE algorithm. Finally, the tag for the header
is XORed into the required number of last bits of the output of the AE algorithm (which is the
ciphertext and the tag for the message). We discuss how this can be done in our setting.

The input to the AEAD algorithm is a triple (N,H,M), where N is an n-bit nonce, H is
the header and M is the message. Let φ be an injective map (obtained by either the linear or
the interleaved separation) from {1, . . . , B} × {0, 1, 2} × {0, 1} to {1, . . . , 2n − 2}. For (i, j, v) ∈
{1, . . . , B} × {0, 1, 2} × {0, 1} and N ∈ {0, 1}n, we define a set of masks ∆i,j,v(N ) = fφ(i,j,v)(N ).
The MAC construction requires a TBC obtained by the XE construction, while the AE construction
requires a TBC obtained by the XEX construction. Both these constructions require masks of the
type fk(N ). Defining these masks will make the algorithm precise.

The masks for the first h− 1 header blocks in the MAC algorithm are

∆1,0,1(N ′),∆2,0,1(N ′), . . . ,∆h−1,0,1(N ′)

where N ′ = EK(0n). The mask for the last header block is ∆h,1,1(N ′) or ∆h,2,1(N ′) according as
whether Hh is full or partial.

In the AE algorithm, the masks are used as follows. The masks for the m message blocks are

∆1,0,0(N ),∆2,0,0(N ), . . . ,∆m,0,0(N )

where N = EK(N). The mask for encrypting the checksum sum in the AE algorithm is ∆m,1,0(N ).
With the above mask definitions and the protocols in Figures 1 and 2, it is easy to fill out the
details of the AEAD protocol.



8 Different MAC and AEAD Constructions

The MAC construction described in Section 6 is essentially the construction in [17] instantiated by
the more general tweakable block cipher construction with the option of applying either the linear
or the interleaved separation techniques. In this section, we describe a MAC construction which
is different from that in [17] and an AEAD protocol based on it. The MAC construction that we
describe is closer to the construction in [4]. The algorithm is described in Figure 2. It requires the
masks ∆3,∆4, . . . ,∆m+1 and either ∆1 or ∆2. Defining these masks from the f -functions is easy.
For i ≥ 1, define

∆i = fi(N ) where N = EK(0n).

Thus, starting from f3(N ) we compute the masks in an iterative manner. The (minor) disadvantage
is that we have to carry forward the values of both f1(N ) and f2(N ). This is because it is only at
the end of the message we get to know which one will be required.

Fig. 3. The tag generation algorithm of a MAC protocol over R. The algorithm takes as input (K, M) where K is
the key and M is the message. It produces as output a τ -bit tag.

Algorithm Tag-Generation(K, v, M)
Partition M into M [1] · · ·M [m];
N = EK(0n);
sum = 0n;
for i = 1 to m − 1 do

mask = ∆i+2;
Y = EK(M [i] + mask);
sum = sum + Y ;

end for;
if |M [m]| = n
then mask = ∆1; sum = sum + M [m];
else mask = ∆2; sum = sum + (M [m]10∗);
T = EK(sum + mask);
set tag to the first τ bits of T ;
return tag.

AEAD protocol: Based on this MAC protocol, we can define an AEAD protocol in the following
manner. Actually, we slightly modify the MAC protocol by defining

∆1 = f1(N );∆2 = f2(N ); and for i ≥ 3,∆i = f3(i−2)(N ). (∗)

The outline of the AEAD algorithm is as follows. Let there be h header blocks H1, . . . ,Hh and m
message blocks M1, . . . ,Mm. The last header block Hh can be partial and the last message block
Mm can be partial.

1. Generate a MAC for the header using Figure 3 but using the definition of ∆ given by (∗) and
with N = EK(0n). Let T be the produced tag. If the header is empty, set T to be the empty
string.

2. Encrypt the message blocks using the AE algorithm of Figure 1 but using the mask f3(h+i)+1(N )
(with N = EK(0n), where N is the nonce) for the ith message block and the mask f3(h+m)+2(N )
for the checksum sum. This gives us the pair (C, tag), where C is the ciphertext and tag is the
tag.

3. XOR T into the last |T | bits of (C, tag) and return the result.



9 Conclusion

The concept of TBCs and the theme of designing modes of operations based upon TBCs was
introduced in [11]. The first efficient construction of TBCs was presented in [17] and the same paper
presented AE, MAC and AEAD protocols. We build on the work in [17]. Our first contribution
is to present a general construction of an efficient TBC We work over a ring R which can be
instantiated as either GF (2n) or as ZZ2n . The construction of TBC in [17] can be seen as a special
case (instantiating R as GF (2n) and using the powering construction) of our construction. The
general TBC construction is used to instantiate general constructions of AE, MAC and AEAD
protocols from [17] in several ways. This leads to a suite of efficient protocols for these applications
out of which only one of each kind has been described earlier in [17].
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